Where do we go from here?

e C++
- classes and objects, with all the moving parts visible
- operator overloading
- templates, STL, standards, ...

- Java

- components and collections
- language and performance comparisons

- CH#, .NET
- user interfaces
- component-based software
- viruses

- Go [???]
- concurrency

. 272

Program structure issues

- how to cope with ever bigger programs?
- objects

- user-defined data types
* components

- related objects
* frameworks

- automatic generation of routine code
- interfaces

- boundaries between code that provides a service and code that uses it
» information hiding

- what parts of an implementation are visible
* resource management

- creation and initialization of entities

- maintaining state

- ownership: sharing and copying

- memory management

- cleanup
- error handling; exceptions

Complicated data types in C

- representation is visible, can't be protected
- opaque types are sort of an exception
- creation and copying must be done very carefully
- and you don't get any help with them
* no initialization
- you have to remember to do it
* no help with deletion
- you have to recover the allocated memory when no longer in use
- weak argument checking between declaration and call
- easy to get inconsistencies
* the real problem: no abstraction mechanisms
- complicated data structures can be built,

but access to the representation can't be controlled
- you can't change your mind once the first implementation has been done

- abstraction and information hiding are
nice for small programs,absolutely necessary for big programs

C++

- designed & implemented by Bjarne Stroustrup
- began ~ 1980; C++98 standard in 1998; C++11 standard in Sept 2011
- a better C
- almost completely upwards compatible with C
- more checking of interfaces (e.g., function prototypes, added to ANST C)
- other features for easier programming
- data abstraction
- methods reveal only WHAT is done

- classes hide HOW something is done in a program, can be changed as
program evolves

- object-oriented programming
- inheritance -- define new types that inherit properties from previous types

- polymorphism or dynamic binding -- function to be called is determined by
data type of specific object at run time

- templates or "generic" programming

- compile-time parameterized types

- define families of related types, where the type is a parameter
- a "multi-paradigm" language

- lots of ways to write code

C++ classes

- data abstraction and protection mechanism derived from Simula 67
(Kristen Nygaard, Norway)

class Thing {
public:

methods -- functions for operations that can be done on this kind of object
private:

variables and functions that implement the operations
};

- defines a data type 'Thing'

- can declare variables and arrays of this type, create pointers to them, pass
them to functions, return them, etc.

- object: an instance of a class variable
- method: a function defined within the class
- private variables & functions not accessible from outside the class

- it is not possible to determine HOW the operations are
implemented, only WHAT they do.

C++ synopsis

data abstraction with classes

- aclass defines a type that can be used to
declare variables of that type, control access to representation

- operator and function name overloading

- all C operators (including =, +=..., (), [1, ->, argument passing and function
return but not . and ?:) can be overloaded to apply to user-defined types

- control of creation and destruction of objects
- initialization of class objects, recovery of resources on destruction
- inheritance: derived classes built on base classes
- virtual functions override base functions
- multiple inheritance: inherit from more than one class
- exception handling
* namespaces for separate libraries
- templates (generic types)
- Standard Template Library: generic algorithms on generic containers
- template metaprogramming: execution of C++ code during compilation
- compatible (almost) with C except for new keywords

Topics

- basics
* memory management, new/delete
- operator overloading

- references

- controlled behind-the-scenes pointers
- constructors, destructors, assignment

- control of creation, copying and deletion of objects
- inheritance

- class hierarchies

- dynamic types (polymorphism)
- templates

- compile-time parameterized types
- Standard Template Library

- container classes, generic algorithms, iterators, function objects
+ C++11 standard

performance

Stack class in C++

// stkl.c: simple-minded stack class
class stack {
private: // default visibility
int stk[100];
int *sp;
public:
int push(int);
int pop();
stack () ; // constructor decl

};

int stack::push(int n) {
return *sp++ = n;
}
int stack::pop() {
return *--sp;

}

stack::stack() { // constructor implementation

sp = stk;
}
stack sl, s2; // calls constructors
sl.push (1) ; // method calls

s2.push(sl.pop());

Inline definitions

* member function body can be written inside the class
definition
* this normally causes it to be implemented inline
- no function call overhead

