Congestion Control

Michael Freedman
COS 461: Computer Networks

http://www.cs.princeton.edu/courses/archive/sprl4/cos461/

(First, remainder of slides from
Monday’s lecture on Transport Layer)

Optimizing Retransmissions

Reasons for Retransmission

-{Packe {—Pack ~|—Pack,
t e i
5 W - —Jker_ | of ==t |
g 8 K 8 &
£ £ AC E! O
] e | 7{
s ac|
% —% 3 ket
5 5 =
g K g K g | 2 —
E A — F | At — Ei
ACK lost Early timeout
Packet lost DUPLICATE DUPLICATE

PACKET PACKETS
4

How Long Should Sender Wait?

* Sender sets a timeout to wait for an ACK
— Too short: wasted retransmissions

— Too long: excessive delays when packet lost

* TCP sets timeout as a function of the RTT
— Expect ACK to arrive after an “round-trip time”
— ... plus a fudge factor to account for queuing

* But, how does the sender know the RTT?
— Running average of delay to receive an ACK

Still, timeouts are slow (=RTT)

* When packet n is lost...

— ... packets n+1, n+2, and so on may get through
Exploit the ACKs of these packets

— ACK says receiver is still awaiting nth packet

— Duplicate ACKs suggest later packets arrived

— Sender uses “duplicate ACKs” as a hint
Fast retransmission

— Retransmit after “triple duplicate ACK”

When is Fast Retransmit effective?

High likelihood of many packets in flight
Long data transfers, large window size, ...

Implications for Web traffic
—Most Web transfers are short (e.g., 10 packets)
* So, often there aren’t many packets in flight

—Making fast retransmit is less likely to “kick in”

* Forcing users to click “reload” more often...

Starting and Ending a Connection:
TCP Handshakes

Establishing a TCP Connection

Each host tells
its ISN to the
other host.

* Three-way handshake to establish connection
— Host A sends a SYN (open) to the host B
— Host B returns a SYN acknowledgment (SYN ACK)
— Host A sends an ACK to acknowledge the SYN ACK

9

Tearing Down the Connection

B
v
A
2l 294
2) %S 7~
ﬁ L
A

time ——————————>

FIN
SOV
Nid
ACk

* Closing (each end of) the connection
— Finish (FIN) to close and receive remaining bytes
— And other host sends a FIN ACK to acknowledge
— Reset (RST) to close and not receive remaining bytes

0

Sending/Receiving the FIN Packet

* Sending a FIN: close() * Receiving a FIN: EOF

— Process is done sending — Process is reading
data via socket data from socket

— Process invokes “close()” — Eventually, read call

— Once TCP has sent all returns an EOF
the outstanding bytes...

—...then TCP sends a FIN

Congestion Control

Distributed Resource Sharing

Congestion

* Best-effort network does not “block” calls
— So, they can easily become overloaded
— Congestion == “Load higher than capacity”

* Examples of congestion
— Link layer: Ethernet frame collisions

— Network layer: full IP packet buffers queue

Congestion Collapse

* Easily leads to congestion collapse
— Senders retransmit the lost packets
— Leading to even greater load
— ... and even more packet loss

“congestion |ncrease in load that
Goodput

) collapse” rasyits in a decrease
* Excess packets are simply dropped in useful work done.
— And the sender can simply retransmit Load
Detect and Respond to Congestion Detecting Congestion
PRGN Link layer
/ h N —Carrier sense multiple access

* What does the end host see?
* What can the end host change?

—Seeing your own frame collide with others

Network layer
—Observing end-to-end performance
—Packet delay or loss over the path

Responding to Congestion

* Upon detecting congestion
— Decrease the sending rate

* But, what if conditions change?
— If more bandwidth becomes available,

— ... unfortunate to keep sending at a low rate

* Upon not detecting congestion
— Increase sending rate, a little at a time
— See if packets get through

Ethernet Back-off Mechanism

STATN

. TRANSCEWE R
* Carrier sense: 2 AL = J]
| INVEREACE CABLE
— Wait for link to be idle

— If idle, start sending LJU,[%‘ ?__* TR

CONTROLER.
. o B2
— If not, wait until idle s

* Collision detection: listen while transmitting

— If collision: abort transmission, and send jam signal

* Exponential back-off: wait before retransmitting
— Wait random time, exponentially larger per retry

TCP Congestion Control

* Additive increase, multiplicative decrease
— On packet loss, divide congestion window in half

— On success for last window, increase window linearly

Loss 1

o || |

halved

Time

Why Exponential?

