
COS 333: Advanced Programming Techniques
•  how to find me

–  bwk@cs.princeton.edu
–  311 Computer Science, 609-258-2089

•  TA's:
–  Christopher Moretti (moretti), Taewook Oh (twoh), Xin Jin (xinjin),
 Raghav Sethi (raghavs), Deep Ghosh (soumyade)

•  today
–  course overview
–  project info
–  administrative stuff
–  regular expressions and grep

•  check out the course web page (CS, not Blackboard!) and Piazza
–  notes, readings and assignments posted (only) on the web page

monitor the web page and Piazza every day
–  Assignment 1 is posted; due midnight Feb 14
–  initial project information is posted

•  do the survey if you haven't already

Themes
•  languages and tools

–  mainstream: C, C++, Java, C#, (Objective-C? Go?), ...
–  scripting: Awk, (Perl?), Python, (PHP?), Javascript, ...
–  programmable tools, application-specific languages
–  frameworks, toolkits, development environments, interface builders
–  databases (MySQL, SQLite, MongoDB, …)
–  networks and plumbing
–  source code control (Git, SVN)

•  programming
–  design, prototyping, reuse, components, interfaces, patterns
–  debugging, testing, performance, mechanization
–  portability, standards, style
–  tricks of the trade

•  reality
–  tradeoffs, compromises, engineering

•  history and culture of programming
•  guests

Topics

Business logic:
 Java, Python,
 PHP, Ruby, JS,
 C++, Objective-C,
 Perl, Go, …

Toolkits:
 jQuery, Dojo,
 YUI, …

Web frameworks:
 GWT, Django,
 Flask, Zend, Rails,
 Cocoa, …

Server:
 own machine,
 CS, OIT,
 AWS, Heroku,
 Appengine,
 own domain, …

GUI tools: Swing,
TkInter, jQueryUI,
 Bootstrap …

Devel Environ:
 shell++,
 Eclipse,
 Xcode, …

Repository:
 SVN
 Git, Github,
 Mercurial,
 Bazaar, …

Database:
 MySQL, SQLite,
 Postgres,
 MongoDB, Redis,
 …

Plumbing:
 TCP/IP,
 authentication, …

Wire format:
 XML, JSON,
 REST, SOAP, …

Web client:
 HTML, CSS
 Javascript
 Flash, …

Standalone app

Very Tentative Outline

week 1 regular expressions, grep; project info
week 2 scripting: AWK, Python
week 3 web: HTTP, CGI; Javascript
week 4 DOM, Ajax; frameworks
week 5 databases; networks
week 6 SVN/Git; graphical user interfaces

(spring break)

week 7 C++, Standard Template Library
week 8 Java, collections
week 9 C#, components: COM, .NET
week 10 APIs, DSLs, XML, JSON, REST
week 11 Go? Objective-C?
week 12 ?

May 6-9 demo days: project presentations
May 13 Dean’s date: project submission

Some Mechanics
•  prerequisites

–  C, Unix (COS 217); Java (COS 126, 226)
•  5 programming assignments in first half

–  posted on course web page Tuesday, due Friday evening 10 days later
–  deadlines matter

•  project in second half (starts earlier!)
–  groups of 3-5; start identifying potential teammates now
–  start thinking about possibilities right now
–  deadlines matter

•  monitor the web page
–  readings for most weeks
–  notes generally posted ahead of time
–  use Piazza for discussion, finding partners, ...

•  class attendance and participation <=> no midterm or final
–  sporadic unannounced short quizzes are possible

Regular expressions and grep
•  regular expressions

–  notation
–  mechanization
–  pervasive in Unix tools
–  in all scripting languages, often as part of the syntax
–  in general-purpose languages, as libraries
–  basic implementation is remarkably simple
–  efficient implementation requires good theory and good practice

•  grep is the prototypical tool
–  people used to write programs for searching
 (or did it by hand)
–  tools became important
–  tools are not as much in fashion today

Grep regular expressions
c any character matches itself, except for

 metacharacters . [] ^ $ * \
r1r2 matches r1 followed by r2
. matches any single character
[...] matches one of the characters in set ...

 shorthand like a-z or 0-9 includes any character in the range
[^...] matches one of the characters not in set

 [^0-9] matches non-digit
^ matches beginning of line when ^ begins pattern

 no special meaning elsewhere in pattern
$ matches end of line when $ ends pattern

 no special meaning elsewhere in pattern
* any regular expression followed by * matches 0 or more
\c matches c unless c is () or digit
\(...\) tagged regular expression that matches ...

 the matched strings are available as \1, \2, etc.

