Passive Dynamics and Particle Systems

COS 426, Spring 2014
Princeton University
Syllabus

I. Image processing
II. Modeling
III. Rendering
IV. Animation

Image Processing
(Rusty Coleman, CS426, Fall99)

Modeling
(Dennis Zorin, CalTech)

Rendering
(Michael Bostock, CS426, Fall99)

Animation
(Angel, Plate 1)
Animation & Simulation

• Animation
 ◦ Make objects change over time according to scripted actions

• Simulation / dynamics
 ◦ Predict how objects change over time according to physical laws

Pixar

University of Illinois
Dynamics

Passive—no muscles or motors

Active—internal source of energy

Hodgins
Passive Dynamics

- No muscles or motors
 - Smoke
 - Water
 - Cloth
 - Fire
 - Fireworks
 - Dice
Passive Dynamics

• Physical laws
 ◦ Newton’s laws
 ◦ Hooke’s law
 ◦ Etc.

• Physical phenomena
 ◦ Gravity
 ◦ Momentum
 ◦ Friction
 ◦ Collisions
 ◦ Elasticity
 ◦ Fracture
Particle Systems

• A particle is a point mass
 ◦ Position
 ◦ Velocity
 ◦ Mass
 ◦ Drag
 ◦ Elasticity
 ◦ Lifetime
 ◦ Color

• Use lots of particles to model complex phenomena
 ◦ Keep array of particles
 ◦ Newton’s laws

\[p = (x,y,z) \]
Particle Systems

- For each frame:
 - For each simulation step (Δt)
 - Create new particles and assign attributes
 - Update particles based on attributes and physics
 - Delete any expired particles
 - Render particles
Creating Particles

• Where to create particles?
 ○ Predefined source
 ○ Where particle density is low
 ○ Surface of shape
 ○ etc.

Reeves
Creating Particles

• Where to create particles?
 ○ Predefined source
 ○ Where particle density is low
 ○ Surface of shape
 ○ etc.
Creating Particles

- Example: particles emanating from shape
 - Line
 - Box
 - Circle
 - Sphere
 - Cylinder
 - Cone
 - Mesh
Creating Particles

• Example: particles emanating from sphere
Creating Particles

• Example: particles emanating from sphere

Selecting random position on surface of sphere

1. \(z = \text{random } [-r, r] \)
2. \(\phi = \text{random } [0, 2\pi) \)
3. \(d = \sqrt{r^2 - z^2} \)
4. \(px = cx + d \times \cos(\phi) \)
5. \(py = cy + d \times \sin(\phi) \)
6. \(pz = cz + z \)
Creating Particles

• Example: particles emanating from sphere

Selecting random direction within angle cutoff of normal

1. N = surface normal
2. A = any vector on tangent plane
3. t1 = random \([0, 2\pi)\)
4. t2 = random \([0, \sin(\text{angle cutoff}))\)
5. V = rotate A around N by t1
6. V = rotate V around VxN by \(\cos(t2)\)
Example: Fountains
Particle Systems

• For each frame:
 ◦ For each simulation step (Δt)
 ▪ Create new particles and assign attributes
 ▪ Update particles based on attributes and physics
 ▪ Delete any expired particles
 ◦ Render particles
Equations of Motion

- Newton’s Law for a point mass
 - \(f = ma \)

- Computing particle motion requires solving second-order differential equation

\[
\ddot{x} = \frac{f(x, \dot{x}, t)}{m}
\]

- Add variable \(v \) to form coupled first-order differential equations: "state-space form"

\[
\begin{align*}
\dot{x} &= v \\
\dot{v} &= \frac{f}{m}
\end{align*}
\]
Solving the Equations of Motion

• Initial value problem
 ○ Know $x(0), v(0)$
 ○ Can compute force (and therefore acceleration) for any position / velocity / time
 ○ Compute $x(t)$ by forward integration
Solving the Equations of Motion

• Forward (explicit) Euler integration
 - $x(t+\Delta t) \leftarrow x(t) + \Delta t \ v(t)$
 - $v(t+\Delta t) \leftarrow v(t) + \Delta t \ f(x(t), v(t), t) / m$
Solving the Equations of Motion

• Forward (explicit) Euler integration
 - $x(t+\Delta t) \leftarrow x(t) + \Delta t \, v(t)$
 - $v(t+\Delta t) \leftarrow v(t) + \Delta t \, f(x(t), v(t), t) / m$

• Problem:
 - Accuracy decreases as Δt gets bigger
Solving the Equations of Motion

• Midpoint method (2nd-order Runge-Kutta)
 1. Compute an Euler step
 2. Evaluate f at the \textit{midpoint} of Euler step
 3. Compute new position / velocity using midpoint velocity / acceleration

- \(x_{\text{mid}} \leftarrow x(t) + \Delta t / 2 \times v(t) \)
- \(v_{\text{mid}} \leftarrow v(t) + \Delta t / 2 \times f(x(t), v(t), t) / m \)
- \(x(t+\Delta t) \leftarrow x(t) + \Delta t \times v_{\text{mid}} \)
- \(v(t+\Delta t) \leftarrow v(t) + \Delta t \times f(x_{\text{mid}}, v_{\text{mid}}, t) / m \)
Solving the Equations of Motion

