
1

1

Crawling the Web

2

Web Crawling

 Retrieve (for indexing, storage, …) Web
pages by using the links found on a
page to locate more pages.

Must have some starting point

3

Type of crawl

•  Web crawl versus
crawl of more limited network – web
–  cs.princeton.edu
–  internal co. network

•  complete crawl versus
focused crawl by some criteria
–  pages on one topic

•  Type of crawl will affect necessity/usability of
various techniques

4

Main Issues I

•  starting set of pages?
– a.k.a “seed” URLs

•  can visit whole of Web (or web)?
•  how determine order to visit links?

– graph model:
 breadth first vs depth first

•  what are pros and cons of each?
•  “black holes”

– other aspects /considerations
•  how deep want to go?
•  associate priority with links

5

“Black holes” and other “baddies”

•  “Black hole”: Infinite chain of pages
–  dynamically generated
–  not always malicious

•  link to “next month”, which uses perpetual calendar
generator

•  Other bad pages
–  other behavior damaging to crawler?

•  servers
–  spam content

•  use URLs from?

   Robust crawlers must deal with black holes
and other damaging behavior 6

Main Issues II

•  Web is dynamic
– continuous crawl

•  time to crawl “once” meaningful?
– how mix crawl and re-crawl

•  priority of pages

•  Social behavior
– crawl only pages allowed by owner

•  robot exclusion protocol: robots.txt
– not flood servers

•  expect many pages to visit on one server

2

7

Basic crawl architecture

WWW

DNS

Parse

Content
seen?

Doc
FP’s

Dup
URL
elim

URL
set

URL Frontier

URL
filter

robots
filters

Fetch

from slides for Intro to IR, Sec. 20.2.1

8

Technical issues
•  maintain one or more queues of URLs

to be visited: URL frontier
– order of URLs in queues?

•  FIFO = breadth first
•  LIFO = depth first
•  priority queues

•  resolve hostname in URLs to get actual
IP addresses – Domain Name Service
servers (DNS lookup)
– bottleneck:

•  servers distributed
•  can have high lookup latency

9

Technical issues continued

•  To do large crawls must have multiple
crawlers with multiple network connections
(sockets) open and probably multiple queues

•  large crawls generate large amount data
– need fast access => main memory
– cache: hold items most likely to use in main

memory instead of
• on disk
•  request from server

10

(Near?) Duplicate pages

Has page been indexed already?

•  mirror sites – different URLs, same page
–  bad: duplicate page in search results
–  worse?: add links from duplicate pages to queues

•  also mirrors?
–  mirrored pages may have slight differences

•  e.g. indicate which mirror they on

•  other sources duplicates & near duplicates
–  eg …/spr14/cos435/ps1.html
 …/spr13/cos435/ps1.html

11

Removing (near) duplicates

•  When apply?
– while crawling versus for search results
– crawling larger problem
– search results demand faster results

•  Duplicates versus near duplicates
–  same policy?

•  How remove?
–  table of fingerprints or sketches of pages
–  fit in main memory?
–  if not, costs disk access per page crawler retrieves

12

Duplicate URL removal
IS URL in URL frontier?
Has URL already been visited? if not recrawling

⇒ Has URL ever been in URL frontier?

•  Use:
–  canonical, fully specified URLs
–  canonical hostname provided by DNS

•  Visited? hash table
–  hash canonical URL to entry

•  Visited? table may be too large for MM

3

13

Caching Visited? table

•  not temporal but “popularity” locality:
–  most popular URLs
–  most popular sites

•  some temporal locality within
•  to exploit site-level locality need hash that

brings pages on same site together:
–  two-level hash:

•  hash hostname and port
•  hash path

•  can use B+ tree, sorted on i then ii
–  if no entry for URL in tree, not visited

14

Back queue selector

B back queues
Single host on each

Crawl thread requesting URL

Mercator scheme

Biased front queue selector
Back queue router

Prioritizer

K front queues

URLs

from slides for Intro to IR, Sec. 20.2.3

15

Mercator prioritizing

•  Assigning priority
– properties of page from previous visits

•  e.g. how often page change
– class of pages

•  news, blogs, … high priority for recrawl
–  focused crawling

•  Front queue for each priority: FIFO
•  “Biased front queue selector”

–  implements policy
•  chooses which queue next

16

Mercator politeness enforcement:
 Back queues

•  at any point each queue contains only URLs
from one host

•  additional information
–  table mapping host to queue
–  heap containing entry for each queue/host: earliest

time can next request from host
•  heap min gives next queue to use for URL to

fetch
–  wait until earliest allowed time to fetch

17

Maintaining back queues

•  When a back queue emptied, remove
URLs from front queues - putting in
appropriate back queues until remove
URL from new host

•  put URL from new host in empty back
queue
– update host- back queue table
– determine “earliest request time”
–  insert in heap

Crawling: Summary

•  simple at high-level view
•  “Devil in the details”

– avoid duplication
– minimize delays

•  avoid disk access when possible

– be well-behaved
– manage re-crawl versus discovery

18

