
Web [Application] Frameworks 
•  conventional approach to building a web service 

–  write ad hoc client code in HTML, CSS, Javascript, ... by hand 
–  write ad hoc server code in [whatever] by hand 
–  write ad hoc access to [whatever] database system 

•  so well understood that it's almost mechanical 
•  web frameworks mechanize (parts of) this process 
•  lots of tradeoffs and choices 

–  what client and server language(s) 
–  how web pages are generated 
–  how web events are linked to server actions 
–  how database access is organized (if at all) 

•  can be a big win, but not always 
–  some are heavyweight 
–  easy to lose track of what's going on in multiple layers of generated software 
–  work well if your application fits their model, less well if it doesn't 

•  examples: 
–  Ruby on Rails 
–  Django, Flask 
–  Google Web Toolkit 
–  Express / Node.js, Zend (PHP), ASP.NET (C#, VB.NET), and many others 



Overview of frameworks 
•  client-server relationship is stereotypical 

–  client sends requests using information from forms 
–  server parses request, dispatches proper function, which retrieves from 

database, formats response, returns it 

•  URL names encode requests 
     …/login/name 
     …/add/data_to_be_added 
     …/delete/id_to_delete 

•  server uses URL pattern to call proper function with right args 

•  server usually provides structured & safer access to database 

•  server may provide templating language for generating HTML 
–  e.g., replace {% foo %} with value of variable foo, etc. 

•  framework may automatically generate an admin interface 



Minimal Python server 

import SocketServer!
import SimpleHTTPServer!

class Reply(SimpleHTTPServer.SimpleHTTPRequestHandler):!
  def do_GET(self):!
    # query arrives in self.path; return anything, e.g.,!
    self.wfile.write("query was %s\n" % self.path)!

def main():!
  # read and eval reg.json!
  SocketServer.ForkingTCPServer('', 8080),  !
                           Reply).serve_forever()!

main()!



Flask:  microframework for Python 
•  simplest example? 
    import flask!
    app = flask.Flask(__name__)!
    @app.route('/')!
    def hello_world():!
        return 'Hello’!
    app.run()!

$ python hello0.py!



Sending form data 

<form name=top id=top METHOD=POST ACTION=http://localhost:5000>!
<p> Name: <input type="text" name=Name id=Name >!
<p> Netid: <input type="text" name=Netid id=Netid >!
<p> Class: !
<input type="radio" name=Class value="2013"> '13!
<input type="radio" name=Class value="2014"> '14 ...!
<p> Courses:!
<input type="checkbox" name=C126> 126!
<input type="checkbox" name=C217> 217 ...!
</ul>!
<p> <input type="submit" value="Submit"> <input type=reset>!



Processing form data 

   from flask import Flask, request!
   app = Flask(__name__)!
   @app.route('/', methods=['POST','GET'])!
   def hello_world():!
       s = ""!
       for (k,v) in request.form.iteritems():!
           s = "%s %s=%s<br>" % (s, k, v)!
       return 'Hello<br>' + s!
   app.run()!



Python @ decorators 
•  a way to insert or modify code in functions and classes 
     @decorate!
     function foo(): …!
•  compilation compiles foo, passes the object to decorate, which 

does something and replaces foo by the result 
•  used in Flask to manage URL routing 

@app.route('/add', methods=['POST'])!
def add_entry():!
   blog.insert({"title": request.form['title'],!
                "text": request.form['text']})!
   return redirect(url_for('show_entries'))!

@app.route('/login', methods=['GET', 'POST']) ...!
@app.route('/clear', methods=['GET', 'POST']) ...!
@app.route('/logout') ...!



Django  
•  by Adrian Holovaty and Jacob Kaplan-Moss (released July 2005) 

•  a collection of Python scripts to 

•  create a new project / site 
–  generates Python scripts for settings, etc. 
–  configuration info stored as Python lists 

•  creat a new application within a project 
–  generates scaffolding/framework for models, views 

•  run a development web server for local testing 

•  generate a database or build interface to an existing database 
•  provide a command-line interface to application 
•  create an administrative interface for the database 
•  ... 