Examples of matching
thing thing anywhere in string
^thing thing at beginning of string
thing$ thing at end of string
^thing$ string that contains only thing
^ matches any string, even empty
^$ empty string

. non-empty, i.e., at least 1 char
thing.$ thing plus any char at end of string
thing\.$ thing. at end of string
\\thing\\ \thing\ anywhere in string
[tT]hing thing or Thing anywhere in string
thing[0-9] thing followed by one digit
thing[^0-9] thing followed by a non-digit
thing[0-9][^0-9] thing followed by digit, then non-digit
thing1.*thing2 thing1 then any text then thing2
^thing1.*thing2$ thing1 at beginning and thing2 at end

egrep: fancier regular expressions
 r+ one or more occurrences of r
 r? zero or one occurrences of r
 r1|r2 r1 or r2
 (r) r (grouping)
grammar:

r: c . ^ $ [ccc] [^ccc]
 r* r+ r?
 r1 r2
 r1|r2
 (r)

precedence:
* + ? higher than concatenation, which is higher than |

 ([0-9]+\.?[0-9]*|\.[0-9]+)([Ee][-+]?[0-9]+)?

The grep family
•  grep
•  egrep

–  fancier regular expressions, trades compile time and space for run time
•  fgrep

–  parallel search for many fixed strings
•  agrep

–  "approximate" grep: search with errors permitted
•  relatives that use similar regular expressions

–  ed original Unix editor
–  sed stream editor
–  vi, emacs, sam, ... editors
–  lex lexical analyzer generator
–  awk, perl, python, … all scripting languages
–  Java, C# ... libraries in mainstream languages

•  simpler variants
–  filename "wild cards" in Unix and other shells
–  "LIKE" operator in SQL, Visual Basic, etc.

Basic grep algorithm
 while (get a line)

 if match(regexpr, line)
 print line

•  (perhaps) compile regexpr into an internal representation suitable
for efficient matching

•  match() slides the line past the regexpr (or vice versa),
 looking for a match at each point

regexpr
line

regexpr
line

Match anywhere on a line
•  look for match at each position of text in turn

/* match: search for regexp anywhere in text */
int match(char *regexp, char *text)
{
 if (regexp[0] == '^')
 return matchhere(regexp+1, text);
 do { /* must look even if string is empty */
 if (matchhere(regexp, text))
 return 1;
 } while (*text++ != '\0');
 return 0;
}

Match starting at current position

/* matchhere: search for regexp at beginning of text */
int matchhere(char *regexp, char *text)
{
 if (regexp[0] == '\0')
 return 1;
 if (regexp[1] == '*')
 return matchstar(regexp[0], regexp+2, text);
 if (regexp[0] == '$' && regexp[1] == '\0')
 return *text == '\0';
 if (*text!='\0' && (regexp[0]=='.' || regexp[0]==*text))
 return matchhere(regexp+1, text+1);
 return 0;
}

•  follow the easy case first: no metacharacters
•  note that this is recursive

–  maximum depth: one level for each regexpr character that matches

Simple grep algorithm
•  best for short simple patterns

–  e.g., grep printf *.[ch]!
–  most use is like this
–  reflects use in text editor for a small machine

•  limitations
–  tries the pattern at each possible starting point

e.g., look for aaaaab in aaaa….aaaab
potentially O(mn) for pattern of length m

–  complicated patterns (.* .* .*) require backup
 potentially exponential

–  can't do some things, like alternation (OR)

•  this leads to extensions and new algorithms
–  egrep complicated patterns, alternation
–  fgrep lots of simple patterns in parallel
–  boyer-moore long simple patterns
–  agrep approximate matches

Important ideas from regexprs & grep
•  tools: let the machine do the work

–  good packaging matters
•  notation: makes it easy to say what to do

–  may organize or define implementation
•  hacking can make a program faster, sometimes, usually at the

price of more complexity

•  a better algorithm can make a program go a lot faster

•  don't worry about performance if it doesn't matter (and it often
doesn't)

•  when it does,
–  use the right algorithm
–  use the compiler's optimization
–  code tune, as a last resort

