Searching non-text information objects

Non-text digital objects

- Music
- Speech
- Images
- 3D models
- Video
- ?

First example method: color histogram

- k colors
- histogram: % pixels each color
- k×k matrix A of color similarity weights
- histogram defines feature vectors
- dist_{histo} $(\boldsymbol{x}, \boldsymbol{y}) = (\boldsymbol{x}-\boldsymbol{y})^{t} A(\boldsymbol{x}-\boldsymbol{y})$

$$=\sum_{i=1}^{n}\sum_{j=1}^{n}a_{ij}(x_{i}-y_{i})(x_{j}-y_{j})$$

– cross-talk: quadratic terms needed
 • not Euclidean distance

color histograms: reducing complexity

- compute RED_{avg}, GREEN_{avg}, BLUE_{avg}
 over all pixels
- use to construct 3D-vector
- use Euclidean distance
- get close candidates
- examine close candidates with full histogram metric

color histograms: observations

- works for certain types of images – sunset canonical example
- color histogram global property
- this only small part of work: QBIC system, IBM, 1995

Second example method: a region-based representation

- · region-based features of images
- · query processed in same way as collection
- · space-conscious: use bit vectors
- levels of representation:
 - store bit vector for each region
 - store bit vector for each image
- get close candidates: compare image bit vectors
- compare top k candidates using region bit vectors

11

Processing images of collection & query • segment into homogeneous regions – 14 dimensional feature vectors • threshold and transform – high-dimensional bit vectors - store – XOR for distance between regions • build image feature vector – n region bit-vectors + weights ⇒ 1 m-dimensional real-valued image feature vector

- L₁ distance between feature vectors
- transform image vector
 one high-dimensional bit vector for image store
 12

17

Image representation

- · Inpute: non-texture RGB images
- Process
 - resize to uniform 128x128 pixels
 - transform to 964 dimensional feature vector

- Cluster data space using K-means
 - search for "most cost effective" K
 search space size vs result accuracy
 - use cluster validity indexes
 - use majority vote of different indexes
- · Find cluster centroids
- For each cluster build a B+ tree
 - B+ tree contains each image in cluster
 - search key for ith image in cluster is distance of feature vector of ith image to cluster center

Search space for query

- · don't search things know probably too far
- · don't limit search to just cluster containing query
- Chose similarity threshhold c for data set
- search images in outer shell of cluster
- range d-c to d+c for d=distance query to its centroid
 B+ tree good for range queries
- Same principle whether q in boundry of a cluster or not

- but use different c : c_{same} , c_{diff}

Other Results

- visually:
- not beating other methods for image quality
- · calculate precision of top 5 returns
 - 10 pre-existing image categories
 crude
 - sample numbers:
 - them 0.568, linear search 0.576

21

23

19

Observations dynamic capability of B+ trees color based

- no region analysis of images
- image representation and data space representation independent

citation: "Integrating wavelets with clustering and indexing for effective content-based image retrieval" 2012

22

Fourth example method: Image ranking

- given similarity measures
- use PageRank style
- define

 $\mathbf{v} = \alpha(1/n) + (1-\alpha)S\mathbf{v}$

- where
 - n is the number of images to be ranked
 - S is a matrix of image-image similarities
 - column normalized, symmetric
 - *v* is the vector of VisualRanks
 α is the usual parameter

ieter

Observations: Image rank
intention to use on images returned by other means

e.g. text based

graph undirected
tested on Google image search

VisualRank, Google, 2008

Deployed?

revious Next Z	oom Move	A O Text Select	Q- table 1 Sidebar 310	matches
AND BALUJA: V	ISUALRANK	: APPLYING P	AGERANK TO L	ARGE-SC/
	٦	TABLE 1		
	Rele	vancy Stud	y	
"Irrelevant" ima	ages per pr	oduct query	VisualRank	Google
"Irrelevant" ima mong top 10 res	ages per pr	oduct query	VisualRank 0.47	Google 2.82
'Irrelevant'' im: mong top 10 res mong top 5 resu	ages per products	oduct query	VisualRank 0.47 0.30	Google 2.82 1.31
"Irrelevant" ima mong top 10 res mong top 5 resu mong top 3 resu	ages per pro- ults lts lts	oduct query	VisualRank 0.47 0.30 0.20	Google 2.82 1.31 0.81

Image search: Summary of techniques

- Techniques seen
 - aggregate/average features
 - sample
 - course screening followed by more accurate
- Goals
 - reduce dimension
 - reduce complexity of distance metric
 - reduce space

29

Image search: Commercial search engines

- Use everything you can afford to use
- Text still king!?