
COS 340: Reasoning About Computation∗

Online Algorithms 1

Moses Charikar

March 9, 2014

1 Introduction

In this lecture, we will introduce the notion of online algorithms and competitive analysis.
We will study the Rent or Buy problem, and then discuss the List Update problem.

In many situations, algorithms must make decisions without complete knowledge of the
entire input. An important class of such algorithms is online algorithms which receive their
input as a sequence of requests and are required to make decisions based on the requests seen
so far without any knowledge of future requests. Further, decisions made early on cannot
be undone when later requests are revealed. Online algorithms should be contrasted with
offline algorithms which do have the entire input available to them – this is just the usual
notion of an algorithm. 1

The study of online algorithms is all about decision making in the face of uncertainty.
How should the algorithm make decisions without knowledge of future requests ? How
should we evaluate the quality of such an algorithm ? I should mention that people do study
scenarios where we have partial information about the future – for example, sometimes
inputs are assumed to come from a probability distribution. In online algorithms, we take
a worst-case analysis viewpoint, and assume that we know nothing about future requests.
While we haven’t yet discussed a measure of goodness for online algorithms, our goal is to
design algorithms that work well for all inputs.

2 Rent or Buy

In order to motivate the performance measure that is used to evaluate the quality of an
online algorithm, let’s introduce an example which we will discuss in some detail in this

∗Princeton University, Spring 2014
1You may wonder about the choice of name for online algorithms. Given other connotations of the word

online, perhaps a more informative name would be real-time algorithms, but that term is already taken and
has a different meaning in Computer Science. In any case, when the term online algorithm was coined, the
word online did not have the meaning attached to it that it has today.

1

lecture:
Alice2 is a student in COS 340 and a budding photographer. She decides to develop her

hobby and earn some extra money on the side photographing events and doing photo shoots
in Princeton. Of course, she has to upgrade her amateur equipment and needs a good camera
and lens to get started. Let’s say that the cost of buying the equipment is $1000 (most likely
an underestimate, but let’s stick with a nice round number for our example). She also has
the option of renting a camera and lens and the cost of this is a much more affordable $100
per assignment. Having started her new photography business, she is now faced with the
following Rent or Buy problem: each time she gets a new assignment, should she rent the
camera for the assignment or buy it? We’ll assume in our example that once she buys the
equipment, it is good for all future assignments.

What strategy should Alice use for the online problem she faces ? In order to motivate
the performance measure for online algorithms, let’s examine two extreme strategies:

1. She could decide to buy the camera when she gets her first assignment. The trouble
with making an expensive investment upfront is that she is not sure how many photo
assignments she will actually get. If she is unlucky and ends up with only one assign-
ment, then buying the equipment would be a waste of money in retrospect (let’s ignore
the resale value in our example).

2. She could decide to rent always and never buy the camera. The trouble with this
strategy is that if she gets a very large number of assignments, she will run up a large
bill with her rental costs. In retrospect, she ought to have bought the camera and
saved on her rental expenses.

Note that in both cases, we compare the cost of Alice’s strategy to the best strategy
in retrospect, i.e. the best strategy had we known how many assignments Alice would
eventually get. Informally, we would like to design a strategy that does well compared to
the best strategy in hindsight. This is the motivation behind the competitive ratio measure
for online algorithms which we now define.

Let σ = (σ1, σ2, . . .) be the request sequence. Let CA(σ) denote the cost of online algo-
rithm A on σ. Let COPT (σ) denote the cost of the optimal solution on σ. Note that the
optimal solution is computed with knowledge of the entire input sequence. We say that
algorithm A is c-competitive if for all request sequences σ, CA(σ) ≤ c · COPT (σ) (in other
words, the algorithm A pays no more than a factor of c times the optimal cost for the request
sequence). In fact, this also means that for all points in the request sequence, the algorithm
A pays no more than a factor of c times the optimal cost for the portion of the request
sequence seen so far. The competitive ratio of the algorithm is the worst case over all request
sequences of the ratio CA(σ)/COPT (σ). So when we say that A is c-competitive, we mean
that the competitive ratio is at most c.

2In case you haven’t realized this already, Alice and Bob are the two most frequently encountered
characters in theoretical computer science. In fact, if you take a cryptography class, they will probably pop
up in every lecture.

2

Now we turn to analyzing the competitive ratio for Alice’s Rent or Buy problem.
Consider the following strategy: Suppose Alice rents a camera for the first 9 assignments
and buys a camera if she gets a 10th assignment. Let’s call this strategy A9 (since we rent a
maximum of 9 times). Later, we will consider generalizations of this strategy where we rent
a maximum of k times – this strategy will be be denoted by Ak. For now, let’s analyze the
competitive ratio of A9.

