Overview

This lecture. Intersections among geometric objects.

 http://algs4.cs.princeton.edu

Geometric Applications of BSTs

- 1d range search
- line segment intersection
- kd trees
- interval search trees
- rectangle intersection

Geometric Applications of BSTs

- 1d range search
- linessegment intersection
- kd trees
- interval search trees
- rectangle intersection

2d orthogonal range search

Applications. CAD, games, movies, virtual reality, databases, GIS,

Efficient solutions. Binary search trees (and extensions).

1d range search

Extension of ordered symbol table.

- Insert key-value pair.
- Search for key k.
- Delete key k.
- Range search: find all keys between k_{1} and k_{2}.
- Range count: number of keys between k_{1} and k_{2}.

Application. Database queries.

Geometric interpretation.

- Keys are point on a line.

orthogonal rectangle intersection
- Find/count points in a given 1d interval.

insert B	B
insert D	B D
insert A	A B D
insert I	A B D I
insert H	A B D H I
insert F	A B D F H I
insert P	A B D F H I P
search G to K	H I
count G to K	2

1d range search: elementary implementations

Unordered list. Fast insert, slow range search.
Ordered array. Slow insert, binary search for k_{1} and k_{2} to do range search.
order of growth of running time for 1 d range search

data structure	insert	range count	range search
unordered list	1	N	N
ordered array	N	$\log N$	$R+\log N$
goal	$\log N$	$\log N$	$R+\log N$
	$N=$ number of keys $R=$ number of keys that match		

1d range search: BST implementation

1d range search. Find all keys between lo and hi.

- Recursively find all keys in left subtree (if any could fall in range).
- Check key in current node.
- Recursively find all keys in right subtree (if any could fall in range).

Proposition. Running time proportional to $R+\log N$.
Pf. Nodes examined $=$ search path to $10+$ search path to $h i+$ matches.

1d range count: BST implementation

$1 d$ range count. How many keys between lo and hi ?


```
public int size(Key 1o, Key hi)
{
    if (contains(hi)) return rank(hi) - rank(lo) + 1;
    else return rank(hi) - rank(lo);
}
 number of keys < hi
```

Proposition. Running time proportional to $\log N$. Pf. Nodes examined $=$ search path to $10+$ search path to hi.

Geometric Applications of BSTs

'Idrange search

- line segment intersection
- kd trees
- interval search trees
- rectangle intersection
Robert Sedgewick I Kevin Wayne

Orthogonal line segment intersection

Given N horizontal and vertical line segments, find all intersections.

Quadratic algorithm. Check all pairs of line segments for intersection.

Nondegeneracy assumption. All x - and y-coordinates are distinct.

Orthogonal line segment intersection: sweep-line algorithm

Sweep vertical line from left to right.

- x-coordinates define events.
- h-segment (left endpoint): insert y-coordinate into BST.
- h-segment (right endpoint): remove y-coordinate from BST.

Orthogonal line segment intersection: sweep-line algorithm

Sweep vertical line from left to right.

- x-coordinates define events.
- h-segment (left endpoint): insert y-coordinate into BST.

-coordinates

Orthogonal line segment intersection: sweep-line algorithm

Sweep vertical line from left to right.

- x-coordinates define events.
- h-segment (left endpoint): insert y-coordinate into BST.
- h-segment (right endpoint): remove y-coordinate from BST.
- v-segment: range search for interval of y-endpoints.

d range

Proposition. The sweep-line algorithm takes time proportional to $N \log N+R$ to find all R intersections among N orthogonal line segments.

Pf.

- Put x-coordinates on a PQ (or sort). $\longleftarrow N \log N$
- Insert y-coordinates into BST. $\longleftarrow N \log N$
- Delete y-coordinates from BST. $\longleftarrow \mathrm{N} \log \mathrm{N}$
- Range searches in BST.

Bottom line. Sweep line reduces 2d orthogonal line segment intersection search to ld range search.

Rober Sedenick | Kevin Wayne http://algs4.cs.princeton.edu

Geometric Applications of BSTs

```
,Mdrange search
```

- linesegment intersection
- kd trees
- interval search trees
- rectangle intersection

2d orthogonal range search: grid implementation

Grid implementation.

- Divide space into M-by- M grid of squares.
- Create list of points contained in each square.
- Use 2 d array to directly index relevant square.
- Insert: add (x, y) to list for corresponding square.
- Range search: examine only squares that intersect 2 d range query.

2d orthogonal range search: grid implementation analysis

Space-time tradeoff.

- Space: $M^{2}+N$.
- Time: $1+N / M^{2}$ per square examined, on average.

Choose grid square size to tune performance.

- Too small: wastes space.
- Too large: too many points per square.
- Rule of thumb: $\sqrt{ } N$-by $-\sqrt{ } N$ grid.

Running time. [if points are evenly distributed]

- Initialize data structure: N.
- Insert point: 1.

- Range search: 1 per point in range.

17

Clustering

Grid implementation. Fast, simple solution for evenly-distributed points.

Problem. Clustering a well-known phenomenon in geometric data.

Ex. USA map data.

13,000 points, 1000 grid squares
------.........inilili|||||

Clustering

Grid implementation. Fast, simple solution for evenly-distributed points.

Problem. Clustering a well-known phenomenon in geometric data.

- Lists are too long, even though average length is short.
- Need data structure that adapts gracefully to data.

Space-partitioning trees

Use a tree to represent a recursive subdivision of 2 d space.

Grid. Divide space uniformly into squares.
2d tree. Recursively divide space into two halfplanes.
Quadtree. Recursively divide space into four quadrants.
BSP tree. Recursively divide space into two regions.

