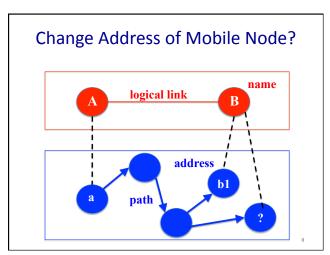
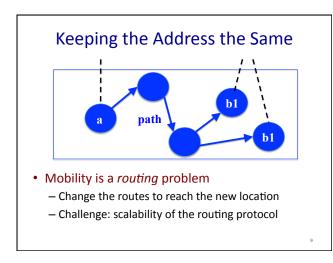
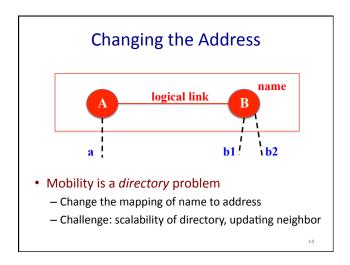
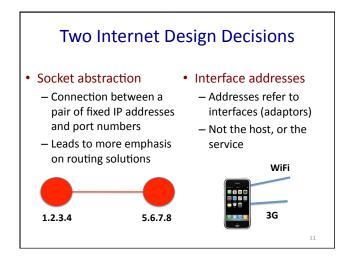


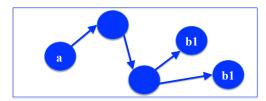
Why (and How) Things Move










Routing Solutions
Address Stays the Same

Three Examples

- Ethernet
 - MAC learning of the new location
- IP routing
 - Inject IP address(es) at new location
- Mobile IP
 - Stationary home agent directs traffic to new location

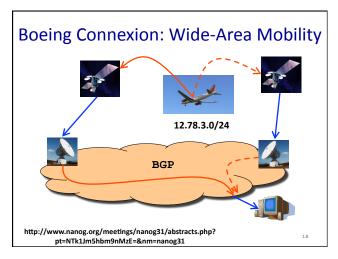
13

Example #1: Ethernet

- MAC learning
 - Learn b1's location when b1 sends a frame
 - Soft state: timeout the cached information

1.4


Making Larger Ethernet Segments


- · Ethernet handles mobility
 - IP address and MAC address stay the same
 - Switches learn to route to the new location
- But, larger networks have multiple segments
 - Cannot retain your IP address as you move
- Solution: virtual local area networks (VLAN)
 - Logical Ethernet segment spanning a campus
 - E.g., interconnecting the WiFi access points

15

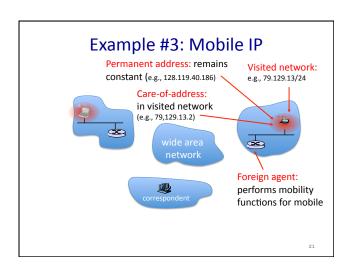
Pros and Cons

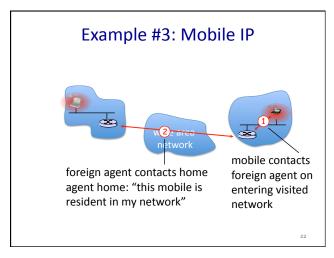
- Advantages
 - Seamless mobility, no changes to hosts or apps
 - No changes to MAC or IP addresses
- Disadvantages
 - Ethernet does not scale
 - Long paths, state per MAC address, flooding, ...
- Widely used approach in campus networks

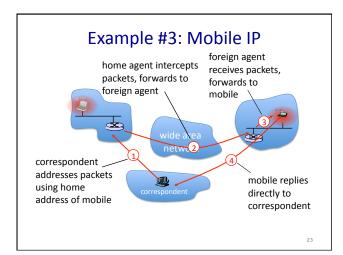
- Advantages
 - Seamless mobility, no MAC or IP address changes
 - Traffic follows an efficient path to new location
- Disadvantages
 - Does not scale to large number of mobile hosts
 - More routing-protocol messages
 - Larger routing tables to store smaller address blocks

Example #3: Mobile IP

Home network: permanent
"home" of mobile (e.g. 128.119.40/24)