For request sequence σ, let |σ| denote the number of assignments that Alice gets. Then

COPT (σ) =

{
100|σ| if |σ| < 10

1000 if |σ| ≥ 10

On the other hand

CA9(σ) =

{
100|σ| if |σ| < 10

1900 if |σ| ≥ 10

Hence
CA9(σ)

COPT (σ)
=

{
1 if |σ| < 10

1.9 if |σ| ≥ 10

Hence the competitive ratio of A9 is 1.9.
Next, let’s consider whether we can hope to get a better competitive ratio for the Rent

or Buy problem. We’ll consider a general setting where the rent cost is an integer R, the
buying cost is an integer B. For convenience we assume that R divides B, i.e. B/R is an
integer. A deterministic algorithm for the problem can be characterized by when it decides
to buy. Note that any competitive algorithm must decide to buy at a finite time, otherwise
the competitive ratio would be infinite (why ?).

Suppose the algorithm rents k times before buying. The consider the cost at time k+1, i.e
just after the algorithm buys for the first time. The cost of the algorithm CA(σ) = k.R+B.
On the other hand COPT (σ) = min{(k + 1)R,B}. Now we consider two cases.
Case 1: B ≤ (k + 1)R.

CA(σ)

COPT (σ)
=
k.R +B

B
=

(k + 1)R−R +B

B
≥ 2B −R

B
= 2− R

B

Case 2: B > (k + 1)R.

CA(σ)

COPT (σ)
=
k.R +B

(k + 1)R
=

(k + 1)R−R +B

(k + 1)R
= 1 +

B −R
(k + 1)R

≥ 1 +
B −R
B

= 2− R

B

Thus the competitive ratio is at least 2 − R
B

. Substituting R = 100, B = 1000, we see
that 1.9 is the best competitive we can hope to obtain for Alice’s Rent or Buy problem.

An important thing to note is that we reasoned about deterministic algorithms here. The
situation changes if we allow the algorithm to make random choices. Recall that Ak is the
algorithm that rents k times before buying. We analyzed A9 above, and in fact k = 9 is

3

the optimal choice for deterministic algorithms. Notice that at time steps 1, . . . , 9, the cost
incurred by A9 is equal to the cost of the optimal solution – it is only at time step 10 and
beyond that the cost of A9 jumps up to 1.9 times the optimal cost.

How about algorithm Ak other choices of k ? If we choose k > 9, the cost of the algorithm
at time k+ 1, right after it buys, is strictly greater than 1.9 times the cost of buying (which
is the optimal solution for |σ| > 9). On the other hand, if we choose k < 9, the cost of
the algorithm at time k + 1, right after it buys, is strictly greater than 1.9 times the cost of
renting up to that point (which is the optimal solution for |σ| ≤ 9). If we examine A5 for
example, at time step 6 onwards the cost of the algorithm is 1500 – for step 6 and 7, this
is more than 1.9 times the optimal cost. However, notice that in the long run (time step 10
and beyond), the cost of A5 is 1.5 times the optimal cost. Observe that algorithms A5 and
A9 have their worst performance on disjoint intervals: A9 performs badly on time steps 10
and beyond, when A5 does very well, and A5 does badly on time steps 6 and 7 (possibly also
8 and 9 depending on what competitive ratio we are shooting for) but for these time steps,
A9 performs splendidly. It turns out that we can combine the benefits of the two algorithms
and mitigate their weak points by picking randomly amongst them.

Consider algorithm Ã that runs A5 with probability 1/2 and runs A9 with probability
1/2. In other words, it tosses a fair coin initially and decides to run either A5 or A9 based
on the outcome of the coin toss. Note that the only randomness is in the initial choice of A5

or A9 – the algorithm behaves deterministically after that. The expected cost E[CÃ(σ)] =
1
2
CA5(σ) + 1

2
CA9(σ).

CÃ(σ) =


100|σ| if |σ| ≤ 5
1
2
(1500) + 1

2
100|σ| if 5 < |σ| < 10

1
2
(1500) + 1

2
(1900) if 10 ≤ |σ|

Note that

COPT (σ) =


100|σ| if |σ| ≤ 5

100|σ| if 5 < |σ| < 10

1000 if 10 ≤ |σ|
Hence

CÃ(σ)

COPT (σ)
=


1 if |σ| ≤ 5
750

100|σ| + 1
2
≤ 750

100·6 + 1
2

= 1.75 if 5 < |σ| < 10
1700
1000

= 1.7 if 10 ≤ |σ|

Thus the competitive ratio of Ã is 1.75. It turns out that we can do even better by
appropriately combining the algorithms A0, . . . , A9. In fact, we have matching upper and
lower bounds for the competitive ratio of this problem and we will explore this in precept.

