Sampling, Resampling, and Warping

COS 426, Spring 2014
Tom Funkhouser
Image Processing

Goal: read an image, process it, write the result

`imgpro input.jpg output.jpg -histogram_equalization`
Image Processing Operations I

• Luminance
 ▪ Brightness
 ▪ Contrast.
 ▪ Gamma
 ▪ Histogram equalization

• Color
 ▪ Black & white
 ▪ Saturation
 ▪ White balance

• Linear filtering
 ▪ Blur & sharpen
 ▪ Edge detect
 ▪ Convolution

• Non-linear filtering
 ▪ Median
 ▪ Bilateral filter

• Dithering
 ▪ Quantization
 ▪ Ordered dither
 ▪ Floyd-Steinberg
Image Processing Operations II

- Transformation
 - Scale
 - Rotate
 - Warp

- Combining images
 - Composite
 - Morph
 - Comp photo

Today

Thursday
Image Transformation

- Move pixels of an image

Source image \[\rightarrow\] Warp \[\rightarrow\] Destination image
Image Transformation

• Issues:
 1) Specifying where every pixel goes (mapping)

Source image Warp Destination image
Image Transformation

• Issues:
 1) Specifying where every pixel goes (mapping)
 2) Computing colors at destination pixels (resampling)

Source image Destination image
Image Transformation

• Issues:
 1) Specifying where every pixel goes (mapping)
 2) Computing colors at destination pixels (resampling)
Mapping

- Define transformation
 - Describe the destination \((x,y)\) for every source \((u,v)\)
Parametric Mappings

• Scale by factor:
 ○ $x = \text{factor} \times u$
 ○ $y = \text{factor} \times v$
Parametric Mappings

- Rotate by Θ degrees:
 - $x = u \cos \Theta - v \sin \Theta$
 - $y = u \sin \Theta + v \cos \Theta$
Parametric Mappings

• Shear in X by factor:
 ○ \(x = u + \text{factor} \times v \)
 ○ \(y = v \)

• Shear in Y by factor:
 ○ \(x = u \)
 ○ \(y = v + \text{factor} \times u \)
Other Parametric Mappings

- Any function of u and v:
 - $x = f_x(u,v)$
 - $y = f_y(u,v)$

- Fish-eye
- “Swirl”
- “Rain”
COS426 Examples

Aditya Bhaskara Wei Xiang
More COS426 Examples

Sid Kapur

Michael Oranato

Eirik Bakke
Point Correspondence Mappings

- Mappings implied by correspondences:
 - $A \leftrightarrow A'$
 - $B \leftrightarrow B'$
 - $C \leftrightarrow C'$
Line Correspondence Mappings

- Beier & Neeley use pairs of lines to specify warps
Image Transformation

- Issues:
 1) Specifying where every pixel goes (mapping)
 2) Computing colors at destination pixels (resampling)

Source image ➔ Destination image

Warp
Simple example: scaling resolution = resampling
Resampling

Example: scaling resolution = resampling

Original

Scaled
Resampling

- Naïve resampling can cause visual artifacts.
What is the Problem?

Aliasing

Figure 14.17 FvDFH
Aliasing

Artifacts due to under-sampling

Figure 14.17 FvDFH
Spatial Aliasing

Artifacts due to under-sampling in x,y
Spatial Aliasing

Artifacts due to under-sampling in x,y

“Jaggies”
Temporal Aliasing

Artifacts due to under-sampling in time

- Strobing
- Flickering
Temporal Aliasing

Artifacts due to under-sampling in time

- Strobing
- Flickering
Temporal Aliasing

Artifacts due to under-sampling in time

- Strobing
- Flickering
Temporal Aliasing

Artifacts due to under-sampling in time
 - Strobing
 - Flickering
Aliasing

When we under-sample an image, we can create visual artifacts where high frequencies masquerade as low ones.
Sampling Theory

How many samples are enough to avoid aliasing?

- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?
Sampling Theory

How many samples are enough to avoid aliasing?

- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?
Sampling Theory

How many samples are enough to avoid aliasing?

- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?
Sampling Theory

How many samples are enough to avoid aliasing?

- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?
Sampling Theory

How many samples are enough to avoid aliasing?

- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?
Spectral Analysis

- **Spatial domain:**
 - Function: \(f(x) \)
 - Filtering: convolution

- **Frequency domain:**
 - Function: \(F(u) \)
 - Filtering: multiplication

Any signal can be written as a sum of periodic functions.
Fourier Transform

Figure 2.6 Wolberg
Fourier Transform

• Fourier transform:

\[
F(u) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi xu} \, dx
\]

• Inverse Fourier transform:

\[
f(x) = \int_{-\infty}^{\infty} F(u)e^{i2\pi ux} \, du
\]
Sampling Theorem

• A signal can be reconstructed from its samples, iff the original signal has no content $\geq 1/2$ the sampling frequency - Shannon

• The minimum sampling rate for bandlimited function is called the “Nyquist rate”

A signal is bandlimited if its highest frequency is bounded. The frequency is called the bandwidth.
Sampling Theorem

- A signal can be reconstructed from its samples, iff the original signal has no content $\geq 1/2$ the sampling frequency - Shannon

Aliasing will occur if the signal is under-sampled
Sampling and Reconstruction

Figure 19.9 FvDFH
Sampling and Reconstruction

Continuous function

Discrete samples

Sampling
Sampling and Reconstruction

Continuous function

Discrete samples

Continuous function

Sampling

Reconstruction
Image Processing

OK … but how does that affect image processing?

Source image → Warp → Destination image
Image Processing

Image processing often requires resampling

- Must band-limit before resampling to avoid aliasing

Original image

1/4 resolution
Ideal Image Processing

Real world

Sample

Discrete samples (pixels)

Reconstruct

Reconstructed function

Transform

Transformed function

Filter

Bandlimited function

Sample

Discrete samples (pixels)

Reconstruct

Display
Ideal Image Processing

Real world

Sample
Discrete samples (pixels)
Reconstruct
Reconstructed function
Transform
Transformed function
Filter
Bandlimited function
Sample
Discrete samples (pixels)
Reconstruct
Display

Continuous Function
Ideal Image Processing

Real world

Sample

Discrete samples (pixels)

Reconstruct

Reconstructed function

Transform

Transformed function

Filter

Bandlimited function

Sample

Discrete samples (pixels)

Reconstruct

Display

Discrete Samples
Ideal Image Processing

Real world
Sample
Discrete samples (pixels)
Reconstruct
Reconstructed function
Transform
Transformed function
Filter
Bandlimited function
Sample
Discrete samples (pixels)
Reconstruct
Display
Reconstructed Function
Ideal Image Processing

Real world

Sample

Discrete samples (pixels)

Reconstruct

Reconstructed function

Transform

Transformed function

Filter

Bandlimited function

Sample

Discrete samples (pixels)

Reconstruct

Display

Transformed Function
Ideal Image Processing

Real world

Sample

Discrete samples (pixels)

Reconstruct

Reconstructed function

Transform

Transformed function

Filter

Bandlimited function

Sample

Discrete samples (pixels)

Reconstruct

Display

Bandlimited Function
Ideal Image Processing

Real world

Sample

Discrete samples (pixels)

Reconstruct

Reconstructed function

Transform

Transformed function

Filter

Bandlimited function

Sample

Discrete samples (pixels)

Reconstruct

Display
Ideal Image Processing

Real world

Sample

Discrete samples (pixels)

Reconstruct

Reconstructed function

Transform

Transformed function

Filter

Bandlimited function

Sample

Discrete samples (pixels)

Reconstruct

Display
Ideal Bandlimiting Filter

• Frequency domain

• Spatial domain

\[Sinc(x) = \frac{\sin \pi x}{\pi x} \]
Practical Image Processing

- Finite low-pass filters
 - Point sampling (bad)
 - Box filter
 - Triangle filter
 - Gaussian filter

```
Sample → Discrete samples (pixels)
Transform → Transformed function
Filter → Bandlimited function
Sample → Discrete samples (pixels)
Reconstruct → Display
```
Practical Image Processing

