Implicit Surfaces & Solid Representations

COS 426, Spring 2014
Princeton University
3D Object Representations

- **Raw data**
 - Range image
 - Point cloud

- **Surfaces**
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- **Solids**
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- **High-level structures**
 - Scene graph
 - Application specific
3D Object Representations

- Desirable properties of an object representation
 - Easy to acquire
 - Accurate
 - Concise
 - Intuitive editing
 - Efficient editing
 - Efficient display
 - Efficient intersections
 - Guaranteed validity
 - Guaranteed smoothness
 - etc.

Large Geometric Model Repository
Georgia Tech
3D Object Representations

• Desirable properties of an object representation
 ◦ Easy to acquire
 ◦ Accurate
 ◦ Concise
 ◦ Intuitive editing
 ◦ Efficient editing
 ◦ Efficient display
 ◦ Efficient intersections
 ◦ Guaranteed validity
 ◦ Guaranteed smoothness
 ◦ etc.

Large Geometric Model Repository
Georgia Tech
Implicit Surfaces

- Represent surface with function over all space
Implicit Surfaces

- Surface defined implicitly by function

Kazhdan
Implicit Surfaces

• Surface defined implicitly by function:
 ◦ \(f(x, y, z) = 0 \) (on surface)
 ◦ \(f(x, y, z) < 0 \) (inside)
 ◦ \(f(x, y, z) > 0 \) (outside)
Implicit Surfaces

- Normals defined by partial derivatives
 \[\text{normal}(x, y, z) = \text{normalize}(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}) \]
Implicit Surface Properties

(1) Efficient check for whether point is inside
 - Evaluate $f(x,y,z)$ to see if point is inside/outside/on
 - Example: ellipsoid

\[
f(x, y, z) = \left(\frac{x}{r_x}\right)^2 + \left(\frac{y}{r_y}\right)^2 + \left(\frac{z}{r_z}\right)^2 - 1
\]
(2) Efficient surface intersections

- Substitute to find intersections

Ray: \(P = P_0 + tV \)
Sphere: \(|P - O|^2 - r^2 = 0\)

Substituting for \(P \), we get:
\(|P_0 + tV - O|^2 - r^2 = 0\)

Solve quadratic equation:
\(at^2 + bt + c = 0 \)
where:
\(a = 1 \)
\(b = 2 \ V \cdot (P_0 - O) \)
\(c = |P_0 - C|^2 - r^2 = 0 \)
Implicit Surface Properties

(3) Efficient boolean operations (CSG)

- How would you implement:
 Union? Intersection? Difference?

Union

Difference

Bloomenthal
Implicit Surface Properties

(4) Efficient topology changes

- Surface is not represented explicitly!
Implicit Surface Properties

(4) Efficient topology changes

- Surface is not represented explicitly!
Comparison to Parametric Surfaces

- **Implicit**
 - Efficient intersections & topology changes

- **Parametric**
 - Efficient “marching” along surface & rendering

\[p = (\cos(\alpha), \sin(\alpha)), \ \alpha \in [0, 2\pi] \]

equiangular parametric

(transcendental trigonometric)

non-equiauglar parametric (rational)

\[p = (\pm(1-t^2)/(1+t^2), 2t/(1+t^2)), \ t \in [-1, 1] \]

implicit

\[p_x^2 + p_y^2 - 1 = 0 \]
Implicit Surface Representations

• How do we define implicit function?
 ○ $f(x,y,z) = ?$
Implicit Surface Representations

- How do we define implicit function?
 - Algebraics
 - Voxels
 - Basis functions
 - Others
Implicit Surface Representations

• How do we define implicit function?
 ➢ Algebraics
 ◦ Voxels
 ◦ Basis functions
 ◦ Others
Algebraic Surfaces

- Implicit function is polynomial
 - \(f(x,y,z) = ax^d + by^d + cz^d + dx^{d-1}y + dx^{d-1}z + dy^{d-1}x + ... \)

\[
f(x, y, z) = \left(\frac{x}{r_x}\right)^2 + \left(\frac{y}{r_y}\right)^2 + \left(\frac{z}{r_z}\right)^2 - 1
\]

H&B Figure 10.10
Algebraic Surfaces

- Most common form: quadrics
 - $f(x,y,z) = ax^2 + by^2 + cz^2 + 2dxy + 2eyz + 2fxz + 2gx + 2hy + 2jz + k$

- Examples
 - Sphere
 - Ellipsoid
 - Paraboloid
 - Hyperboloid
Algebraic Surfaces

• Higher degree algebraics

Cubic
Quartic
Degree six
Algebraic Surfaces

• Equivalent parametric surface
 ◦ Tensor product patch of degree m and n curves yields algebraic function with degree 2mn
Algebraic Surfaces