Wrapping up the discussion on Rent or Buy, there are some subtle issues about ran-
domized online algorithms that we swept under the carpet in our discussion above. The
competitive ratio of a randomized algorithm is the worst case (over all request sequences σ)

of the ratio of expected cost to optimal cost, i.e.
CÃ(σ)

COPT (σ)
. For the purposes of this class, when

4

we analyze the competitive ratio of a randomized algorithm, we assume that the adversary
knows the algorithm and can use this information to design a request sequence where the
algorithm does badly. However, we assume that the adversary does not know the coin tosses
of the algorithm. In other words, the adversary must choose a bad request sequence for the
algorithm with knowledge of the “program code” that the algorithm uses but cannot change
the request sequence as the execution of the algorithm proceeds.

3 List Update

The field of online algorithms was kicked off by a paper of Danny Sleator and Bob Tarjan3 in
1985. Their paper was about the analysis of self adjusting data structures, i.e. data structures
that adapt to the sequence of operations performed. They introduced the framework of
competitive analysis as a method for analyzing the relative performance of different strategies
for designing such self adjusting data structures.

To start with, Sleator and Tarjan studied a simple data structure problem called List
Update. Here the algorithm is required to maintain a linked list of n items. Requests to
the algorithm are of the form Access(x), where x is an item in the list. In response to this
request, the algorithm walks the list starting from the first position until the element x is
encountered. The algorithm is also allowed to modify the list as it proceeds. In particular,
in servicing an Access request, the accessed element may be moved to any earlier position
in the list. In addition adjacent elements in the list can be swapped.

In order to analyze this problem under the lens of competitive analysis, we need to be
precise about the costs of various operations, so here is a model for the costs:

1. Access(x) where x is currently at position k in the list costs k (this models the cost
of traversing the linked list until x is encountered).

2. Moving the accessed element to any earlier position is free.

3. Additional swaps of adjacent elements in the list cost 1. (These are referred to as paid
exchanges. MTF does not use any such operations).

Here are some natural online algorithms that come to mind:

1. Swap: OnAccess(x), swap x with the element just before it in the list.

2. Move-To-Front (MTF): After Access(x), move x all the way to the front of the
list (keeping the relative positions of the other elements unchanged).

3. Frequency Count: Keep track of how many times each element has been accessed so
far and maintain the list in decreasing order of these counts (breaking tied arbitrarily).

3Yes, that is our Bob Tarjan. If you take a data structures and algorithms class, you will enounter many
of his fundamental contributions to the field.

5

It is not very hard to see that Swap and Frequency Count have competitive ratio
Ω(n). Try to construct examples to demonstrate this – we discussed this in class.

We will show that MTF is 2-competitive. It turns out that computing the optimal
strategy for List Update is a hard problem – in fact it belongs to the class of NP-Complete
problems that we will encounter later in the course. It is widely believed that these problems
do not have polynomial time algorithms. Given that we don’t know how to compute the
optimal strategy efficiently, it is quite remarkable that we can compare the cost of MTF to
that of the optimal strategy.

How can we prove that MTF is 2-competitive? Let CMTF (σk) denote the cost of MTF
on the kth request and let COPT (σk) denote the cost of the optimal algorithm on the kth
request. One natural approach would be to prove that for every k, CMTF (σk) is at most twice
COPT (σk). If you think about this, you will quickly realize that such a strong statement is not
true. The cost of each of the algorithms depends on the position of the currently requested
element in their lists, and there is no way we can guarantee that the position in MTF’s list
is at most twice the position in OPT’s list.

The proof of 2-competitiveness is rather ingenious and involves a potential function ar-
gument that is quite commonly used in online algorithms. Here is how it works: We imagine
running MTF and OPT side by side on the request sequence. The proof defines a certain
non-negative function Φ that we call a potential function. Let Φk be the value of the poten-
tial function after k requests have been serviced. The initial value is Φ0 = 0. We will show
that

CMTF (σk) + Φk − Φk−1︸ ︷︷ ︸
amortized cost

≤ 2 · COPT (σk) (1)

The LHS of the above inequality is referred to as the amortized cost. The potential function Φ
helps smooth out the costs of the algorithm over various steps so as to facilitate a comparison
with the cost of OPT. If the potential function goes up, the amortized cost for that request
is higher than the actual cost of MTF. If the potential function goes down, the amortized
cost for that request is lower than the actual cost of MTF.

Suppose that the request sequence σ = (σ1, . . . , σm). Then summing up the above
inequality over all k ∈ {1, . . . ,m}, we get

CMTF (σ) + Φm − Φ0 ≤ 2 · COPT (σ)

Here we use CMTF (σ) to denote the cost of MTF on the request sequence σ; similarly for
COPT (σ). Since Φ0 = 0 and Φm ≥ 0, the above inequality implies that

CMTF (σ) ≤ 2 · COPT (σ)

So the crux of the matter is establishing the inequality (1) and before that, defining
the potential function that facilitates the proof. The potential function we use is defined as
follows: Φ is equal to the number of inverted pairs {x, y} in the two lists currently maintained
by MTF and OPT. {x, y} is an inverted pair if x occurs before y in one list, but y appears
before x in the other list. Note that 0 ≤ Φ ≤

(
n
2

)
. We assume that MTF and OPT start out

with the exact same ordered list, so the initial value of Φ is zero.
Now we proceed to prove (1).

