Latent Semantic Indexing: Introduction

- Analysis of term-document interaction for corpus of text documents
- Standard vector model: - document vector of term weights
- Goals:
- reduce dimension of document vectors
- uncover latent factors:
- document as vector of factor weights
- uses of theory of linear algebra

Matrix formulation

M - number of terms in lexicon
N - number of documents in collection
C the $\mathrm{M} \times \mathrm{N}$ (term \times doc.) matrix of weights ≥ 0 (our old $w_{i j}$)

Use Singular Value Decomposition (SVD)

Theorem:
$\mathrm{M} \times \mathrm{N}$ matrix C of rank r has a
singular value decomposition $\quad \mathrm{C}=\mathrm{U} \Sigma \mathrm{V}^{\top}$
Where:
U $\mathrm{M} \times \mathrm{M}$ matrix
with columns = orthogonal eigenvectors of CC^{\top}
$\checkmark \mathrm{N} \times \mathrm{N}$ matrix
with columns = orthogonal eigenvectors of $\mathrm{C}^{\top} \mathrm{C}$
$\Sigma \mathrm{M} \times \mathrm{N}$ diagonal matrix:
$\Sigma(\mathrm{i}, \mathrm{i})=\sqrt{\lambda_{i}}$ for $1 \leq i \leq r$
$\Sigma(\mathrm{i}, \mathrm{j})=0$ otherwise
$\checkmark \lambda_{i}$ called singular values

Reduced Rank Approximation of C

- Approximation:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{k}}=\bigcup \Sigma_{k} V^{\top} \\
& {[M \times N][M \times M][M \times N][N \times N]}
\end{aligned}
$$

- Theorem:
C_{k} is the best rank-k approximation to C under the least square fit (Frobenius) norm

$$
=\sqrt{\sum M_{i=1} \sum N_{j=1}\left(C(i, j)-C_{k}(i, j)\right)^{2}}
$$

Semantic Interpretation

- remaining k dimensions: k factors
- View $\mathrm{V}_{\mathrm{k}}{ }^{\top}$ as a representation of documents in the k-dimensional space
- View $\mathrm{U}_{\mathrm{k}}{ }^{\top}$ as a representation of terms in the k-dimensional space
- Σ_{k} scales between them
- find some semantic relationship?
- "concept space"?
- correlating terms to find structure
- synonomy
- polysomy
"people choose same main terms <20\% time"

Using the Approximation

- $\mathrm{V}^{\prime}{ }^{\top}$ as a representation of documents in a kdimensional space
- Transform query vector \mathbf{q} into that space:
$C_{k}^{\top} C_{k}=\left(U_{k}^{\prime} \Sigma_{k}^{\prime} V_{k}^{\prime}{ }^{\top}\right)^{\top}\left(U_{k}^{\prime} \Sigma_{k}^{\prime} V_{k}^{\prime}{ }^{\top}\right)=\left(V_{k}^{\prime} \Sigma_{k}^{\prime}{ }^{\top} U_{k}^{\prime}{ }^{\top}\right)\left(U_{k}^{\prime} \Sigma_{k}^{\prime} V_{k}^{\prime}{ }^{\top}\right)$
$=\mathrm{V}_{\mathrm{k}}^{\prime}\left(\Sigma_{k}^{\prime}\right)^{2}\left(\mathrm{~V}_{\mathrm{k}}^{\prime}\right)^{\top} \quad$ compares documents
$\Rightarrow C_{k}^{\top} \boldsymbol{q} \quad$ should $=\mathrm{V}_{\mathrm{k}}^{\prime}\left(\Sigma_{\mathrm{k}}^{\prime}\right)^{2} \boldsymbol{q}_{\mathrm{k}} \quad$ compare doc. to query
$\Rightarrow \boldsymbol{q}_{k}=\left(\Sigma_{k}^{\prime-1}\right)^{2} V_{k}^{\prime}{ }^{\top} C_{k}^{\top} \boldsymbol{q}=\left(\Sigma_{k}^{\prime-1}\right)^{2} V_{k}^{\prime}{ }^{\top} V_{k}^{\prime} \Sigma_{k}^{\prime}{ }^{\top} U_{k}^{\prime}{ }^{\top} \boldsymbol{q}$
$=\left(\Sigma_{k}^{\prime}\right)^{-1}\left(U_{k}^{\prime}\right)^{\top} \boldsymbol{q}$
recalling $\left.\left(V_{k}^{\prime}{ }^{\top}\right)\left(V_{k}^{\prime}\right)=\left(U_{k}^{\prime}{ }^{\top}\right)\left(U_{k}^{\prime}\right)_{9}\right)=I$

Adding a new document

add new document $\boldsymbol{d}^{\text {new }}$ to $\mathrm{C}_{\mathrm{k}}=>$ add column $\boldsymbol{d}_{\mathrm{k}}{ }^{\text {new }}$ to $\mathrm{V}_{\mathrm{k}}{ }^{\top}{ }^{\top}$
Transform $\mathbf{d}^{\text {new }}$ into the k -dimensional space version $\boldsymbol{d}_{\mathbf{k}}{ }^{\text {new }}$
$\mathrm{V}_{\mathrm{k}}{ }^{\top}=\left(\Sigma_{k}^{\prime}\right)^{-1}\left(\mathrm{U}_{\mathrm{k}}^{\prime}\right)^{\top} \mathrm{C}_{\mathrm{k}} \quad \Rightarrow \quad\left(\Sigma_{\mathrm{k}}^{\prime}\right)^{-1}\left(\mathrm{U}_{\mathrm{k}}^{\prime}\right)^{\top} \boldsymbol{d}^{\text {new }}=\boldsymbol{d}_{\mathrm{k}}{ }^{\text {new }}$

Original LSI paper:

Deerwester, Dumais, et. al.
Indexing by Latent Semantic Analysis Journal of the Society for Information Science, 41(6), 1990, 391-407.

Example from that paper follows

Summary

- LSI uses SVD to get a reduced-rank and reduced-size approximation to C
- LSI can be viewed as a preprocessor for - query evaluation
- clustering
- SVD computation can be costly - do once (or rarely)