* Respond aggressively to bad news
— Congestion is (very) bad for everyone
— Need to react aggressively

* Examples:

— Ethernet: double retransmission timer
— TCP: divide sending rate in half

* Nice theoretical properties

— Makes efficient use of network resources

TCP Congestion Control

Congestion in a Drop-Tail FIFO Queue

e Access to the bandwidth: first-in first-out queue
— Packets transmitted in the order they arrive

Ij/_\\us S

* Access to the buffer space: drop-tail queuing
— If the queue is full, drop the incoming packet

x EN

How it Looks to the End Host

Delay:
Loss:

Packet experiences high delay
Packet gets dropped along path

How does TCP sender learn this?
— Delay: Round-trip time estimate

— Loss:

Timeout and/or duplicate acknowledgments

i;’ >

TCP Congestion Window

* Each TCP sender maintains a congestion window
— Max number of bytes to have in transit (not yet ACK'd)

* Adapting the congestion window
— Decrease upon losing a packet: backing off
— Increase upon success: optimistically exploring
— Always struggling to find right transfer rate

* Tradeoff

— Pro: avoids needing explicit network feedback
— Con: continually under- and over-shoots “right” rate

Additive Increase, Multiplicative Decrease

* How much to adapt?
— Additive increase: On success of last window of
data, increase window by 1 Max Segment Size (MSS)

— Multiplicative decrease: On loss of packet, divide
congestion window in half

* Much quicker to slow down than speed up!

— Over-sized windows (causing loss) are much worse
than under-sized windows (causing lower thruput)

— AIMD: A necessary condition for stability of TCP

Leads to the TCP “Sawtooth”

Window

T 1

—
—

halved

Time

Receiver Window vs. Congestion Window

Flow control
— Keep a fast sender from overwhelming a slow receiver
Congestion control

— Keep a set of senders from overloading the network

Different concepts, but similar mechanisms
— TCP flow control: receiver window

— TCP congestion control: congestion window
— Sender TCP window =

min { congestion window, receiver window }

Sources of poor TCP performance
* The below conditions may primarily result in:

(A) Higher pkt latency (B) Greater loss (C) Lower thruput
1. Larger buffers in routers
2. Smaller buffers in routers

3. Smaller buffers on end-hosts

4. Slow application receivers

Starting a New Flow

How Should a New Flow Start?

Start slow (a small CWND) to avoid overloading network
Window

LTS \ \

halved

But, could take a long

Time
time to get started!

“Slow Start” Phase

* Start with a small congestion window
— Initially, CWND is 1 MSS
— So, initial sending rate is MSS / RTT

* Could be pretty wasteful
— Might be much less than actual bandwidth
— Linear increase takes a long time to accelerate

* Slow-start phase (really “fast start”)
— Sender starts at a slow rate (hence the name)
— ... but increases rate exponentially until the first loss

31

Slow Start in Action
Double CWND per round-trip time

1 2 4 8
i of s s s o o o

Dest

Slow Start and the TCP Sawtooth
Loss
window | | | |

halved

Exponential “slow start”
* TCP originally had no congestion control

— Source would start by sending entire receiver window
— Led to congestion collapse!

— “Slow start” is, comparatively, slower

Two Kinds of Loss in TCP

* Timeout vs. Triple Duplicate ACK
— Which suggests network is in worse shape?
* Timeout

— If entire window was lost, buffers may be full
— ...blasting entire CWND would cause another burst
—...be aggressive: start over with a low CWND

* Triple duplicate ACK
— Might be do to bit errors, or “micro” congestion
— ...react less aggressively (halve CWND)

Repeating Slow Start After Timeout

Window

timeout

Slow start until
reaching half of
previous cwnd.

Slow-start restart: Go back to CWND of 1, but take

advantage of knowing the previous value of CWND.

35

Repeating Slow Start After Idle Period

* Suppose a TCP connection goes idle for a while

* Eventually, the network conditions change
— Maybe many more flows are traversing the link

* Dangerous to start transmitting at the old rate
— Previously-idle TCP sender might blast network
— ... causing excessive congestion and packet loss

* So, some TCP implementations repeat slow start
— Slow-start restart after an idle period

TCP Problem

* 1 MSS=1KB
* Max capacity of link: 200 KBps
* RTT =100ms

* New TCP flow starting, no other traffic in network,
assume no queues in network

1. About what is cwnd at time of first packet loss?
(A) 16 pkts (B)32KB (C)100KB (D) 200 KB

2. About how long until sender discovers first loss?
(A)400ms (B) 600 ms (C) 1s (D) 1.6s

Fairness

TCP Achieves a Notion of Fairness
* Effective utilization is not only goal
— We also want to be fair to various flows

* Simple definition: equal bandwidth shares
— N flows that each get 1/N of the bandwidth?

* But, what if flows traverse different paths?
— Result: bandwidth shared in proportion to RTT

| I, mm ™
féﬂ\ sl /L/_Mww

39

What About Cheating?

* Some folks are more fair than others
— Using multiple TCP connections in parallel (BitTorrent)
— Modifying the TCP implementation in the OS
* Some cloud services start TCP at > 1 MSS
— Use the User Datagram Protocol

* What is the impact
— Good guys slow down to make room for you
— You get an unfair share of the bandwidth

10

Preventing Cheating

* Possible solutions?

— Routers detect cheating and drop excess packets?
— Per user/customer failness?
— Peer pressure?

Conclusions

Congestion is inevitable
— Internet does not reserve resources in advance
— TCP actively tries to push the envelope

* Congestion can be handled
— Additive increase, multiplicative decrease
— Slow start and slow-start restart

* Fundamental tensions
— Feedback from the network?

— Enforcement of “TCP friendly” behavior?

11

