COS 340: Reasoning About Computation*
Hashing

Moses Charikar
October 25, 2011

1 Introduction

A hash table is a commonly used data structure to store a set of items, allowing fast inserts,
lookups and deletes. Every item consists of a unique identifier called a key and a piece of
information. For example, the key might be a Social Security Number, a driver’s licence
number, or an employee ID number. For our purposes, we focus only on the key.

Recall that the operations we would like to support are:

1. INSERT(k): Insert key k into the hash table.
2. Lookup(k): Check if key k is present in the table.
3. DELETE(k): Delete the key k from the table.

Let U be the universe of all keys. For example, U could be the set of all 64 bit strings. In
this case |U| = 2%, Consider a hash table of size n. The keys are mapped to locations (also
called buckets) in the hash table by a hash function h : U — [n]. Multiple keys could map
to the same hash bucket. For every bucket in the table, we maintain a linked list of all the
keys that map to that bucket. Note that the actual subset of keys stored in the hash table
is much smaller than the size of the universe. The hash table size is usually chosen so that
the size of the hash table is at least as large as the maximum number of keys we will need
to store at any point of time. (If this condition is violated and the number of keys stored
grows much larger than the size of the hash table, an implementation will usually increase
the size of the table, and recompute the new table from scratch by mapping all keys to the
bigger table. Our analyis ignores these complications and assumes that the number of keys
is at most the hash table size).

The time required to perform an INSERT, LOOKUP or DELETE operation on key k is
linear in the length of the linked list for the bucket that key k maps to. (Note that an

* Princeton University, Fall 2011.

INSERT could be performed in constant time by always inserting at the head of the list, but
we first need to check if key £ is already present).

In order for the operations to be implemented efficiently, we would like the keys to
be distributed uniformly amongst the buckets in the hash table. We might hope that all
buckets have at most a constant number of keys mapped to them, so that all operations
could be performed in constant time. What hash function should we pick and what kind
of guarantees can we give for running times of the hash table operations ? For any fixed
choice hash function h, one can always produce a subset of keys S such that all keys in S
are mapped to the same location in the hash table. In this case, the running times of all
operations will be linear in the number of keys — far from the constant we were hoping for.
Thus, for a fixed hash function A, it is impossible to give worst case guarantees running times
on hash table operations.

There are two styles of analysis that we could use to circumvent this problem:

1. Assume that the set of keys stored in the hash table is random, or
2. Assume that the hash function h is random.

Both are plausible alternatives. The problem with the first alternative is that it is hard
to justify that the set of keys stored in the hash table is truly random. It would be more
satisfying to have an analysis that works for any subset of keys currently in the hash table.
In these notes, we will explore the second alternative, i.e assume that the hash function h is
random.

What does it mean for A to be random 7 One possibility is that h is chosen uniformly
and at random from amongst the set of all hash functions h : U — [n]. In fact picking
such a hash function is not really practical. Note that there are nlV! possible hash functions.
Representing one of these hash functions requires log n!! = |U|logn bits. In fact, this means
we need to write down h(x) for every x € U in order to represent h. That’s a lot of storage
space ! Much more than the size of the set we are trying to store in the hash table. One could
optimize this somewhat by only recording h(z) for all keys = seen so far (and generating
h(z) randomly on the fly when a new x is encountered), but this is impractical too. How
would we check if a particular key x has already been encountered ? Looks like we would
need a hash table for that. But wait, isn’t that we set out to implement ? Overall, it is clear
that picking a completely random hash function is completely impractical.

Despite this, we will analyze hashing assuming that we have a completely random hash
function and then explain how this assumption can be replaced by something that is practical.

1.1 Balls and Bins

A useful abstraction in thinking about hashing with random hash functions is the following
experiment: Throw m balls randomly into n bins. (The connection to hashing should be
clear: the balls represent the keys and the bins represent the hash buckets). The balls into
bins experiment arises in several other problems as well, e.g. analysis of load balacing). In
the context of hashing, the following questions arise about the balls and bins experiment:

e How large does m have to be so that with probability greater than 1/2, we have (at
least) two balls in the same bin ? This tells us how large our hash table needs to be
to avoid any collisions.

e Suppose m = n, What is the maximum number of balls that fall into a bin ? This tells
us the size of the largest bucket in the hash table when the number of keys is equal to
the number of buckets in the table.

