Character Animation

COS 426, Spring 2014
Princeton University
Computer Animation

• Animation
 ◦ Make objects change over time according to scripted actions

• Simulation / dynamics
 ◦ Predict how objects change over time according to physical laws
Computer Animation

• Describing how 3D objects (& cameras) move over time
Computer Animation

- Challenge is balancing between …
 - Animator control
 - Physical realism
Character Animation Methods

- Keyframing / Forward Kinematics
- Inverse Kinematics
- Dynamics
- Motion capture
Keyframe Animation

- Define character poses at specific time steps called “keyframes”
Keyframe Animation

- Interpolate variables describing keyframes to determine poses for character in between
Keyframe Animation

- Inbetweening:
 - Linear interpolation - usually not enough continuity

H&B Figure 16.16
Keyframe Animation

• Inbetweening:
 ◦ Spline interpolation - maybe good enough

H&B Figure 16.11
Articulated Figures

- Character poses described by set of rigid bodies connected by “joints”
Articulated Figures

- Well-suited for humanoid characters

Root

- Chest
 - Neck
 - Head
 - LCollar
 - LShld
 - LElbow
 - LWrist
 - LCollar
 - LShld
 - LElbow
 - LWrist
 - LHip
 - RHip
 - LKnee
 - LAnkle
 - RKnee
 - RAnkle

Rose et al. `96
Articulated Figures

- Animation focuses on joint angles
Forward Kinematics

- Describe motion of articulated character

\[X = (x, y) \]

“End-Effector”
Forward Kinematics

- Animator specifies joint angles: Θ_1 and Θ_2
- Computer finds positions of end-effector: X

$$X = (l_1 \cos \Theta_1 + l_2 \cos(\Theta_1 + \Theta_2), l_1 \sin \Theta_1 + l_2 \sin(\Theta_1 + \Theta_2))$$
Forward Kinematics

- Joint motions specified e.g. by spline curves

\[X = (x, y) \]
Example: Walk Cycle

- Articulated figure:
Example: Walk Cycle

- Hip joint orientation:
Example: Walk Cycle

- Knee joint orientation:
Example: Walk Cycle

• Ankle joint orientation:
Example: Robot
Example: Ice Skating

(Mao Chen, Zaijin Guan, Zhiyan Liu, Xiaohu Qie, CS426, Fall98, Princeton University)
Character Animation Methods

- Keyframing / Forward Kinematics
- Inverse Kinematics
- Dynamics
- Motion capture
Inverse Kinematics

- What if the animator knows the position of "end-effector"?

\[\begin{align*}
\Theta_1 & = \text{rotation angle} \\
\Theta_2 & = \text{rotation angle} \\
X & = (x, y) \\
\end{align*} \]
Inverse Kinematics

- Animator specifies end-effector positions: \(X \)
- Computer finds joint angles: \(\Theta_1 \) and \(\Theta_2 \):

\[
\begin{align*}
\Theta_2 &= \cos^{-1}\left(\frac{x^2 + y^2 - l_1^2 - l_2^2}{2l_1l_2}\right) \\
\Theta_1 &= \frac{- (l_2 \sin(\Theta_2) x + (l_1 + l_2 \cos(\Theta_2)) y)}{(l_2 \sin(\Theta_2)) y + (l_1 + l_2 \cos(\Theta_2)) x}
\end{align*}
\]
Inverse Kinematics

- End-effector postions can be specified by spline curves

\[X = (x, y) \]

\[\Theta_1, \Theta_2 \]

\[l_1, l_2 \]

(0,0)

\[x(t), y(t) \]
Inverse Kinematics

• Problem for more complex structures
 ◦ System of equations is usually under-constrained
 ◦ Multiple solutions

\[
\begin{align*}
X &= (x, y) \\
X &= (x, y)
\end{align*}
\]

Three unknowns: \(\Theta_1, \Theta_2, \Theta_3 \)
Two equations: \(x, y \)
Inverse Kinematics

- Solution for more complex structures:
 - Find best solution (e.g., minimize energy in motion)
 - Non-linear optimization

\[X = (x, y) \]
Example: Ball Boy

“Ballboy”

Fujito, Milliron, Ngan, & Sanocki
Princeton University
Kinematics

- **Advantages**
 - Simple to implement
 - Complete animator control

- **Disadvantages**
 - Motions may not follow physical laws
 - Tedious for animator

Lasseter `87
Kinematics

• Advantages
 ◦ Simple to implement
 ◦ Complete animator control

• Disadvantages
 ◦ Motions may not follow physical laws
 ◦ Tedious for animator

Lasseter `87
Character Animation Methods

• Keyframing / Forward Kinematics
• Inverse Kinematics
• Dynamics
• Motion capture
Dynamics

