Searching the Deep Web

database queries

form pages

- results embedded in HTML pages
- Also can included other information on Web can't directly index

* Information accessed only through HTML

What is Deep Web?

- Javascript output
 - · simulate, extract info from results?
- unlabeled images, video, music, ...
- · compare invisible Web
 - pages sitting on servers with no paths from crawler seeds

2

Extent of problem

- Estimates
 - 500 times larger than "surface" Web in terabytes of information
 - diverse uses and topics
 - 51% databases of Web pages behind query forms non-commercial (2004)
 - includes pages also reachable by standard crawling
 - 17% surface Web sites are not commercial sites (2004)
 - in 2004 Google and Yahoo each indexed 32% Web objects behind guery forms
 - 84% overlap ⇒ 63% not indexed by either

Growth estimates

- · 43,000-96,000 Deep Web sites est. in 2000
 - 7500 terabytes ⇒ 500 times surface Web
 - estimate by overlap analysis underestimates
- 307,000 Deep Web sites est. 2004 (2007 CACM)
 - 450,000 Web databases: avg. 1.5 per site
 - 1,258,000 unique Web query interfaces (forms)
 - avg. 2.8 per database
 - 72% at depth 3 or less
 - 94% databases have some interface at depth 3 or less
 - · exclude non-query forms, site search
 - estimate extrapolation from sampling

.

Random sampling

- are 2,230,124,544 valid IP addresses
- · randomly sample 1 million of these
- take 100,000 IP address sub-sample
- · For sub-sample
 - make HTTP connection & determine if Web server
 - crawl Web servers to depth 10
- For full sample
 - make HTTP connection & determine if Web server
 - crawl Web servers to depth 3

5

Analysis of data from samples

Find

unique query interfaces for site

Web databases

query interface to see if uses same database

deep Web sites

not include forms that are site searches

Extrapolate to entire IP address space

Approaches to getting deep Web data

- · Application programming interfaces
 - allow search engines get at data
 - a few popular site provide
 - not unified interfaces
- · virtual data integration
 - a.k.a. mediating
 - "broker" user query to relevant data sources
 - · issue query real time
- Surfacing
 - a.k.a warehousing
 - build up HTML result pages in advance

Virtual Data Integration

- · In advance:
 - identify pool of databases with HTML access pages
 - crawl
 - develop model and query mapping for each source: mediator system
 - · domains + semantic models
 - · identify content/topics of source
 - develop "wrappers" to "translate" queries

8

Virtual Data Integration

- · When receive user query:
 - from pool choose set of database sources to query
 - based on source content and query content
 - real-time content/topic analysis of query
 - develop appropriate query for each data source
 - integrate (federate) results for user
 - extract info
 - · combine (rank?) results

9

Mediated scheme

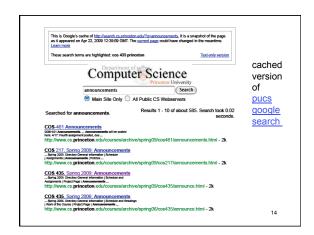
Mappings

form inputs \rightarrow elements of mediated scheme query over mediated scheme

- → queries over each form
- · creating mediated scheme
 - manually
 - by analysis of forms HARD

10

Virtual Integration: Issues


- · Good for specific domains
 - easier to do
 - viable when commercial value
- · Doesn't scale well

11

Surfacing

- In advance:
 - crawl for HTML pages containing forms that access databases
 - for each form
 - execute many queries to database using form
 - how choose queries?
 - index each resulting HTML page as part of general index of Web pages
 - pulls database information to surface
- · When receive user query:
 - database results are returned like any other

Surfacing: Google methodology

- · Major Problem:
 - Determine queries to use for each form
 - determine templates
 - generate values for selected inputs
- · Goal:

Good coverage of large number of databases

- "Good", not exhaustive
 - · limit load on target sites during indexing
 - limit size pressure on search engine index
 - want "surfaced" pages good for indexing
- trading off depth within DB site for breadth of sites

