COS 333: Advanced Programming Techniques

how to find me

- bwk®@cs.princeton.edu

- 311 Computer Science, 609-258-2089

TA's:

- Christopher Moretti (moretti), Taewook Oh (twoh), Xin Jin (xinjin),
Raghav Sethi (raghavs), Deep Ghosh (soumyade)

today

- course overview

- project info

- administrative stuff

- regular expressions and grep

check out the course web page (€S, not Blackboard!) and Piazza

- notes, readings and assignments posted (only) on the web page
monitor the web page and Piazza every day

- Assignment 1 is posted; due midnight Feb 14
- initial project information is posted
do the survey if you haven't already

Themes

languages and tools
- mainstream: C, C++, Java, C#, (Objective-C? G0?), ...
- scripting: Awk, (Perl?), Python, (PHP?), Javascript, ...
- programmable tools, application-specific languages
- frameworks, toolkits, development environments, interface builders
- databases (MySQL, SQLite, MongoDB, ...)
- networks and plumbing
- source code control (Git, SVN)
programming
- design, prototyping, reuse, components, interfaces, patterns
- debugging, testing, performance, mechanization
- portability, standards, style
- tricks of the trade
reality
- tradeoffs, compromises, engineering
history and culture of programming
guests

Topics

Standalone app

Wire format:
XML, JSON,

Web client:
HTML, CSS
Javascript
Flash, ...

D

REST, SOAP, ...

Plumbing:
TCPI/IP,

Business logic:
Java, Python,
PHP, Ruby, JS,
C++, Objective-C,
Perl, Go, ...

authentication, ...

Server:
own machine, \
CS, OIT,
AWS, Heroku, Database:
Appengine, MySQL, SQLite,
own domain, ... Postgres,

Toolkits:
jQuery, Dojo,
YU, ...

Web frameworks:
GWT, Django,
Flask, Zend, Rails,
Cocoa, ...

GUI tools: Swing,
Tkinter, jQueryUl,
Bootstrap ...

Devel Environ:
shell++,
Eclipse,
Xcode, ...

MongoDB, Redis,

Repository:
SVN
Git, Github,
Mercurial,
Bazaar, ...

Very Tentative Outline

week 1
week 2
week 3
week 4
week 5
week 6

(spring break)

week 7
week 8
week 9
week 10
week 11
week 12

May 6-9
May 13

regular expressions, grep. project info
scripting: AWK, Python

web: HTTP, CGI; Javascript

DOM, Ajax; frameworks

databases: networks

SVN/Git; graphical user interfaces

C++, Standard Template Library
Java, collections

C#, components: COM, .NET
APIs, DSLs, XML, JSON, REST
Go? Objective-C?

?

demo days: project presentations
Dean’s date: project submission

Some Mechanics

prerequisites
- C, Unix (COS 217); Java (COS 126, 226)
5 programming assignments in first half
- posted on course web page Tuesday, due Friday evening 10 days later
- deadlines matter
project in second half (starts earlier!l)
- groups of 3-5; start identifying potential feammates now
- start thinking about possibilities right now
- deadlines matter
monitor the web page
- readings for most weeks
- notes generally posted ahead of time
- use Piazza for discussion, finding partners, ...
class attendance and participation <=> no midterm or final
- sporadic unannounced short quizzes are possible

Regular expressions and grep

regular expressions
- notation
- mechanization
- pervasive in Unix tools
- inall scripting languages, often as part of the syntax
- in general-purpose languages, as libraries
- basic implementation is remarkably simple
- efficient implementation requires good theory and good practice

grep is the prototypical tool
- people used to write programs for searching
(or did it by hand)
- tools became important
- tools are not as much in fashion today

Grep regular expressions

C

any character matches itself, except for
metacharacters . [] ~ $§ * \

r.r, matches r; followed by r,

[.

[~..

\c
\ (

matches any single character

. .1 matches one of the characters in set ...
shorthand like a-z or 0-9 includes any character in the range

.1 matches one of the characters not in set
["0-9] matches non-digit
matches beginning of line when ~ begins pattern
no special meaning elsewhere in pattern

matches end of line when $ ends pattern
no special meaning elsewhere in pattern

any regular expression followed by * matches O or more
matches c unless c is () or digit

.. .\) tagged regular expression that matches ...
the matched strings are available as \1, \2, etc.