6

Proof. Suppose σk = x. We examine the elements that precede x in MTF’s list and partition
them into two groups depending on where they appear in OPT’s list. Define

S = {y|y precedes x in MTF’s list and in OPT’s list}

T = {y|y precedes x in MTF’s list but not in OPT’s list}
Note that CMTF (σk) = |S|+ |T |+ 1 since the position of x in MTF’s list is |S|+ |T |+ 1.

First, assume that OPT does not make any paid exchanges. COPT (σk) ≥ |S| + 1 since
the position of x in OPT’s list is at least |S| + 1. We claim that Φk − Φk−1 ≤ |S| − |T |.
Note that MTF moves x to the front of its list. This ensures that inversions involving x and
elements of T are destroyed (and this is true irrespective of where OPT moves x) decreasing
the potential function by |T |. Additionally, new inversions could be created involving x and
elements of S. If OPT does not change the position of x, then indeed |S| new inversions are
created. If OPT does move x forward, then fewer than S new inversions could be created.
In any case, the change in the potential function is bounded by |S| − |T |.

Now let’s consider the case when OPT makes P paid exchanges in this step. This means
that in addition to possibly moving x forward, OPT also swaps P pairs of adjacent elements
in its list. Note that each such swap either increases or decreases the potential function
by 1, since the swapped pair is the only pair whose orientation changes. In this case, we
COPT (σk) ≥ |S|+ 1 + P , and Φk − Φk−1 ≤ |S| − |T |+ P . Now,

CMTF (σk) + Φk − Φk−1 ≤ (|S|+ |T |+ 1) + (|S| − |T |+ P)

= 2|S|+ P + 1

≤ 2(|S|+ 1 + P) ≤ 2COPT (σk)

We claim that 2 is the best deterministic competitive ratio one can hope to achieve for
List Update. More precisely

Theorem 3.1. Let A be any deterministic algorithm for List Update. The for any ε > 0,
the competitive ratio of A is at least 2− ε.
Proof. (Sketch) We construct a request sequence σ by repeatedly requesting the last element
in A’s list. By design, the cost of A on this request sequence is at least |σ| · n. We will show
that there is an offline algorithm to satisfy the requests with cost at most |σ| · n/2 +

(
n
2

)
.

Thus COPT (σ) ≤ |σ| · n/2 +
(
n
2

)
. By choosing |σ| large enough, we can ensure that the ratio

of |σ| ·n to |σ| ·n/2 +
(
n
2

)
is at least 2− ε. (If you work this out, you will see that |σ| ≥ 2n/ε

suffices).
What remains to be shown is that there is an offline algorithm to satisfy the request

sequence σ with cost at most |σ| · n/2 +
(
n
2

)
. In fact this is true for any σ. We simply

compute the frequencies of elements in the request sequence and maintain an ordered list
in decreasinng order of these frequencies, i.e. most requested elements appearing earlier in
the list. We spend at most

(
n
2

)
paid comparisons moving from the initial list configuration

to this desired list configuration. Having sorted the list thus, we can show that the average
cost for an Access operation in σ is at most n/2. We leave this proof as an exercise.

7

While MTF is an optimal deterministic algorithm for List Update, we can get compet-
itive ratio better than 2 by using randomized algorithms. The following simple algorithm
(called BIT) achieves a competitive ratio of 1.75: The algorithm maintains a bit for every
element. These bits are initialized randomly to either 0 or 1. When element x is accessed, its
bit is flipped (from 0 to 1 and vice versa). If the bit is 1, x is moved to the front, otherwise
the list is left unchanged. Interestingly, the algorithm only uses randomness in the beginning.
After the bits have been initialized randomly, all further steps are deterministic. To date,
we don’t have matching upper and lower bounds on the best randomized competitive ratio
that can be achieved for List Update.

4 Competitive Ratio revisited

A final note on the definition of competitive ratio: Earlier we said that

Algorithm A is c-competitive if for all request sequences σ, CA(σ) ≤ c · COPT (σ).

In fact, this is called strictly c-competitive.

An algorithm is said to be c-competitive even if it satisfies a more relaxed condition:

for all request sequences σ, CA(σ) ≤ c · COPT (σ) + α.

Here α is a constant – possibly a function of the instance but independent of σ.

Obviously, the notion of strict c-competitiveness is stronger than the relaxed notion of
c-competitiveness above. In this course, unless stated otherwise, c-competitive will always
mean strictly c-competitive.

8

