
Software methodology and snake oil
•  programming is hard

–  programs are very expensive to create
–  full of errors
–  hard to maintain

•  how can we design and program better?
•  a fruitful area for people selling "methodologies"

–  for at least 40 years
•  each methodology has the germ of a useful idea
•  each claims to solve major programming problems
•  some are promoted with religious fervor

•  in fact most don't seem to work well
•  or don't seem to apply to all programs
•  or can't be taught to others

•  a few are genuinely useful and should be in everyone's repertoire

Examples...
•  modularity, information hiding, coupling, cohesion
•  structured programming (programming without goto's)

–  top-down development, successive refinement
–  chief programmer teams, egoless programming
–  structured X: design, analysis, requirements, specification, walkthroughs...

•  CASE tools (Computer Aided Software Engineering)
–  UML (Unified Modeling Language), message sequence charts, state diagrams

•  formal methods
–  verification, validation, correctness proofs, model checking

•  object-oriented programming
–  CRC cards (Class, Responsibilities, and Collaborators)
–  object-oriented everything

design, analysis, requirements, specification, walkthroughs...
•  RAD (rapid application development)

–  components, COTS (Components off the Shelf)
–  4th generation languages, automatic programming, X by example, graphical programming

•  extreme programming, refactoring, agile methods, pair programming, ...
•  aspect oriented programming
•  design patterns

–  patterns of everything

Design patterns

•  "Design patterns ... describe simple and elegant solutions to
specific problems in object-oriented software design."
–  Design Patterns: Elements of Reusable Object-Oriented Software, by

Gamma, Helm, Johnson, Vlissides (the "Gang of Four"), 1995

•  "idioms for design" or program structure
–  successful among broad group of programmers
–  widely used to describe software structure

•  three basic categories:
–  creational: making things
–  structural: organizing things
–  behavioral: operating things

Bridge (or "handle/body") pattern
•  "Decouple an abstraction from its implementation so that the two can

vary independently"
•  C++ string class: separate handle from body

–  implementation can be changed without changing abstraction of "string"
class String {
 private:
 Srep *p;
 public:
 ...

};
class Srep {
 char *sp; // data
 int n; // ref count
 ...
};

•  similar examples:
–  FILE * in C stdio, RE * in regexpr interface, connection in MySQL interface

•  change of implementation has no effect on client
–  can even switch implementation at run time

•  (in C and C++) hides implementation completely
–  C: hidden behind opaque type; C++: implementation class is invisible

•  can share implementation among multiple objects without revealing the
sharing
–  e.g., reference counting, sharing of open files in FILE*

Adapter (or Wrapper) pattern

•  "Convert the interface of one class into another interface that
clients expect"

•  maps one interface into another
–  more or less at the same level

•  e.g., in the C stdio package:
 fread(buf, objsize, nobj, stream)
 fwrite(buf, objsize, nobj, stream)

 are wrappers around
 read(fd, buf, size)
 write(fd, buf, size)

Decorator pattern
•  "Attach additional responsibilities to an object dynamically"

•  decorator conforms to interface it decorates
–  transparent to clients
–  forwards some requests
–  usually does some actions of its own before or after

•  e.g., Java Swing JScrollPane class
JTextArea tpay = new JTextArea(15, 45);
JScrollPane jsp = new JScrollPane(tpay,
 JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,
 JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS);

Creational patterns

•  Abstract Factory: "Provide an interface for creating families of
related or dependent objects." (also Builder and Factory)
–  DOM and SAX builder factories

•  Singleton: "Ensure a class only has one instance"
–  Java System, Runtime, Math classes

•  Prototype: "Specify the kinds of objects to create using a
prototypical instance, and create new objects by copying this
prototype."
–  Javascript objects

Behavorial patterns

•  Observer: "Define a one-to-many dependency between objects
so that when one object changes state, all its dependents are
notified and updated automatically"

•  Java ActionListener mechanism:

button.addActionListener(this)
–  tells button to notify this container when event happens
–  usually called by container that contains object that will get the event
–  can have more than one listener

void actionPerformed(ActionEvent e) { … }
–  called when event occurs
–  determines type or instance that caused event
–  handles it

Behavorial patterns (2)
•  Iterator: "Provide a way to access the elements of an aggregate
object sequentially without exposing its underlying representation"
–  the basis of algorithms in C++ STL

 Map hs = new TreeMap();
 for (Iterator it : hs.keySet()) {
 String n = (String) it.next();
 Integer v = (Integer) hs.get(n);
 ...

•  Visitor: "Represent an operation to be performed on the elements
of an object structure"
–  almost any tree walk that does some evaluation at each node
–  draw() where one kind of "Shape" is an entire picture made of Shapes

•  Memento: "Without violating encapsulation, capture and
externalize an object's internal state so that the object can be
restored to this state later"
–  Java serialization, JSON, ...

Behavioral patterns (3)

•  Interpreter: "Given a language, define a representation for its
grammar along with an interpreter that uses the presentation to
interpret sentences in the language"

•  regular expression processors
•  eval(…) or execute(…) in many languages
•  printf format strings?

•  domain-specific / application-oriented languages
–  JSON, XML, HTML, CSS, etc.
–  Makefiles
–  find command
–  Shell, Awk, ...
–  AMPL, R, ...
–  TEX et al

Summary
•  design patterns:

–  a useful idea
–  a way to think about, organize, talk about programming
–  likely to still be around in 10 years

–  worth knowing the idea
–  worth recognizing some of the common ones
–  will help you to look alert in an interview

•  methodologies more broadly:
–  usually a germ of a good idea
–  enthusiasm, initial success in a small sample
–  leads to unwarranted generalization
–  thus oversold or hyped

–  healthy skepticism is warranted