No collisions

The first question is related to the so called birthday paradox we discussed in class earlier. A
quick reminder: Suppose you have 23 people in a room. Then (somewhat surprisingly) the
probability that there exists some pair with the same birthday is greater than 1/2 ! (This
assumes that birthdays are independent and randomly distributed.) 23 seems like an awfully
small number to get a pair with the same birthday. There are 365 days in a year ! How do
we explain this 7 Consider throwing m balls into n bins. The expected number of pairs that
fall into the same bucket is m(m — 1)/2n. (This follows from linearity of expectation. Note
that the probability that a fixed pair falls into the same bucket is 1/n). Thus the probability
that there is a collision is upper bounded by the expected number of collisions which is
m(m — 1)/2n. (If you don’t see why this is true right away, take a moment to convince
yourself that this is true.) On the other hand, we can also show that the probability that
all m balls fall into distinct bins is at most e™™(™~1/2" (In fact, earlier in class, we went
through some elaborate calculations to justify that this is close to the actual probability of
having no collisions). For m about 1/(2In2)n &~ 1.18y/n this probability is less than 1/2,
i.e. the probability of a collision is greater than 1/2.

This is a useful design principle to keep in mind: If we want to design a hash table with
no collisions, then the size of the hash table should be larger than the square of the number
of elements we need to store in it. For our purposes in this note, insisting on no collisions
means that the number of elements in the hash table can only be a small fraction of the hash
table size which is quite wasteful.

The birthday problem calculation is useful in other contexts. Here is an application:
Suppose we assign random b bit IDs to m users. How large does b have to be to ensure
that all users have distinct IDs with probability 1 — . Here § > 0 is a given error tolerance.
Assigning b bit IDs is identical to mapping to n = 2° buckets. The birthday calculation shows
us that the probability of a collision is at most m?/2n = m?/2°*1. We should set b large
enough such that this bound is at most 6. Thus b should be at least 2logm — 1 + log(1/6).

Maximum bin size

Now lets consider the balls and bins experiment with m = n. For a fixed bin B;, the expected
load on B; (i.e the number of balls that map to B;) is 1. (This is easy to compute by linearity
of expectation. Note that the probability that the any fixed ball ball falls into B; is 1/n).
By Chernoff bounds, the probability that the load on B; exceeds c is at most e¢™¢=¢+1,
(We will choose an appropriate value for ¢ later). Let A; be an indicator variable correspond-

3

ing to the event that bin B; has at least ¢ balls in it. Then Pr[A4;] < e¢m¢=eFl We would
like to pick ¢ large enough such that with high probability, none of the n bins have load
exceeding c¢. What does high probability mean ? Let’s say we would like this event (no bin
with large load) to happen with probability at least 1 —1/n. In order to do this, we choose ¢
such that ecme=et1 < 1/p?. Applying union bound over the n bins, Pr[U;A;] < >°7 | Pr[4;].
Hence the probability that some bin has load exceeding c¢ (i.e the event U;A;) is at most
necne=etl < 1/n. How large does ¢ need to be ? ¢ = Inn certainly works (for large enough
n), but this is overkill. It turns out that ¢ = - 11“” suffices. We conclude that with probability

1 — 1/n, no bin has load exceeding 2.
This bound assumes that the balls are assigned to bins at random and these assignments
are mutually independent. In class and on the homework, we explored bounds on the max-
imum load on a bin when balls are assigned to bins by a k-wise independent hash function

instead.

1.2 Expected cost for hashing

Let’s return to the analysis of hashing, continuing with the (impractical) assumption that
the hash function h is completely random. What is the expected cost of performing any of
the operations INSERT, LOOKUP or DELETE 7 Suppose that the keys currently in the hash
table are kq,...,k,. Consider an operation involving key k;. The cost of the operation is
linear in the size of the hash bucket that k; maps to. Let X be the size of the hash bucket
that k; maps to. X is a random variable and

E[X] = ZPI ;) = h(z;)]
= 1—|—ZP1" x;) = h(x;)]

J#i
= 1+(n—-1)/n<2

Here the last step follows from the fact that Pr[h(x;) = h(z;)] = 1/n when h is random.
Thus the expected cost of any hashing operation is a constant.

1.3 A small random like family

Can we retain the expected cost guarantee of the previous section with a much simpler
(i.e. practical) family of hash functions? Let’s think about what property of random hash
functions we used in the analysis. It turns out that the only fact we used was that Pr[h(z;) =
h(z;)] = 1/n. Is it possible to construct simpler hash functions with this property?

Thinking along these lines, in 1978, Carter and Wegman introduced the notion of univer-
sal hashing: Consider a family F' of hash functions from U to [n]. We say that F is universal
if, for a h chosen randomly from F', Pr[h(x;) = h(z;)] < 1/n.

Clearly the analysis of the previous section shows that for any universal family, the con-
stant expected time guarantee applies. The family of all hash functions is clearly universal.
Is there a simpler one ?