• Adaptive step size
 ○ Repeat until error is below threshold
 1. Compute \(x_h \) by taking one step of size \(h \)
 2. Compute \(x_{h/2} \) by taking 2 steps of size \(h / 2 \)
 3. Compute error = \(|x_h - x_{h/2}| \)
 4. If (error < threshold) break
 5. Else, reduce step size and try again
Particle System Forces

• Force fields
 ◦ Gravity, wind, pressure

• Viscosity/damping
 ◦ Drag, friction

• Collisions
 ◦ Static objects in scene
 ◦ Other particles

• Attraction and repulsion
 ◦ Springs between neighboring particles (mesh)
 ◦ Gravitational pull, charge
Particle System Forces

- Gravity
 - Force due to gravitational pull (of earth)
 - $g = \text{acceleration due to gravity (m/s}^2\text{)}$

$$f_g = mg \quad \Rightarrow \quad g = (0, -9.80665, 0)$$
Particle System Forces

- Drag
 - Force due to resistance of medium
 - $k_{\text{drag}} = \text{drag coefficient (kg/s)}$

 \[f_d = -k_{\text{drag}}v \]

- Air resistance sometimes taken as proportional to v^2
Particle System Forces

- Sinks
 - Force due to attractor in scene

\[f_s = \frac{\text{intensity}}{ca + la \cdot d + qa \cdot d^2} \]
Particle System Forces

- Gravitational pull of other particles
 - Newton’s universal law of gravitation

\[f_G = G \frac{m_1 \cdot m_2}{d^2} \]

\[G = 6.67428 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \]
Particle System Forces

• Springs
 - Hooke’s law

\[f_H(p) = k_s \left(d(p, q) - s \right) D \]

\[D = \frac{(q - p)}{\|q - p\|} \]
\[d(p, q) = \|q - p\| \]
\[s = \text{resting length} \]
\[k_s = \text{spring coefficient} \]
Particle System Forces

- **Springs**
 - Hooke’s law with damping

\[
f_H(p) = [k_s (d(p, q) - s) + k_d (v(q) - v(p)) \cdot D] \cdot D
\]

\[
D = (q - p) / \|q - p\|
\]
\[
d(p, q) = \|q - p\|
\]

- \(s\) = resting length
- \(k_s\) = spring coefficient
- \(k_d\) = damping coefficient
- \(v(p)\) = velocity of \(p\)
- \(v(q)\) = velocity of \(q\)

\[
k_d \sim 2\sqrt{mk_s}
\]
Example: Rope
Particle System Forces

- Spring-mass mesh
Example: Cloth
Particle System Forces

- Collisions
 - Collision detection
 - Collision response
Particle System Forces

- Collision detection
 - Intersect ray with scene
 - Compute up to Δt at time of first collision, and then continue from there

Witkin
Particle System Forces

• Collision response
 ◦ No friction: elastic collision
 (for \(m_{\text{target}} >> m_{\text{particle}} \): specular reflection)
 ◦ Otherwise, total momentum conserved, energy dissipated if inelastic
Example: Bouncing
Particle Systems

• For each frame:
 ▪ For each simulation step (Δt)
 ▪ Create new particles and assign attributes
 ▪ Update particles based on attributes and physics
 ▪ Delete any expired particles
 ▪ Render particles
Deleting Particles

• When to delete particles?
 ◦ When life span expires
 ◦ When intersect predefined sink surface
 ◦ Where density is high
 ◦ Random
Particle Systems

• For each frame:
 ◦ For each simulation step (Δt)
 ▪ Create new particles and assign attributes
 ▪ Update particles based on attributes and physics
 ▪ Delete any expired particles
 ◦ Render particles
Rendering Particles

• Rendering styles
 ➢ Points
 ◦ Polygons
 ◦ Shapes
 ◦ Trails
 ◦ etc.
Rendering Particles

- Rendering styles
 - Points
 - Textured polygons: sprites
 - Shapes
 - Trails
 - etc.
Rendering Particles

• Rendering styles
 ◦ Points
 ◦ Polygons
 ➢ Shapes
 ◦ Trails
 ◦ etc.
Rendering Particles

- Rendering styles
 - Points
 - Polygons
 - Shapes
 - Trails
 - etc.

McAllister
Putting it All Together

• Examples
 ○ Smoke
 ○ Water
 ○ Cloth
 ○ Fire
 ○ Fireworks
 ○ Dice

McAllister
Example: “Smoke”
Example: Fire
Example: Cloth
Example: Cloth
Example: Bouncing Particles
Example: Bouncing Particles
Example: More Bouncing
Example: Flocks & Herds

Grea M. Johnson Copyright 2000. All Rights Reserved.
Summary

• Particle systems
 ◦ Lots of particles
 ◦ Simple physics

• Interesting behaviors
 ◦ Waterfalls
 ◦ Smoke
 ◦ Cloth
 ◦ Flocks

• Solving motion equations
 ◦ For each step, first sum forces, then update position and velocity