Finding near-duplicate documents

Duplicate versus near duplicate

 documents- Duplicate = identical?
- Near duplicate:
small structural differences
- not just content similarity
- define "small"
- date change?
- small edits?
- metadata change?
- other?

Applications

- creating collection
- indexing
- Crawling network
- Returning query results
- cluster near duplicates; return 1
- Plagiarism

Framework

- Algorithm to assign quantitative degree of similarity between documents
- Issues
- What is basic token for documents?
- character
- word/term
- What is threshold for "near duplicate"?
- What are computational costs?

Classic document comparison

- Edit distance
- count deletions, additions, substitutions to convert Doc ${ }_{1}$ into Doc_{2}
- each action can have different cost
- applications
- UNIX "diff"
- similarity of genetic sequences
- Edit distance algorithm
- dynamic programming
- time $O\left(m^{*} n\right)$ for strings length m and n

Edit distance for collections

- token = word
- compare other applications
- Cost is $\mathrm{O}\left(\sum_{\mathrm{i}, \mathrm{j}}\left|\mathrm{Doc}_{\mathrm{i}}{ }^{*}\right| \mathrm{Doc}_{\mathrm{j}} \mid\right)$
- Right sense of similarity?

Addressing computation cost

A general paradigm to find duplicates in N docs:

1. Define function f capturing contents of each document in one number
"Hash function", "signature", "fingerprint"
2. Create $<f\left(\right.$ doc $\left._{i}\right)$, ID of doc ${ }_{i}>$ pairs
3. Sort the pairs
4. Recognize duplicate or near-duplicate documents as having the same f value or f values within a small threshold

Compare: computing a similarity score on pairs of documents

General paradigm: details

1. Define function f capturing contents of each document in one number
"Hash function", "signature", "sketch", "fingerprint"
2. Create $<f\left(\mathrm{doc}_{i}\right)$, ID of doc $>$ pairs
3. Sort the pairs
4. Recognize duplicate or near-duplicate documents as having the same f value or f values within a small threshold

- recognize exact duplicates:
- threshold = 0
- examine documents to verify duplicates
- recognize near-duplicates

Use small "small threshold" => "near duplicate" not transitive

Shingles

- A w-shingle is a contiguous subsequence of w words
- The w-shingling of doc $\mathrm{D}, \mathrm{S}(\mathrm{D}, w)$ is the set of unique w-shingles of D

Optimistic cost
 A general paradigm to find duplicates in N docs:
 1. Define function f capturing contents of each document in one number $\mathrm{O}(|\mathrm{doc}|)$
 "Hash function", "signature", "fingerprint"
 2. Create $<f\left(\right.$ doc $\left._{i}\right)$, ID of doc \gg pairs $O\left(\Sigma_{i=1 \ldots N}\left(\left|d_{c}\right|\right)\right)$
 3. Sort the pairs $\mathrm{O}(\mathrm{N} \log \mathrm{N})$
 4. Recognize duplicate or near-duplicate documents as having the same f value or f values within a small threshold
 O(N)
 Compare: computing a similarity score on pairs of documents

"Syntactic clustering"

We will look at this one example:
Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig, Syntactic Clustering of the Web
Sixth International WWW Conference, 1997.

- "syntactic similarity" versus semantic Sequences of words
- Finding near duplicates
- Doc = sequence of words Word = Token
- Uses sampling
- Similarity based on shingles
- Does compare documents

Similarity of docs with shingles

- For fixed \boldsymbol{w}, resemblance of docs A and B : $r(A, B)=|S(A) \cap S(B)| \quad / \quad|S(A) \cup S(B)|$

Jaccard coefficient

- For fixed \boldsymbol{w}, containment of $\operatorname{doc} A$ in $\operatorname{doc} B$: $C(A, B)=|S(A) \cap S(B)| \quad|\quad| S(A) \mid$
- For fixed \boldsymbol{w}, resemblance distance betwn docs A and B : $D(A, B)=1-r(A, B)$

Is a metric (triangle inequality)
Note we are now comparing documents!

Example	
A: "a rose is red a rose is white" 4-shingles: "a rose is red". "rose is red a" "is red a rose"	B: "a rose is white a rose is red" 4-shingles: "red a rose is" "a rose is white"
"a rose is white" "rose is white a" "is white a rose" "white a rose is" "a rose is red"	

Compare

A: "a rose is red a rose is white"
3-shingles:

Sample of shingles

Want to estimate r and/or c
Do this by calculating approximation on a sample of shingles for fixed w

- 1-to-1 map each shingle to integer in fixed, large range R - 64-bit hash, $\mathrm{R}=\left[0,2^{64-1}\right]$
- Let Π be a random permutation from R to R
- For any S(D) define:
$H(D)=$ Set of integer hash values corresponding to shingles in S(D)
$\Pi(D)=$ Set of permuted values in $H(D)$
$x(\Pi, \mathrm{D})=$ smallest integer in $\Pi(\mathrm{D})$

Sketch of shingles

- Let Π_{1}, \ldots, Π_{m} be m random permutations $R \rightarrow$ R
- text: m=20