// stk2.c: inline member functions

class stack {
int stk[100];

int *sp;

public:
int push (int n) { return *sp++ = n; }
int pop() { return *--sp; }

stack () { sp = stk; }
};

Memory allocation: new and delete

* new is a type-safe alternative to malloc
- delete is the matching alternative to free
* new T allocates an object of type T, returns pointer to it
stack *sp = new stack;
- new T[n] allocates array of T's, returns pointer to first
int *stk = new int[100];
- by default, throws exception if ho memory
- delete p frees the single item pointed to by p
delete sp;
- delete [] p frees the array beginning at p
delete [] stk;
- new uses T's constructor for objects of type T
- need a default constructor for array allocation
- delete uses T's destructor ~T ()
* use new/delete instead of malloc/free

- malloc/free provide raw memory but no semantics
- this is inadequate for objects with state
- never mix new/delete and malloc/free

Dynamic stack with new, delete

// stk3.c: new, destructors, delete

class stack {

private:

int *stk; // allocated dynamically

int *sp; // next free place
public:

int push (int) ;

int pop () ;

stack () ; // constructor

stack (int n); // constructor

~stack () ; // destructor

stack::stack() {
stk = new int[100]; sp = stk;

stack: :stack(int n) {
stk = new int[n]; sp = stk;

stack: :~stack () {
delete [] stk;

Constructors and destructors

* constructor:
creating a new object (including initialization)
- implicitly, by entering the scope where it is declared
- explicitly, by calling new

- destructor:
destroying an existing object (including cleanup)
- implicitly, by leaving the scope where it is declared
- explicitly, by calling delete on an object created by new

- construction includes initialization, so it may be parameterized
- by multiple constructor functions with different args
- an example of function overloading

- new can be used to create an array of objects
- in which case delete can delete the entire array

Implicit and explicit allocation and deallocation

- implicit:

£() {
int 1i;

stack s; // calls constructor stack::stack ()

// calls s.~stack() implicitly
}

- explicit:
£0) {

int *ip = new int;
stack *sp = new stack; // calls stack::stack()

delete sp; // calls sp->~stack()
delete ip;

Constructors: overloaded functions

- two or more functions can have the same name if the number and/
or types of arguments are different

abs (int) ; abs (double) ; abs (complex)
atan (double x); atan (double y, double x);

int abs(int x) { return x >= 0 ? x : -x; }

double abs (double x) { return x > 0 ? x : -x; }

- multiple constructors for a class are a common instance

stack::stack(),

stack: :stack (int stacksize) ;

stack s; // default stack: :stack ()
stack sl (); // same
stack s2(100) ; // stack::stack(100)

stack s3 = 100; // also stack::stack(100)

Overloaded functions; default args

- default arguments: syntactic sugar for a single function
stack: :stack(int n = 100);
* declaration can be repeated if the same

- explicit size in call
stack s (500);

- omitted size uses default value
stack s;

- overloaded functions: different functions, distinguished by
argument types

- these are two different functions:
stack: :stack (int n);
stack: :stack() ;

Operator overloading

- almost all C operators can be overloaded

- a hew meaning can be defined when one operand of an operator is a user-
defined (class) type

define operator + for object of type T
T T::operator+(int n) {...}
T T::operator+(double d) {...}

define regular + for object(s) of type T
T operator +(T £, int n) {...}

- can't redefine operators for built-in types
int operator +(int, int) isILLEGAL

- can't define new operators
- can't change precedence and associativity
e.g., " is low precedence even if used for exponentiation
* 3 short examples
- complex numbers: overloading arithmetic operators
- IO streams: overloading << and >> for input and output
- subscripting: overloading []

- later: overloading assignment and function calls

Complex numbers

a complex number is a pair of doubles: (real part, imaginary part)
supports arithmetic operations like +, -
an arithmetic type for which operator overloading makes sense

- complex added as explicit type in 1999 C standard

- in C++, can create it as needed
use extension mechanism instead of extending language

also illustrates...