It turns out that there is such a family. In order to construct it, we first introduce a clever
construction of a pairwise independent hash function. Recall that U denotes the universe
of keys (or elements) we want to map to locations in the table. Suppose that the elements
of the U are encoded as non-negative integers in the range {0,...|U| — 1}. Pick a prime
p > |U|. For a,b € {0,...p — 1}, consider the family of hash functions h,;(x) = ax + b
mod p. Note that these hash functions have domain and range {0,...p — 1}.

Consider a hash function h drawn uniformly and at random from this family. We claim
that, for any x1 # x2, h(x1) and h(xs) are independent. This seems like an amazing property!
This implies that for a set of distinct elements x1,...x,, the values h(zy),...h(x,) are
pairwise independent.

The proof of this claim is not hard. Consider the pair (h(z;), h(z;)). For any (yi,y2) we
will show that there is exactly one h in the family such that h(z;) = y; and h(zs) = yo.

ar1+b = y; modp
ars+b = y, modp

We can solve these equations to find a and b, similar to solving linear equations over the
reals. Subtracting the second equation from the first, we get that

a(ry —x3) =y1 —1y2 mod p

This determines a uniquely. Note that x; — x5 # 0 is required to ensure that there exists
a solution to the above equation. Now we can substitute this value of a in any of the two
equations to get the value of b. Convince yourself that the values of a, b thus obtained satisfy
both the original congruences modulo p.

Note that here are p? choices of a and b and consequently p? hash functions h in the
family. Also we argued that the pair (h(xy), h(z2)) ranges over all p? possible pairs of values
(y1,92). For any pair (y1,92), y1,92 € {0,...,p — 1}, Prh(z1) = y1,h(zs) = yo] = 1/p*.
Thus h(z1) and h(xs) are independent. Knowing the value of one reveals no information
about the other. Although note that knowing both of them allows us to compute a and b
and this determines h completely.

This is a useful family of pairwise independent hash functions to keep in mind and arises
in a number of different settings. We will use it to construct a universal hash family. First a
slight tweak of this family we just introduced: Notice that the choice of a = 0 gives a rather
uninteresting family of hash functions h, ;. For a = 0, h,;, maps all elements to b. Consider
instead the family of hash functions h,; defined before with the additional restriction a = 0.
There are p(p — 1) such hash functions in this new family. What can we say about the pair
(h(z1),h(zq)) as h ranges over all hash functions in the family ? Similar to the claim we
proved before, we can show that, for the new family, the pair (h(x;), h(x2)) ranges over all
p(p — 1) pairs (y1,y2) such that y; # yo. In the proof of the claim before, a = 0 only when

Y1 = Ya2.

We aren’t quite done yet, since the new family maps numbers in {0,...,p — 1} to
{0,...,p — 1}, but we want to map to one of n buckets. Our final hash family is the
following:

fap(z) = (az +b mod p)(mod n)

where a,b € {0,...,p—1},a # 0.

We claim that for any z; # x9, for f chosen randomly from this family, Pr[f(x;) =
f(z2)] < 1/n. In other words, this is a universal family of hash functions, and clearly much
simpler than the family of all hash functions !

We prove this here and you will think about a related problem in precept this week.

Theorem 1.1. Consider the family of hash functions h,p(x) = (az +b mod p)(mod n)
where a,b € {0,...p— 1} and a # 0. Consider a hash function h,p drawn uniformly and at
random from this family. For any x1,z9 € {0,...,p — 1}, 21 # 2, show that

Prhap(z1) = hap(z2)] < 1/n.

Proof. Let fop(x) = (ax + b mod p). We showed above that for any z,2s € {0,...,p —
1}, 1 # x4, as a, b range over all values in {0,...p — 1},a # 0, the pair (fus(z1), fap(z2))
ranges over all p(p — 1) pairs (y1,y2) such that yi,y2 € {0,...,p — 1}, 41 # vo.

Note that hqp(x) = fop(x) mod n. Thus the number of h,, for which A, p(21) = hep(x2)
is exactly the number of pairs (y1,¥2), y1,¥2 € {0,...,p — 1},y1 # yo such that y; = y
mod n. Let us count the number of such pairs as follows: There are p choices for y;.
For each choice of y;, there are [p/n] — 1 choices of ys such that y; = yo mod n. Now
[p/n] =1 <(p+n—-1)/n—1= (p—1)/n. Hence the number of pairs (yi,y>) such that
y1 = yo mod p is at most p(p — 1)/n. By the above discussion, the number of choices
of hep such that hgp(z1) = hep(z2) is at most p(p — 1)/n, which is a 1/n fraction of the
total number of choices of (y1,y2). Thus, for a randomly chosen h,y, the probability that
hap(z1) = hap(x2) is at most 1/n. O

Wrapping up the discussion on hashing, if we pick a random hash function from this
family, then the expected cost of any hashing operation is constant. Note that picking
a random hash function simply involves picking a,b — significantly simpler than picking a
completely random hash function.