Examples of matching

thing
“thing
thing$
~“thing$

A

~$

thing.$

thing\.$
\\thing\\
[tT]hing
thing[0-9]
thing[*0-9]
thing[0-9] [*0-9]
thingl. *thing2
“thingl.*thing2$

thing anywhere in string

thing at beginning of string
thing at end of string

string that contains only thing
matches any string, even empty
empty string

non-empty, i.e., at least 1 char
thing plus any char at end of string
thing. at end of string

\thing\ anywhere in string

thing or Thing anywhere in string
thing followed by one digit

thing followed by a non-digit

thing followed by digit, then non-digit
thingl then any text then thing2
thingl at beginning and thing2 at end

egrep:. fancier regular expressions
g g9

r+ one or more occurrences of r
r? Zero or one occurrences of r
r.lr, r, or r,
(r) r(grouping)
grammar:
rr c¢c . ° $ [ccc]l [Tecec]
r* r+ r?
ryr,
r.lr,
(r)
precedence:

* 4+ 2 higher than concatenation, which is higher than |

([0-9]1+\.?[0-9]1*|\.[0-9]+) ([Ee] [-+]1?[0-9]+)7

The grep family

" ogrep
* egrep
- fancier reqgular expressions, trades compile time and space for run time
- fgrep
- parallel search for many fixed strings
* agrep

- "approximate" grep: search with errors permitted
- relatives that use similar regular expressions

- ed original Unix editor

- sed stream editor

- vi,emacs, sam, ... editors

- lex lexical analyzer generator

- awk, perl, python, ... all scripting languages

- Java, C# ... libraries in mainstream languages
- simpler variants

- filename "wild cards" in Unix and other shells

- "LIKE" operator in SQL, Visual Basic, etc.

Basic grep algorithm

while (get a line)
if match(regexpr, line)
print line

(perhaps) compile regexpr into an internal representation suitable
for efficient matching

match() slides the line past the regexpr (or vice versa),
looking for a match at each point

regexpr
line 1 1 I [1 1 1 1 1 1 | |

regexpr
line 1 I 1 1 I I 1 1 1 1 |

Match anywhere on a line

* look for match at each position of text in turn

/* match: search for regexp anywhere in text */
int match (char *regexp, char *text)

{

'A')

if (regexp[0] ==
return matchhere (regexp+l, text)

do { /* must look even if string is empty */
if (matchhere (regexp, text))
return 1;
} while (*text++ !'= '\0');
return 0;

Match starting at current position

/* matchhere: search for regexp at beginning of text */
int matchhere (char *regexp, char *text)

{

if (regexp[0] == '\0'")
return 1;
if (regexp[l] == '*')
return matchstar (regexp[0], regexp+2, text);
if (regexp[0] == '$' && regexp[l] == '\0')
return *text == '\0';
if (*text!='\0' && (regexp[0]=='.' || regexp[0]==*text))

return matchhere (regexp+l, text+l);
return 0O;

- follow the easy case first: no metacharacters

- note that this is recursive
- maximum depth: one level for each regexpr character that matches

Simple grep algorithm

- best for short simple patterns
- eg., grep printf *.[ch]
- most use is like this
- reflects use in text editor for a small machine
* limitations
- tries the pattern at each possible starting point
e.g., look for aaaaab in aaaa....aaaab
potentially O(mn) for pattern of length m

- complicated patterns (.* .* .*) require backup
potentially exponential

- can't do some things, like alternation (OR)

- this leads to extensions and new algorithms

- egrep complicated patterns, alternation
- fgrep lots of simple patterns in parallel
- boyer-moore long simple patterns

- agrep approximate matches

Important ideas from regexprs & grep

tools: let the machine do the work
- good packaging matters

notation: makes it easy to say what to do
- may organize or define implementation

hacking can make a program faster, sometimes, usually at the
price of more complexity

a better algorithm can make a program go a lot faster

don't worry about performance if it doesn't matter (and it often
doesn't)

when it does,
- use the right algorithm
- use the compiler's optimization
- code tune, as a last resort

