

Recommender Systems

- Look at classic model and techniques
 Items
 - Users
- Recommend Items to Users
- Recommend new items based on:
 - similarity to items user liked in past: individual history "Content Filtering"
 - Liked by other users similar to this user: collaborative history

"Collaborative Filtering"

- Liked by other users: crowd history
 easier case

Recommender System attributes

- Need explicit or implicit ratings by user
 - Purchase is 0/1 rating
 - Movie tickets
 - Books
- Have focused category
 - examples: music, courses, restaurants
 - hard to cross categories with content-based
 - easier to cross categories with collaborative-based

users share tastes across categories?

Content Filtering

- · Items must have characteristics
- · user values item
 - ⇒ values characteristics of item
- model each item as vector of weights of characteristics
 - much like vector-based IR
- user can give explicit preferences for certain characteristics

Content-based example

- user bought book 1 and book 2
- what if actually rated?
- Average books bought = (0, 1, 0.5, 0)
- Score new books
 - dot product gives: score(A) = 0.5; score (B)= 1
 decide threshold for recommendation

	1 st person	romance	mystery	sci-fi
book 1	0	1	1	0
book 2	0	1	0	0
new book A	1	.5	0	0
new book B	0	1	0	.2 6

Example w	vith expli	cit use	er pi	refer	ences	5	
How use scores of	of books bou	ght?					
Try: preference	e vector p w	here con	npone	ent k =			
user pref f	or characteri	stic k if ≠	0				
avg. comp. k of books bought when user pref =0							
0 pref for user = "don't care"							
		1 st per	rom	mys	sci-fi		
p =(0, 1, 0.5, -5)	user pref	0	1	0	-5		
New scores? p •A = 0.5 p •B = 0	book 1	0	1	1	0		
	book 2	0	1	0	0		
	new A	1	.5	0	0		

Limitations of Content Filtering

- · Can only recommend items similar to those user rated highly
- · New users - Insufficient number of rated items
- Only consider features explicitly associated with items
 - Do not include attributes of user

Applying concepts to search

- · Individual histories
 - Characterize individual by topic interest · Properties of objects interact with
 - Characterize query by related topics · Role of terms of query in topic
 - Modify ranking to prefer shared topics
 - Modify query to bias to shared topics

10

best

12

Example study: Personalizing Web Search Using Long-term

Browsing History (in WSDM11)

- Goal: rerank
- top 50 results from Google query
- Strategy:
 - score snippets from search result against user profile
- rerank based on snippet score
- · Selection of info for user profile
 - list of visited URLs w/ number visits
 - list of past search queries and pages clicked
 - list of terms with weights for content of pages visited

Personalizing Web Search Using Long-term Browsing History Evaluation

- "offline" evaluation:
 - relevance judgments by volunteers
 - used to select best of algorithmic variations
- online evaluation of best variations:
 - add-on to Browser by volunteers
 - interleave original results (no personalization) with results reranked by snippet score
 - record clicks by user which list from

15

Personalizing Web Search Using Long-term Browsing History Results

- Offline: normalized DCG, avg. of 72 queries

 Google's ranking w/out personalization: 0.502
 best-performing of variations for reranking: 0.573
- Online
 - 8% queries: # clicks from original and reranked same
 of rest: 60.5% queries: more clicks from reranked
 - 39.5% queries: more clicks from original

Observation

 Reranking can be done completely in browser if enough space for data for user profile

What we've just seen: Recommender systems: Content Filtering Applying content filtering to search Now back to recommender systems: Collaborative Filtering

- don't need characteristics of items
 - each rating by individual user becomes characteristic
- Can combine with item characteristics – hybrid content/collaborative

18

19

• Both use (user × item) matrix - vector similarity

- Use average rating by user u:
 - $r_u^{avg} = (1/|I_u|) * \sum_{i \in I_u} r_u(u,i)$
 - Adjusted ratings: $r_{adj}(u,i) = r(u,i) r_u^{avg}$

20

Со	llabora	tive filt	ering e	examp	ole
user		book 1	book 2	book 3	book 4
ratings	user 1	5	1	2	0
	user 2	x	5	2	5
	user 3	3	1	x	2
	user 4	4	0	2	?
Γ		book 1	book 2	book 3	book 4
adj.	user 1	3	-1	0	-2
user ratings	user 2	x	1	-2	1
ratings	user 3	1	-1	x	0
	user 4	2	-2	0	?

Example

from A Large-scale Evaluation and Analysis of Personalize Search Strategies (in *WWW07*)

- · Goal: rerank search results
- · Based on query log history clicks as ratings
- Also uses 67 pre-defined topic categories
- · Strategy:
 - get similarity of users based on user history of visited pages
 - find K most similar users to user doing search K nearest neighbor; use K=50
 - calc. score for each result of search based on click history of K nearest neighbors

29

rerank results of search based on score

from A Large-scale Evaluation Details and Analysis of Personalize Search Strategies (in WWW07) P(u) = collection of Web pages visited by user u in the past # times u clicked on page p in past P(p|u) =total # time u clicked on a page in past w(p) = log(total # users / # users visited page p) "impact weight" - idf-like c(p) = "category vector" for page p do classification of page vector gives confidence # for top 6 categories (other entries 0) User profile $\boldsymbol{c}_{\ell}(u) = \sum_{p \text{ in } P(u)} P(p|u)w(p)\boldsymbol{c}(p)$ $c_{t}(u_{1}) \cdot c_{t}(u_{2})$ $sim(u_1, u_2) =$ User similarity $||\boldsymbol{c}_{\ell}(u_1)|| ||\boldsymbol{c}_{\ell}(u_2)||$ 30

 from A Large-scale Evaluation

 and Analysis of Personalize

 Search Strategies (in WWW07)

 • Good news:

 re-ranking improves over original ranking

 • So-so news:

 improvement is 3.62% on queries where there is room for improvement

 • Not so good news:

 non-collaborative personalization improves 3.68%

 $S(q,p,u) = \frac{|clicks(q,p,u)|}{\beta + |clicks(q,*,u)|}$