- Reverse mapping:

```c
Warp(src, dst) {
    for (int ix = 0; ix < xmax; ix++) {
        for (int iy = 0; iy < ymax; iy++) {
            float w ≈ 1 / scale(ix, iy);
            float u = f_x^{-1}(ix,iy);
            float v = f_y^{-1}(ix,iy);
            dst(ix,iy) = Resample(src,u,v,k,w);
        }
    }
}
```

Source image

Destination image

(u,v)

(ix,iy)
Resampling

• Compute value of 2D function at arbitrary location from given set of samples
Point Sampling

• Possible (poor) resampling implementation:

```c
float Resample(src, u, v, k, w) {
    int iu = round(u);
    int iv = round(v);
    return src(iu, iv);
}
```

Source image Destination image
Point Sampling

- Use nearest sample
Point Sampling

Point Sampled: Aliasing! Correctly Bandlimited
Resampling with Low-Pass Filter

- Output is weighted average of input samples, where weights are normalized values of filter (k)

$k(ix,iy)$ represented by gray value
Resampling with Low-Pass Filter

- Possible implementation:

```c
float Resample(src, u, v, k, w)
{
    float dst = 0;
    float ksum = 0;
    int ulo = u - w; etc.
    for (int iu = ulo; iu < uhi; iu++) {
        for (int iv = vlo; iv < vhi; iv++) {
            dst += k(u,v,iu,iv,w) * src(u,v)
            ksum += k(u,v,iu,iv,w);
        }
    }
    return dst / ksum;
}
```

Source image

Destination image

\(f(u,v) \) to \((ix,iy) \)
Resampling with Gaussian Filter

- Kernel is Gaussian function

\[G(d, \sigma) = e^{-d^2/(2\sigma^2)} \]

- Drops off quickly, but never gets to exactly 0
- In practice: compute out to \(w \sim 2.5\sigma \) or \(3\sigma \)
Resampling with Triangle Filter

• For isotropic Triangle filter, $k(ix, iy)$ is function of d and w

$$k(i, j) = \max(1 - \frac{d}{w}, 0)$$

Filter Width = 2
Sampling Method Comparison

- Trade-offs
 - Aliasing versus blurring
 - Computation speed
Resampling Details

- Filter width chosen based on scale factor of map

Filter must be wide enough to avoid aliasing
Resampling Details

- What if width (w) is smaller than sample spacing?

Filter Width < 1
Resampling Details

- Alternative 1: Bilinear interpolation of closest pixels
 - $a = \text{linear interpolation of } \text{src}(u_1,v_2) \text{ and } \text{src}(u_2,v_2)$
 - $b = \text{linear interpolation of } \text{src}(u_1,v_1) \text{ and } \text{src}(u_2,v_1)$
 - $\text{dst}(x,y) = \text{linear interpolation of “a” and “b”}$

Filter Width < 1
Resampling Details

- Alternative 2: force width to be at least 1

Filter Width < 1
Alternative Algorithm

• Forward mapping:

\[
\text{Warp}(\text{src}, \text{dst}) \{
 \text{for (int } \text{iu} = 0; \text{iu} < \text{umax}; \text{iu}++) \{
 \text{for (int } \text{iv} = 0; \text{iv} < \text{vmax}; \text{iv}++) \{
 \text{float } x = f_x(\text{iu,iv});
 \text{float } y = f_y(\text{iu,iv});
 \text{float } w \approx 1 / \text{scale}(x, y);
 \text{Splat}(\text{src(}\text{iu,iv}), x, y, k, w);
 \}
 \}
\}
\]

f(\text{iu,iv})(x,y)

Source image

Destination image
Alternative Algorithm

- Forward mapping:

\[
\text{Warp}(\text{src}, \text{dst}) \{
\text{for (int } iu = 0; iu < \text{umax}; iu++) { \text{ }
\text{for (int } iv = 0; iv < \text{vmax}; iv++) { \text{ }
\text{float } x = f_x(iu, iv); \text{ }
\text{float } y = f_y(iu, iv); \text{ }
\text{float } w \approx 1 / \text{scale}(x, y); \text{ }
\text{Splat}(\text{src}(iu, iv), x, y, k, w); \text{ }
\text{}} \text{ }
\text{}} \text{ }
\text{}} \text{ }
\text{}} \text{ }
\text{}}
\]