- friend declaration
- mechanism for controlled exposure of representation
- classes can share representation
- default constructors
- use of default arguments to simplify declarations
- implicit coercions
- generalization of C promotion rules, based on constructors

An implementation of complex class

class complex ({
double re, im;
public:
complex (double r
{ re = r; im

0, double i = 0)
i; } // constructor

friend complex operator + (complex,complex) ;
friend complex operator * (complex,complex) ;

};

complex operator +(complex cl, complex c2) ({
return complex(cl.re+c2.re, cl.im+c2.im);

}

- complex declarations and expressions
complex a(l1.1, 2.2), b(3.3), c(4), d4d;

d=2 * a;
2 coerced to 2.0 (C promotion rule)
then constructor invoked to make complex(2.0, 0.0)

- operator overloading works well for arithmetic types

References: controlled pointers

* need a way to access object, not a copy of it
* in C, use pointers

void swap(int *x, int *y) ({

int temp;

temp = *x; *x = *y,; *y = temp;
}
swap (&a, &b);

- in C++, references attach a name to an object

- a way to get "call by reference" (var) parameters without using
explicit pointers

void swap(int &x, int &y) {
int temp;
temp = x; x = y; y = temp;
}

swap(a, b); // pointers are implicit

- because it's really a pointer, a reference provides a way to
access an object without copying it

A vector class: overloading []

class ivec { // vector of ints

int *v; // pointer to an array
int size; // number of elements
public:

ivec(int n) { v = new int[size = n]; }

int& operator [] (int n) { // checked
assert(n > 0 && n < size);
return v[n];

ivec iv(10) ; // declaration
iv[1l0] = 1; // checked access on left side of =

- operator[] returns a reference
- a reference gives access to the object so it can be changed
* necessary so we can use [] on left side of assignment

Tostreams: overloading >»> and <«

- I/0 of user-defined types without
function-call syntax

- C printf and scanf can be used in C++
- no type checking

- no mechanism for I/O of user-defined types

- Java System.out. printf(arglist)
- does some type checking
- basically just calls toString method for each item

* Tostream library
- overloads <« for output, >> for input
- permits I/O of sequence of expressions

- natural integration of I/O for user-defined types
same syntax and semantics as for built-in types

- type safety for built-in and user-defined types

Output with iostreams

- overload operator << for output
- very low precedence
- left-associative, so
cout << el << e2 K< e3
- is parsed as
(((cout << el) <K<K e2) <KL e3)

#include <iostream>
ostreamé& operator<<(ostream& os, const complexé& c) {

os << "(" <K c.real() <K ", " KK c.imag() << ")";
return os;

}

takes a reference to iostream and data item
returns the reference so can use same iostream for next expression
each item is converted into the proper type

iostreams cin, cout, cerr already open
- corresponding to stdin, stdout, stderr

Input with iostreams

- overload operator >> for input
- very low precedence
- left-associative, so
cin >> el >> e2 >> e3
- is parsed as
(((cin >> el) >> e2) >> e3)

char name[100];
double val;

while (cin >> name >> val) {
cout << name <K " ="
<< wval << "\n";

- takes a reference to iostream and reference to data item
- returns the reference so can use same iostream for next expression
- each item is converted into the proper type

cin >> name calls istream& operator >>(istreamé&, char¥*)

Formatter in C++

#include <iostream>
#include <string>
using namespace std;

const int maxlen = 60;
string line;

void addword(const stringé&) ;
void printline() ;

main (int argc, char **argv) {
string word;
while (cin >> word)
addword (word) ;
printline() ;
}
void addword(const stringé& w) {
if (line.length() + w.length() > maxlen)
printline() ;
if (line.length() > 0)
line += " ";
line += w;
}
void printline () {
if (line.length() > 0) {
cout << line << endl;
line = "";

Summary of references

- reference is in effect a very constrained pointer
- points to a specific object
- can't be changed, though whatever it points to can certainly be changed
- provides control of pointer operations for applications where
addresses must be passed for access to an object
- e.g., a function that will change something in the caller
- like swap(x, y)
- provides notational convenience
- compiler takes care of all * and & properly
- permits some non-intuitive operations like the overloading of []
- int &operator[] permits use of [] on left side of assignment
— v[e] means v.operator[...] (e)