Django Reinhart, 1910-1953 



Conventional approach to building a web site 
•  user interface, logic, database access are all mixed together 

import MySQLdb 
print "Content-Type: text/html" 
print 
print "<html><head><title>Books</title></head>" 
print "<body>" 
print "<h1>Books</h1>" 
print "<ul>" 
connection = MySQLdb.connect(user='me', passwd='x', db='my_db') 
cursor = connection.cursor() 
cursor.execute("SELECT name FROM books ORDER BY pub_date DESC") 
for row in cursor.fetchall(): 
    print "<li>%s</li>" % row[0] 
print "</ul>" 
print "</body></html>" 
connection.close() 



Model-View-Controller (MVC) pattern 
•  an example of a design pattern 
•  model: the structure of the data 

–  how data is defined and accessed 
•  view: the user interface 

–  what it looks like on the screen 
–  can have multiple views for one model 

•  controller: how information is moved around 
–  processing events, gathering and processing data,  
    generating HTML, ... 

•  separate model from view from processing so that when one 
changes, the others need not 

•  used with varying fidelity in 
–  Django, App Engine, Ruby on Rails, XCode Interface Builder, ... 

•  not always clear where to draw the lines 
–  but trying to separate concerns is good 



Django web framework 

•  write client code in HTML, CSS, Javascript, ... 
–  Django template language helps  
        separate form from content 

•  write server code in Python 
–  some of this is generated for you 

•  write database access with Python library calls  
–  they are translated to SQL database commands 

•  URLs on web page map mechanically to Python function calls 
–  regular expressions specify classes of URLs 
–  URL received by server is matched against regular expressions 
–  if a match is found, that identifies function to be called  
        and arguments to be provided to the function 

djangobook.com 



Django automatically-generated files 

•  generate framework/skeleton of code by program 

•  three basic files: 

      models.py:  database tables, etc. 

      views.py:  business logic, formatting of output 

      urls.py:  linkage between web requests and view functions 

•  plus others for special purposes: 

      settings.py:  db type, names of modules, ... 

      tests.py:  test files 

      admin.py:  admin info 

      templates:  for generating and filling HTML info 



Example database linkage 
DATABASES = {!
   'default': {!
       'ENGINE': 'django.db.backends.sqlite3', !
       'NAME': '/Users/bwk/django/sql3.db', ...                     !

from django.db import models!
class Post(models.Model):!
   title = models.TextField(5)!
   text = models.TextField()!

BEGIN;!
CREATE TABLE "blog_post" (!
    "id" integer NOT NULL PRIMARY KEY,!
    "title" text NOT NULL,!
    "text" text NOT NULL!
)!
;!

in settings.py 

in models.py 

generated by Django 



URL patterns 
•  regular expressions used to recognize parameters and pass them 

to Python functions 
•  provides linkage between web page and what functions are called 

for semantic actions 

    urlpatterns = patterns('', 
      (r'^time/$', current_datetime), 
      (r'^time/plus/(\d{1,2})/$', hours_ahead), 
    ) 

•  a reference to web page …/time/ calls the function 
       current_datetime() 
•  tagged regular expressions for parameters: url …/time/plus/12 
   calls the function 
       hours_ahead(12) 



Templates for generating HTML 

•  try to separate page design from code that generates it 
•  Django has a specialized language for including HTML within code 

–  loosely analogous to PHP mechanism 

    # latest_posts.html (the template) 

    <html><head><title>Latest Posts</title></head> 
    <body> 
    <h1>Posts</h1> 
    <ul> 
    {% for post in post_list %} 
        <li>{{ post.title }} {{ post.text }}</li> 
    {% endfor %} 
    </ul> 
    </body></html> 



Administrative interface  
•  most systems need a way to modify the database even if initially 

created from bulk data 
–  add / remove users, set passwords, ... 
–  add / remove records 
–  fix contents of records 
–  ... 