• Intersection
 ◦ Intersection of degree m and n algebraic surfaces yields curve with degree mn

Intersection of bicubic patches has degree 324!
Algebraic Surfaces

• Function extends to infinity
 ◦ Must trim to get desired patch (this is difficult!)
Implicit Surface Representations

• How do we define implicit function?
 ○ Algebraics
 ➢ Voxels
 ○ Basis functions
Voxels

- Regular array of 3D samples (like image)
 - Samples are called *voxels* (“*volume pixels*”)
Voxels

• Example isosurfaces

SUNY Stoney Brook

Princeton University
Voxels

- Regular array of 3D samples (like image)
 - Applying reconstruction filter (e.g. trilinear) yields $f(x,y,z)$
 - Isosurface at $f(x,y,z) = 0$ defines surface
Voxels

- Iso-surface extraction algorithm
 - e.g., Marching cubes
Voxels

- Iso-surface extraction algorithm
 - e.g., Marching cubes (15 cases)
Voxel Storage

- $O(n^3)$ storage for $n \times n \times n$ grid
 - 1 billion voxels for 1000 x 1000 x 1000
Implicit Surface Representations

• How do we define implicit function?
 ◦ Algebraics
 ◦ Voxels
 ➢ Basis functions
Basis functions

• Implicit function is sum of basis functions
 ◦ Example:

\[
f(P) = a_0 e^{-b_0 d(P, P_0)^2} + a_1 e^{-b_1 d(P, P_1)^2} + \cdots - \tau
\]
Radial Basis Functions

- Blobby molecules
 \[D(r) = ae^{-br^2} \]

- Meta balls
 \[D(r) = \begin{cases}
 a(1 - \frac{3r^2}{b^2}) & 0 \leq r \leq b/3 \\
 \frac{3a}{2} \left(1 - \frac{r}{b}\right)^2 & b/3 \leq r \leq b \\
 0 & b \leq r
 \end{cases} \]

- Soft objects
 \[D(r) = \begin{cases}
 a(1 - \frac{4r^6}{9b^6}) + \frac{17r^4}{9b^4} - \frac{22r^2}{9b^2} & r \leq b \\
 0 & r \geq b
 \end{cases} \]
Blobby Models

- Implicit function is sum of Gaussians

\[f(P) = a_0 e^{-b_0 d(P, P_0)^2} + a_1 e^{-b_1 d(P, P_1)^2} + \cdots - \tau \]
Blobby Models

- Sum of two blobs
Blobby Models

- Sum of four blobs
Blobby Model of Face

(a) $N = 1$

(b) $N = 2$
Blobby Model of Face

(c) $N = 10$

(d) $N = 35$
Blobby Model of Face

(e) $N = 70$

(f) $N = 243$
Blobby Model of Head

(a) $N = 1$

(b) $N = 2$
Blobby Model of Head

(c) $N = 20$

(d) $N = 60$
Blobby Model of Head

(e) $N = 120$

(f) $N = 451$
Blobby Models

Objects resulting from CSG of implicit soft objects and other primitives

Menon
Variational Implicit Surfaces

Turk
Variational Implicit Surfaces
Implicit Surface Summary

- Advantages:
 - Easy to test if point is on surface
 - Easy to compute intersections/unions/differences
 - Easy to handle topological changes

- Disadvantages:
 - Indirect specification of surface
 - Hard to describe sharp features
 - Hard to enumerate points on surface
 - Slow rendering
Summary

<table>
<thead>
<tr>
<th>Feature</th>
<th>Polygonal Mesh</th>
<th>Implicit Surface</th>
<th>Parametric Surface</th>
<th>Subdivision Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accurate</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Concise</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Intuitive specification</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Local support</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Affine invariant</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Arbitrary topology</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Guaranteed continuity</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Natural parameterization</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Efficient display</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Efficient intersections</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
3D Object Representations

• Raw data
 ◦ Range image
 ◦ Point cloud

• Surfaces
 ◦ Polygonal mesh
 ◦ Subdivision
 ◦ Parametric
 ◦ Implicit

• Solids
 ◦ Voxels
 ◦ BSP tree
 ◦ CSG
 ◦ Sweep

• High-level structures
 ◦ Scene graph
 ◦ Application specific
Solid Modeling

- Represent solid interiors of objects
Motivation 1

- Some acquisition methods generate solids

Airflow Inside a Thunderstorm
(Bob Wilhelmson,
University of Illinois at Urbana-Champaign)

Visible Human
(National Library of Medicine)
Motivation 2

- Some applications require solids
 - Examples: medicine, CAD/CAM

SUNY Stoney Brook

Intergraph Corporation
Motivation 3

• Some operations are easier with solids
 ◦ Example: union, difference, intersection
3D Object Representations

• Points
 ◦ Range image
 ◦ Point cloud

• Surfaces
 ◦ Polygonal mesh
 ◦ Subdivision
 ◦ Parametric
 ◦ Implicit

• Solids
  Voxels
 ◦ BSP tree
 ◦ CSG
 ◦ Sweep

• High-level structures
 ◦ Scene graph
 ◦ Application specific
Voxels

• Regular array of 3D samples (like image)
 ◦ Samples are called voxels ("volume pixels")
Voxels

- Store properties of solid object with each voxel
 - Occupancy
 - Color
 - Density
 - Temperature
 - etc.