Home agent: performs mobility functions on behalf of mobile


wide area network


always be used to reach mobile, e.g.,
128.119.40.186

Correspondent: wants to communicate with mobile

Advantages

- Seamless to the remote end-point
- No routing-protocol overhead

Disadvantages

- Overhead of running home and foreign agents
- Inefficient "triangle routing" (high "stretch")
- Foreign agent sends "spoofed" IP source address

Questions

Between three mobility choices

(A) Ethernet (B) IP Routing (C) Mobile IP (D) All

Which option:

- 1. Scales to entire Internet
- 2. Less efficient communication when mobile
- 3. Seamless to endhosts
- 4. Mobility solution does not run risk of filtering

25

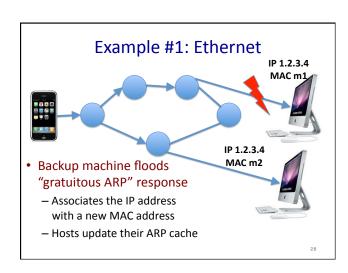
Directory Solutions

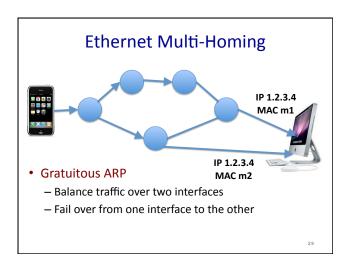
Change the mapping of name to address

26

Three Examples

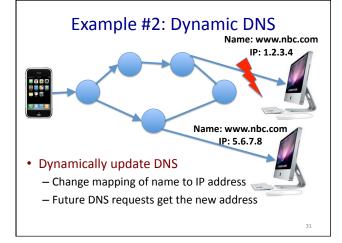
• Ethernet


 Gratuitous ARP to change the MAC address associated with an IP address


• Dynamic DNS

 DNS updates to change the IP address(es) associated with a domain name

· Various recent proposed designs


 Updating the remote end-point (e.g., end host, edge switch) to use a new address

- Advantages
 - Seamless change from one MAC address to another
- Disadvantages
 - Works only within a single Ethernet subnet
 - Scalability limitations of Ethernet
- · Used in data-center networks
 - But doesn't help with smart phones homed to multiple administrative domains

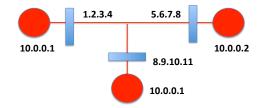
30

Applications of Dynamic DNS

- · Replicated services
 - Direct future requests to a different replica
 - E.g., for failover, load balancing, performance, etc.
- Services on dynamically-assigned IP addresses
 - Residential user with a dynamic IP address
 - Directs clients to the server's current address
- "Fast flux" in botnets
 - Hiding phishing and malware delivery servers
 - ... behind constantly changing IP addresses

- Advantages
 - No new infrastructure
 - Leverages existing DNS servers
- Disadvantages
 - Only helps for new connections
 - Overheads of updating DNS servers
 - Stymied by DNS caching

33


Example #3: Updating the End-Points

- Mobile node updates the remote end-point
 - Sends the remote end-point the new IP address
 - Allowing ongoing connection to continue
 - Can be used in conjunction with Dynamic DNS

34

Updating the Edge Switches

- Update the switches
 - Hosts retain their addresses
 - Switches rewrite the addresses, or encapsulate
 - Used in some data-center networks

35

Pros and Cons

- Advantages
 - Scalability of hierarchical addressing
 - Efficiency of routing along short paths
- Disadvantages
 - Changes to the end host (e.g., apps, TCP, etc.)
 - $\boldsymbol{-} \dots$ or support from the edge switches
 - Difficulty when both end-points move at once
- Work in progress
 - Used in some data centers, recent standards/projects
 - E.g. Princeton's Serval project (www.serval-arch.org)

Mobility Today

- · Limited network support for mobility
 - E.g., within a single Ethernet subnet
 - E.g., among base stations on a campus
- · Applications increasingly robust to mobility
 - Robust to changes in IP address, and disconnections
 - E.g., e-mail client contacting the e-mail server, and allowing reading/writing while disconnected

37

Mobility Tomorrow

- · Increasing demand for seamless IP mobility
 - E.g., continue a VoIP call while on the train
 - E.g., virtual machine migration within and between data centers
- Increasing integration of WiFi and cellular
 - E.g., multi-homed cell phones that can use both networks (announced for Samsung Galaxy S5)
 - E.g., servers with multiple interface cards
- Need better mobility & multi-homing solutions!