•  often requires special code 

•  Django generates an administrative interface automatically 
–  loosely equivalent to MyPhpAdmin 

    urlpatterns = patterns('', 
      ... 
      # Uncomment this for admin: 
      # (r'^admin/', include('django.contrib.admin.urls')), 



Google App Engine  (since 4/08) 

•  web application development framework 
–  analogous to Django 
–  template mechanism looks the same 
–  YAML for configuration 

•  supports Python, Java, Go, PHP on server side 
–  and other languages that use the Java Virtual Machine? 

•  Google provides the server 
•  restrictions on what server-side code can do 

–  non-relational database based on BigTable 
–  or a pseudo-relational database called GQL 
–  only static files can be stored on the server, read only access 
–  no sockets, threads, C-based modules, system calls, … 



Node.js server 
var http = require('http');!
http.createServer(function (req, res) {!
  res.writeHead(200, {'Content-Type': 'text/plain'});!
  res.end('Hello World\n');!
}).listen(1337, '127.0.0.1');!

•  Express framework 



Google Web Toolkit (GWT)  (first available May 2006) 

•  write client (browser) code in Java 
–  widgets, events, layout loosely similar to Swing 

•  test client code on server side  
–  test browser, or plugin for testing with real browser on local system 

•  compile Java to Javascript and HTML/CSS  
–  [once it works] 

•  use generated code as part of a web page  
–  generated code is browser independent (diff versions for diff browsers) 

•  can use development environments like Eclipse 
–  can use JUnit for testing 

•  strong type checking on source 
–  detect typos, etc., at compile time (unlike Javascript) 

•  may not handle all Java runtime libraries 
•  no explicit support for database access on server  

–  use whatever package is available 



GWT strategy 
•  problem: Javascript is irregular, unsafe, not portable, easily 

abused 

•  solution: use Java, which is type-safe, standard, portable 
•    
•  translate Java to Javascript to either be browser independent 
        or tailored to specific browser as appropriate 
•  can take advantage of browser quirks, make compact code,  
        discourage reverse engineering 
•  can provide standardized mechanisms for widgets, events,  
        DOM access, server access, AJAX, RE's and other libraries, 
         ... 

•  in effect, treat each browser as a somewhat irregular machine 
and compile optimized code for it specifically 



GWT vs Django vs Flask 
•  focusing on different parts of the overall problem 

•  GWT provides  
–  reliable, efficient, browser-independent Javascript (from Java) 
–  extensive widget set 
–  no help with database access, generating HTML, … 

•  Django provides 
–  no Javascript help 
–  no widgets 
–  easy database access; template language for generating HTML, … 
–  easy linkage from URLs on web page to Python functions 

•  Flask provides 
–  like Django but no structure, much lighter weight 



Assessment of Web Frameworks 
•  advantages 

–  takes care of repetitive parts 
more efficient in programmer time 

–  automatically generated code is likely to be more reliable, have more 
uniformity of structure 

–  "DRY" (don't repeat yourself) is encouraged 
–  "single point of truth" 

information is in only one place so it's easier to change things 
–  ... 

•  potential negatives 
–  automatically generated code  

can be hard to figure out what's going on 
can be hard to change if you don't want to do it their way 

–  systems are large and can be slow 
–  ... 

•  read Joel Spolsky's "Why I hate frameworks" 
    http://discuss.joelonsoftware.com/default.asp?joel.3.219431.12 



Package managers 
•  Pip   Python  (pypi.python.org/pypi/pip) 
       pip install Django!

•  apt-get  Ubuntu Linux 
       apt-get install whatever!

•  npm  Node.js 
       npm install node!

•  port  Macports 
       port install ruby!

•  gem  Ruby 

•  ... 



Assessment of Ajax-based systems 
•  potential advantages 

–  can be much more responsive (cf Google maps) 
–  can off-load work from server to client 
–  code on server is not exposed 
–  continuous update of services 

•  potential negatives 
–  browsers are not standardized 
–  Javascript code is exposed to client 
–  Javascript code can be bulky and slow 
–  asynchronous code can be tricky 
–  DOM is very awkward 
–  browser history not maintained without effort 

•  what next?  (changing fast) 
–  more and better libraries  
–  better tools and languages for programming 
–  better standardization? 
–  will the browser ever replace the OS? 