The sketch of doc D for $\Pi_{1}, \ldots, \Pi_{\mathrm{m}}$ is
$\psi(\mathrm{D})=\left\{x\left(\Pi_{\mathrm{i}}, \mathrm{D}\right) \mid 1 \leq \mathrm{i} \leq \mathrm{m}\right\}$
doc \rightarrow set shingles \rightarrow set integers
$\rightarrow \mathrm{m}$ sets permuted integers
$\rightarrow \mathrm{m}$ smallest integers: one per permutation
Sketch is a sampling

Algorithm used (text's version)

1. Calculate sketch $\psi\left(D_{i}\right)$ for every $\operatorname{doc} D_{i}$
2. Calculate $\left|\psi\left(\mathrm{D}_{\mathrm{i}}\right) \cap \psi\left(\mathrm{D}_{\mathrm{j}}\right)\right|=\mathrm{c} t_{\mathrm{ij}}$ for each nonempty intersection:
i. Produce list of <shingle value, docID> pairs for all shingle values $x\left(\Pi_{k}, D_{i}\right)$ in the sketch for each doc.
ii. Sort the list by shingle value
iii. Produce all triples $<\operatorname{ID}\left(D_{i}\right), I D\left(D_{j}\right), c t_{i, j}>$ for which $\mathrm{ct}_{\mathrm{i}, \mathrm{j}}>0$

This not linear-time for the list of docs for one shingle value
3. Build clusters of similar/almost identical docs Degree of similarity depends on threshold ...

Revisit the original paradigm

A general paradigm to find duplicates in N docs:

1. Define function f capturing contents of each document in one number $\mathrm{O}(|\mathrm{doc}|)$ "Hash function", "signature", "fingerprint"
2. Create $<f\left(\right.$ doc $\left._{\mathrm{i}}\right)$, ID of doc $>$ p pairs $\mathrm{O}\left(\sum_{\mathrm{i}=1 \ldots \mathrm{~N}}\left(\mid\right.\right.$ doc $\left.\left._{\mathrm{i}} \mid\right)\right)$
3. Sort the pairs $\mathrm{O}(\mathrm{N} \log \mathrm{N})$
4. Recognize duplicate or near-duplicate documents as having the same f value or f values within a small threshold O(N)

Compare: computing a similarity score on pairs of documents

Paradigm?

- Does compare docs, so not same as paradigm we started with, but uses ideas
- Contents of doc captured by sketch - a set of shingle values
- Similarity of docs scored by count of common shingle values for docs
- Don't look at all doc pairs, look at all doc pairs that share a shingle value
- Uses clustering by similarity threshold

Algorithm cost

1. Calculate sketch $\psi\left(D_{i}\right)$ for every $D_{i} O\left(\Sigma_{i} m\left|D_{i}\right|\right)$
2. Calculate $\left|\psi\left(\mathrm{D}_{\mathrm{i}}\right) \cap \psi\left(\mathrm{D}_{\mathrm{j}}\right)\right|=\mathrm{ct}_{\mathrm{ij}}$ for each nonempty intersection:
i. Produce list of <shingle value, docID> pairs for all shingle values $x\left(\Pi_{k}, D_{i}\right)$ in the sketch for each doc.
ii. Sort the list by shingle value $O(m N \log (m N))$
iii. Produce all triples $\left.<I D\left(D_{i}\right), I D\left(D_{j}\right), c_{1, j}\right\rangle$ for which $\mathrm{Ct}_{\mathrm{i}, \mathrm{j}}>0$

This not linear-time for the list of docs for one shingle value $\quad \mathrm{O}\left(\mathrm{mN}^{2}\right)$
3. Build clusters of similar/almost identical docs Degree of similarity depends on threshold ...

Pros and Cons of Supershingles

+ Faster
- Problems with small documents - not enough shingles
- Can't do containment

Shingles of superset that are not in subset break up sequence of shingle values

More efficient : supershingles

"meta-sketch"

1. Sort shingle values of a sketch
2. Compute the shingling of the sequence of shingle values

- Each original shingle value now a token
- Gives "supershingles"

3. "meta-sketch" = set of supershingles

One supershingle in common =>
sequences of shingles in common
Documents with ≥ 1 supershingle in common => similar

- Each supershingle for a doc. characterizes the doc
- Sort <supershingle, docID> pairs: docs sharing a supershingle are similar => our first paradigm

Using with Web Crawling

- Want know if new doc. too similar to ones seen
- What this calculation look like?

Using with Web Crawling

- Want know if new doc. too similar to ones seen
- No clustering required
- efficient look-up?
- calculate sketch or supershingle of new document
- Look up to see if have similar document - or similar document that is fresh enough

Variations of shingling

- Can define different ways to do sampling
- Studies in original paper used modular arithmetic
- sketch formed by taking shingle hash values mod some selected m

Original experiments (1996)

 by Broder et. al.- 30 million HTML and text docs (150GB) from Web crawl
- 10-word shingles
- 600 million shingles (3GB)
- 40-bit shingle "fingerprints"
- Sketch using 4% shingles (variation of alg. we've seen)
- Used count of shingles for similarity
- Using threshold $t=50 \%$, found

$$
\text { - } 3.6 \text { million clusters of } 12.3 \text { million docs }
$$

-2.1 million clusters of identical docs - 5.3 million docs

- remaining 1.5 million clusters mixture:
"exact duplicates and similar"