Engine Block
Stanford University

Visible Human
(National Library of Medicine)
Voxel Processing

• Signal processing (just like images)
 ◦ Reconstruction
 ◦ Resampling

• Typical operations
 ◦ Blur
 ◦ Edge detect
 ◦ Warp
 ◦ etc.

• Often fully analogous to image processing

www.volumegraphics.com
Voxel Boolean Operations

• Compare objects voxel by voxel
 ◦ Trivial

$$\cup$$

$$\cap$$
Voxel Display

- **Isosurface rendering**
 - Interpolate samples stored on regular grid
 - Isosurface at \(f(x,y,z) = 0 \) defines surface
Voxel Display

• Slicing
 - Draw 2D image resulting from intersecting voxels with a plane

Visible Human
(National Library of Medicine)
Voxel Display

• Ray casting
 ○ Integrate density along rays: compositing!

Engine Block
Stanford University
Voxel Display

• Extended ray-casting
 ○ Transfer functions:
 Map voxel values to opacity and material
 ○ Normals (for lighting) from density gradient

Bruckner et al. 2007
Voxels

• Advantages
 ◦ Simple, intuitive, unambiguous
 ◦ Same complexity for all objects
 ◦ Natural acquisition for some applications
 ◦ Trivial boolean operations

• Disadvantages
 ◦ Approximate
 ◦ Not affine invariant
 ◦ Expensive display
 ◦ Large storage requirements
Voxels

- What resolution should be used?
Quadtrees & Octrees

- Refine resolution of voxels hierarchically
 - More concise and efficient for non-uniform objects

Uniform Voxels

Quadtree (Octree in 3D)

FvDFH Figure 12.21
Quadtree Processing

- Hierarchical versions of voxel methods
 - Finding neighbor cell requires traversal of hierarchy: expected/amortized $O(1)$

FvDFH Figure 12.25
Quadtree Boolean Operations

A

B

A \cup B

A \cap B

FvDFH Figure 12.24
3D Object Representations

- Points
 - Range image
 - Point cloud

- Surfaces
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- High-level structures
 - Scene graph
 - Application specific
BSP Trees

Object

Binary Spatial Partition

Binary Tree
BSP Trees

- Key properties
 - visibility ordering (later)
 - hierarchy of convex regions
3D Object Representations

- Points
 - Range image
 - Point cloud

- Surfaces
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- High-level structures
 - Scene graph
 - Application specific
Constructive Solid Geometry (CSG)

- Represent solid object as hierarchy of boolean operations
 - Union
 - Intersection
 - Difference

FvDFH Figure 12.27
CSG Acquisition

- Interactive modeling programs
 - Intuitive way to design objects
CSG Acquisition

• Interactive modeling programs
 ◦ Intuitive way to design objects

H&B Figure 9.9
CSG Boolean Operations

• Create a new CSG node joining subtrees
 ◦ Union
 ◦ Intersection
 ◦ Difference

FvDFH Figure 12.27
CSG Display & Analysis

• Ray casting
3D Object Representations

- **Points**
 - Range image
 - Point cloud

- **Surfaces**
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- **Solids**
 - Voxels
 - BSP tree
 - CSG
 - **Sweep**

- **High-level structures**
 - Scene graph
 - Application specific
Sweeps

- Swept volume
 - **Sweep one curve along path of another curve**

![Diagram showing examples of swept volumes](image_url)
Sweeps

- Surface of revolution
 - Take a curve and rotate it about an axis
Sweeps

- Surface of revolution
 - Take a curve and rotate it about an axis

- cone
- oblate spheroid
- conical frustum
- prolate spheroid
- cylinder
- zone
<table>
<thead>
<tr>
<th>Feature</th>
<th>Voxels</th>
<th>Octree</th>
<th>BSP</th>
<th>CSG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accurate</td>
<td>No</td>
<td>No</td>
<td>Some</td>
<td>Some</td>
</tr>
<tr>
<td>Concise</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Affine invariant</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Easy acquisition</td>
<td>Some</td>
<td>Some</td>
<td>No</td>
<td>Some</td>
</tr>
<tr>
<td>Guaranteed validity</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Efficient boolean operations</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Efficient display</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>