- Simulation of physics ensures realism of motion
Spacetime Constraints

- Animator specifies constraints:
 - What the character’s physical structure is
 » e.g., articulated figure
 - What the character has to do (keyframes)
 » e.g., jump from here to there within time t
 - What other physical structures are present
 » e.g., floor to push off and land
 - How the motion should be performed
 » e.g., minimize energy
Computer Animation
Spacetime Constraints

- Computer finds the “best” physical motion satisfying constraints

- Example: particle with jet propulsion
 - $x(t)$ is position of particle at time t
 - $f(t)$ is force of jet propulsion at time t
 - Particle’s equation of motion is:
 \[mx'' - f - mg = 0 \]

 - Suppose we want to move from a to b within t_0 to t_1 with minimum jet fuel:
 \[
 \text{Minimize} \quad \int_{t_0}^{t_1} |f(t)|^2 \, dt \quad \text{subject to } x(t_0) = a \text{ and } x(t_1) = b
 \]

Witkin & Kass `88
Spacetime Constraints

• Solve with iterative optimization methods

Witkin & Kass `88
Spacetime Constraints

• Advantages:
 ◦ Free animator from having to specify details of physically realistic motion with spline curves
 ◦ Easy to vary motions due to new parameters and/or new constraints

• Challenges:
 ◦ Specifying constraints and objective functions
 ◦ Avoiding local minima during optimization
Spacetime Constraints

- Adapting motion:

 Original Jump

 Heavier Base

Witkin & Kass `88
Spacetime Constraints

- Adapting motion:

Hurdle

Witkin & Kass `88
Spacetime Constraints

- Adapting motion:

Ski Jump

Witkin & Kass `88
Spacetime Constraints

- Advantages:
 - Free animator from having to specify details of physically realistic motion with spline curves
 - Easy to vary motions due to new parameters and/or new constraints

- Challenges:
 - Specifying constraints and objective functions
 - Avoiding local minima during optimization
Character Animation Methods

- Keyframing / Forward Kinematics
- Inverse Kinematics
- Dynamics
- Motion capture
Motion Capture

- Measure motion of real characters and then simply “play it back” with kinematics
Motion Capture

- Measure motion of real characters and then simply “play it back” with kinematics

Captured Motion
Motion Capture

• Advantage:
 ◦ Physical realism

• Challenge:
 ◦ Animator control
Motion Capture

• Editing motion:
Motion Capture

• Editing motion:
Motion Capture

- Motion graphs:

 Motion 1

 ![Motion 1 graph](image)

 Motion 2

 ![Motion 2 graph](image)

Kovacs & Gleicher
Motion Capture

- Motion graphs:
Motion Capture

- Retargeting motion:

Original motion data + constraints:

New character:

New motion data:
Motion Capture

- Retargeting motion:
Motion Capture

- Morphing motion:

Gleicher
Beyond Skeletons…

• Skinning
• Motion blur
Kinematic Skeletons

- Hierarchy of transformations ("bones")
 - Changes to parent affect all descendent bones

- So far: bones affect objects in scene or parts of a mesh
 - Equivalently, each point on a mesh acted upon by one bone
 - Leads to discontinuities when parts of mesh animated

- Extension: each point on a mesh acted upon by more than one bone
Linear Blend Skinning

• Each vertex of skin potentially influenced by all bones
 ○ Normalized weight vector $w^{(v)}$ gives influence of each bone transform
 ○ When bones move, influenced vertices also move

• Computing a transformation T_v for a skinned vertex
 ○ For each bone
 » Compute global bone transformation T_b from transformation hierarchy
 ○ For each vertex
 » Take a linear combination of bone transforms
 » Apply transformation to vertex in original pose

$$T_v = \sum_{b \in B} w^{(v)}_b T_b$$

• Equivalently, transformed vertex position is weighted combination of positions transformed by bones

$$v_{\text{transformed}} = \sum_{b \in B} w^{(v)}_b (T_b v)$$
Assigning Weights: “Rigging”

- Painted by hand
- Automatic: function of relative distances to nearest bones
 - Smoothness of skinned surface depends on smoothness of weights!
Beyond Skeletons…

- Skinning
- Motion blur
Temporal Aliasing

• Artifacts due to limited temporal resolution
 ◦ Strobing
 ◦ Flickering
Temporal Aliasing

• Artifacts due to limited temporal resolution
 ○ Strobing
 ○ Flickering
Temporal Aliasing

- Artifacts due to limited temporal resolution
 - Strobing
 - Flickering
Temporal Aliasing

• Artifacts due to limited temporal resolution
 ◦ Strobing
 ◦ Flickering
Motion Blur

- Composite weighted images of adjacent frames
 - Remove parts of signal under-sampled in time
Summary

- **Kinematics**
 - Animator specifies poses (joint angles or positions) at keyframes and computer determines motion by kinematics and interpolation

- **Dynamics**
 - Animator specifies physical attributes, constraints, and starting conditions and computer determines motion by physical simulation

- **Motion capture**
 - Compute captures motion of real character and provides tools for animator to edit it