Refining and Personalizing Searches

Themes

- · Explicit feedback versus search history
- Personalized history versus crowd history

2

Refining and Personalizing Targets

- · collection
 - · focused crawling

> query

- · satisfying documents
 - increase set?

➤ ranking

3

Refine initially: query

- · Help user get better query
- · Commonly, query expansion
 - add synonyms
 - · Improve recall
 - · Hurt precision?
 - · Sometimes done automatically with care
 - Modify based on prior searches
 - Not automatic
 - All prior searches eg. suggested search terms vs
 - your prior searches

Refining after search

- · Use user feedback
 - or pseudo-feedback
 - Approximate feedback with first results
 - or implicit feedback
 - e.g. clicks
- · change ranking of current results

or

· search again with modified query

Explicit user feedback

- · User must participate
- User marks (some) relevant results or
- · User changes order of results
 - Can be more nuanced than relevant or not
 - Can be less accurate than relevant or not
 - Example: User moves 10th item to first
 - says 10th better than first 9
 - Does not say which, if any, of first 9 relevant

User feedback in classic vector model

 User marks top p documents for relevance

```
p = 10 to 20 "typical"
```

- Construct new weights for terms in query vector
 - Modifies query
 - Could use just on initial results to re-rank

7

Deriving new query for vector model

For collection C of n doc.s

• Let C, denote set all relevant docs in collection,

Perfect knowledge Goal:

Vector $\mathbf{q}_{\text{opt}} = \frac{1}{|C_r|} * \text{(sum of all vectors } d_j \text{ in } C_r - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k \text{ not in } C_r - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k \text{ not in } C_r - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k \text{ not in } C_r - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k \text{ not in } C_r - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k \text{ not in } C_r - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k \text{ not in } C_r - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k \text{ not in } C_r - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k \text{ not in } C_r - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k \text{ not in } C_r - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k \text{ not in } C_r - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k \text{ not in } C_r - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k \text{ not in } C_r - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k \text{ not in } C_r - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k \text{ not in } C_r - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k \text{ not in } C_r - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k \text{ not in } C_r - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k \text{ not in } C_r - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k \text{ not in } C_r - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k \text{ not in } C_r - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k \text{ not in } C_r - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k \text{ not in } C_r - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k \text{ not in } C_r - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k - \frac{1}{|C_r|} * \text{(sum of all vectors } d_k - \frac{1}{|C_r|} * \text{(sum of all v$

8

Deriving new query for vector model: Rocchio algorithm

Give query **q** and relevance judgments for a subset of retrieved docs

- · Let D_r denote set of docs judged relevant
- Let D_{nr} denote set of docs judged not relevant

Modified query:

Vector $\mathbf{q}_{\text{new}} = \alpha \mathbf{q} + \beta/|D_r|^*$ (sum of all vectors \mathbf{d}_j in D_r) - $\gamma/(|D_{nr}|)^*$ (sum of all vectors \mathbf{d}_k in D_{nr})

For tunable weights α , β , γ

Remarks on new query

- α: importance original query
- β: importance effect of terms in relevant docs
- γ: importance effect of terms in docs not relevant
- Usually terms of docs not relevant are least important
 - Reasonable values α =1, β =.75, γ =.15
- · Reweighting terms leads to long queries
- Many more non-zero elements in query vector q_{new}
- Can reweight only most important (frequent?) terms
- · Most useful to improve recall
- Users don't like: work + wait for new results

Simple example user feedback in vector model

- $\mathbf{q} = (1,1,0,0)$
- Relevant: **d1** = (1,0,1,1)

d2 = (1,1,1,1)

- Not relevant: **d3**=(0,1,1,0)
- α , β , $\gamma = 1$
- $\mathbf{q}_{\text{new}} = (1,1,0,0) + (1, 1/2, 1, 1) (0,1,1,0)$ = (2, 1/2, 0, 1)

Term weights change

New term

Observe: Can get negative weights

11

Refining and Personalizing Targets

- · collection
- **>** query
- · satisfying documents
 - increase set?

➤ ranking

12

Re-ranking using explicit feedback

- · Algorithms usually based on machine learning
 - Learn ranking function that best matches partial ranking given
- · Simpler strategies:
 - use for repeat of same search
 - user reorder or select best
 - · Google experiment circa 2007

13

Implicit user feedback

- · Click-throughs
 - Use as relevance judgment
 - Use as reranking:
 When click result, moves it ahead of all results didn't click that come before it
 - Problems?
- · Better implicit feedback signals?

14

Behavior History

- · Going beyond behavior on same query.
- Personal history versus Crowd history
 - Crowd history
 - · Primarily search history
 - Google's claim Bing copies
 - Personal history
 - · characterize behavior
 - characterize interests: topics

15

Behavior History

- · Going beyond behavior on same query.
- Personal history versus Crowd history
 - Crowd history
 - · Primarily search history
 - Google's claim Bing copies
 - Personal history
 - · Searches
 - Social networks
 - Other behavior browsing, mail?, ...
 - · Characterize interests: topics

16

Collaborative history

- History of people "like" you
- · How get?
 - For "free": social networks
 - · friends, lists, ...
 - Deduce: Crowd history + personal history
 - recommendations
- · How characterize?
 - Shared behaviors
 - Shared topics

17

Social Networks and Obtaining Information

18

Social networks

- · Catch-all term for
 - social networking sites
 - Facebook
 - microblogging sites
 - Twitter
 - blog sites (for some purposes)
- How distinguish from "normal" Web sites?
- How distinguish from search engines?

19

Ways we can use social networks to find information

- Search site
- · Aggregate site information to get trends
- ➤ Use site information as meta-information for search
- ➤ Use site properties as meta-information for search

20

Use site information as metainformation for search

- disambiguate queries (Teeven et al 2011 suggested)
 - search Twitter with query
 - analyze content of matching tweets to identify most current, most popular meaning
- factor in ranking URLs (Dong et. al. 2010 studied)
 - harvest URLs mentioned in tweets
 - associate a URL with tweeted text surrounding it
- other uses for tweet text?
- similar analyses of social networking sites such as Facebook?

Use site properties as metainformation for search

- interactions: friends, followers, likes, retweets, more?
- uses
 - expand search
 - ranking by popularity of content
 - ranking by influence of author
- · temporal relevance
 - ranking
 - discover URLs faster (Dong et. al. 2010)

22