(iu, iv) Source image

(x, y) Destination image
Alternative Algorithm

• Forward mapping:

```c
for (int iu = 0; iu < umax; iu++) {
    for (int iv = 0; iv < vmax; iv++) {
        float x = fx(iu,iv);
        float y = fy(iu,iv);
        float w = 1 / scale(x, y);
        for (int ix = xlo; ix <= xhi; ix++) {
            for (int iy = ylo; iy <= yhi; iy++) {
                dst(ix,iy) += k(x,y,ix,iy,w) * src(iu,iv);
            }
        }
    }
}
```

Problem?
Alternative Algorithm

• Forward mapping:

```c
for (int iu = 0; iu < umax; iu++) {
    for (int iv = 0; iv < vmax; iv++) {
        float x = fx(iu, iv);
        float y = fy(iu, iv);
        float w ≈ 1 / scale(x, y);
        for (int ix = xlo; ix <= xhi; ix++) {
            for (int iy = ylo; iy <= yhi; iy++) {
                dst(ix, iy) += k(x, y, ix, iy, w) * src(iu, iv);
                ksum(ix, iy) += k(x, y, ix, iy, w);
            }
        }
    }
}
```

for (ix = 0; ix < xmax; ix++)
 for (iy = 0; iy < ymax; iy++)
 dst(ix, iy) /= ksum(ix, iy)
```

Destination image (x, y)
Forward vs. Reverse Mapping?

- **Forward mapping**

  Source image  \[ (i_u,i_v) \] \[ f \] \( (x,y) \)  Destination image

- **Reverse mapping**

  Source image  \[ (u,v) \] \[ f \] \( (i_x,i_y) \)  Destination image
Forward vs. Reverse Mapping

• Tradeoffs:
  - **Forward mapping:**
    - Requires separate buffer to store weights
  - **Reverse mapping:**
    - Requires inverse of mapping function, random access to original image

Reverse mapping is usually preferable
Putting it All Together

• Possible implementation of image blur:

```c
Blur(src, dst, sigma) {
 w ≈ 3*sigma;
 for (int ix = 0; ix < xmax; ix++) {
 for (int iy = 0; iy < ymax; iy++) {
 float u = ix;
 float v = iy;
 dst(ix,iy) = Resample(src,u,v,k,w);
 }
 }
}
```

Increasing sigma
Putting it All Together

• Possible implementation of image scale:

```c
Scale(src, dst, sx, sy) {
 w ≈ max(1/sx,1/sy);
 for (int ix = 0; ix < xmax; ix++) {
 for (int iy = 0; iy < ymax; iy++) {
 float u = ix / sx;
 float v = iy / sy;
 dst(ix,iy) = Resample(src,u,v,k,w);
 }
 }
}
```

Source image

Destination image

(u,v) \rightarrow f \rightarrow (ix,iy)
Putting it All Together

- Possible implementation of image rotation:

\[
\text{Rotate}(\text{src}, \text{dst}, \Theta) \{
\quad w \approx 1
\quad \text{for } (\text{int } ix = 0; ix < \text{xmax}; ix++) \{
\quad \quad \text{for } (\text{int } iy = 0; iy < \text{ymax}; iy++) \{
\quad \quad \quad \text{float } u = ix \cdot \cos(-\Theta) - iy \cdot \sin(-\Theta);
\quad \quad \quad \text{float } v = ix \cdot \sin(-\Theta) + iy \cdot \cos(-\Theta);
\quad \quad \quad \text{dst}(ix,iy) = \text{Resample}(\text{src},u,v,k,w);
\quad \quad \}\n\quad }\n\}\n\]
Summary

- Mapping
  - Parametric
  - Correspondences

- Sampling, reconstruction, resampling
  - Frequency analysis of signal content
  - Filter to avoid aliasing
  - Reduce visual artifacts due to aliasing
    » Blurring is better than aliasing

- Image processing
  - Forward vs. reverse mapping