15

Query Templates

- · given form with n inputs
- · choose subset of inputs to vary => template
 - choose from text boxes & select menues
 "state" select menu, "search box" text box, "year" select menu
 - values for choosen inputs will vary
 - rest of inputs set to defaults or "don't care"
 - want small number choosen inputs
 - · yield smaller number form submissions to index

1

Building Query Templates

- "informative templates":
 when vary choosen input values,
 pages generated are "sufficiently distinct"
- · Building informative templates
 - start with templates for single choosen input
 - repeat:
 - extend "informative templates" by 1 input
 - determine "informativeness" for each new template

 —use page signature for "informativeness" test

17

Generating values

generic text boxes: any words

for one box:

- · select seed words from form page to start
- · use each seed word as inputs to text box
- extract more keywords from results
 - tf-idf analysis
 - remove words occur in too many of pages in results
- remove words occur in only 1 page of results
- · repeat until no new keywords or reach max
- · choose subset of keywords found

Generating values

choosing subset of words for generic boxes

- cluster keywords based on words on page generated by keyword
 - words on page characterize keyword
- · choose 1 candidate keyword per cluster
- sort candidate keywords based on page length of form result
- choose keywords in decreasing page-length order until have desired number

19

Generating values

typed text boxes: well-defined set values

- · type can be recognized with high precision
 - relatively few types over many domains
 - · zip code, date, ...
 - often distinctive input names
 - test types using sample of values

20

Google designers' observations

- # URLs generated proportional to size database, not # possible queries
- · semantics not "significant role" in form queries
 - exceptions: correlated inputs
 - min-max ranges mine collection of forms for patterns
 - keyword+database selection HARD when choice of databases (select box)
- · user still gets fresh data
 - Search result gives URL with embedded DB query
 - · doesn't work for POST forms

21

more observations

- · became part of Google Search
 - in results of "more than 1000 queries per second" 2009
- impact on "long tail of queries"
 - top 10,000 forms acct for 50% Deep Web results
 - top 100,000 forms acct for 85% Deep Web results
- domain independent approach important
- wish to automatically extract database data (relational) from surfaced pages

22

Google deep web crawl for "entity pages"

- · builds on work just seen
- · simpler than that work specialized
- · entities versus text content
 - examples
 - · products on shopping sites
 - · movies on review sites
 - structured: well-defined attributes
- motivation
 - crawl product entities for advertisement use

Major steps:

- 1: URL template generation
- · get list of "entity-oriented deep-web sites"
- · extract search forms
 - usually home page
- produce one template per search form
 - observe usually one main text input field
 - set other fields to default
 - · observe get "good behavior" doing this

Major steps, 2: Query generation find query words to use in main text field

- use Google query log for site for candidates
 - site URL clicked? How many times?
- isolate entity keywords from queries
 - example: "HP touchpad reviews"
 - identify common patterns to remove
 - analyze query logs using known entities
 Freebase manually curated entity keywords
- · expand using Freebase
 - Freebase entities organized by domain/category

25

Crawling for deep web sites: Univ Utah DeepPeep Project

- · specializes in Web forms
- · goal: index all Web forms
- "tracks 45,000 forms across 7 domains"
- claims 90% content retrieved each indexed site
- · uses focused crawler

26

Deep Peep focused crawler

- · Classifiers
 - Pages classified by taxonomy
 e.g. arts, movies, jobs,
 - Form classifier
 - Link classifier
 - Want links likely lead to search form interfaces eventually
 - · Learn features of good paths
 - Get samples by backwards crawls
 - words in neighborhood of links are features for training: URL, anchor text, nearby text 27

Next challenges

- Web is MUCH more dynamic than when work we've discussed was done and much more interactive
- Other challenges to further extend ability to extract and organize data:
 - Automatically extract data from general pages
 - Combining data from multiple sources
 - general, not custom, solution