Grid

2d tree

Quadtree

BSP tree

Space-partitioning trees: applications

Applications.

- Ray tracing.
- 2d range search.
- Flight simulators.
- N-body simulation.
- Collision detection.
- Astronomical databases.
- Nearest neighbor search.
- Adaptive mesh generation.

- Accelerate rendering in Doom.
- Hidden surface removal and shadow casting.

Grid

2d tree

Quadtree

BSP tree

2d tree construction

Recursively partition plane into two halfplanes.

2d tree implementation

Data structure. BST, but alternate using x - and y-coordinates as key.

- Search gives rectangle containing point.
- Insert further subdivides the plane.

2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.

- Check if point in node lies in given rectangle.
- Recursively search left/bottom (if any could fall in rectangle).
- Recursively search right/top (if any could fall in rectangle).

2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.

- Check if point in node lies in given rectangle.
- Recursively search left/bottom (if any could fall in rectangle).
- Recursively search right/top (if any could fall in rectangle).

25

2d tree demo: nearest neighbor

Goal. Find closest point to query point.

Range search in a 2 d tree analysis

Typical case. $R+\log N$.
Worst case (assuming tree is balanced). $R+\sqrt{ } N$.

2d tree demo: nearest neighbor

- Check distance from point in node to query point.
- Recursively search left/bottom (if it could contain a closer point).
- Recursively search right/top (if it could contain a closer point).
- Organize method so that it begins by searching for query point.

nearest neighbor $=5$

Nearest neighbor search in a 2d tree analysis

Typical case. $\log N$.
Worst case (even if tree is balanced). N.

Flocking birds

Q. What "natural algorithm" do starlings, migrating geese, starlings, cranes, bait balls of fish, and flashing fireflies use to flock?

http://www.youtube.com/watch?v=XH-groCeKbE

Kd tree

Kd tree. Recursively partition k-dimensional space into 2 halfspaces.

Implementation. BST, but cycle through dimensions ala 2d trees.

Efficient, simple data structure for processing k-dimensional data.

- Widely used.
- Adapts well to high-dimensional and clustered data.
- Discovered by an undergrad in an algorithms class!

N -body simulation

Goal. Simulate the motion of N particles, mutually affected by gravity.
Brute force. For each pair of particles, compute force: $F=\frac{G m_{1} m_{2}}{r^{2}}$ Running time. Time per step is N^{2}.

http://www.youtube.com/watch?v=ua7Y7N4eL_w

Appel's algorithm for N -body simulation

Key idea. Suppose particle is far, far away from cluster of particles.

- Treat cluster of particles as a single aggregate particle.
- Compute force between particle and center of mass of aggregate.

Appel's algorithm for N -body simulation

- Build 3 d-tree with N particles as nodes.
- Store center-of-mass of subtree in each node.
- To compute total force acting on a particle, traverse tree, but stop as soon as distance from particle to subdivision is sufficiently large.
an efficient program for many-body simulation
ANDREW w. APPEL \dagger
Abstract. The simulation of N particles interacting in a araviational force field is sueful in astrophysiss
but such simulations become costly tor large N Representing the univere as a tree structure wish the

Robert Sedgewick $\mid K_{\text {evin }} W_{\text {ayne }}$
http://algs4.cs.princeton.edu

Geometric Applications of BSTs
-idrange search

- line segment intersection
- kd trees
- interval search trees
- rectangle intersection

[^0]
1d interval search

1 d interval search. Data structure to hold set of (overlapping) intervals.

- Insert an interval (lo, hi).
- Search for an interval (lo, hi).
- Delete an interval (lo, hi)
- Interval intersection query: given an interval (lo, hi), find all intervals (or one interval) in data structure that intersects (lo, hi).
Q. Which intervals intersect (9, 16) ?
A. (7, 10) and (15, 18).

$$
\backsim(7,10) \longrightarrow
$$

$\bullet(15,18) \longrightarrow$

Interval search trees

Create BST, where each node stores an interval ($l o, h i$).

- Use left endpoint as BST key.
- Store max endpoint in subtree rooted at node.

public class IntervalST<Key extends Comparable<Key>, Value>

Interva1ST()	create interval search tree
void put(Key 10, Key hi, Value va1)	put interval-value pair into $S T$
Value get(Key 10, Key hi)	value paired with given interval
void delete(Key 10, Key hi)	delete the given interval
Iterable<Value> intersects(Key 10, Key hi)	all intervals that intersect (lo, hi)

Nondegeneracy assumption. No two intervals have the same left endpoint.

Interval search tree demo: insertion

To insert an interval ($l o, h i$):

- Insert into BST, using lo as the key.
- Update max in each node on search path.
insert interval $(16,22)$

Interval search tree demo: insertion

To insert an interval (lo, hi) :

- Insert into BST, using lo as the key.
- Update max in each node on search path.
insert interval $(16,22)$

Interval search tree demo: intersection

To search for any one interval that intersects query interval (lo, hi) :

- If interval in node intersects query interval, return it.
- Else if left subtree is null, go right.
- Else if max endpoint in left subtree is less than lo, go right.
- Else go left.
interval intersection
search for $(21,23)$

Search for an intersecting interval: implementation

To search for any one interval that intersects query interval ($l o, h i$):

- If interval in node intersects query interval, return it.
- Else if left subtree is null, go right.
- Else if max endpoint in left subtree is less than $l o$, go right.
- Else go left.

```
Node x = root;
while (x != null)
{
    if (x.interval.intersects(lo, hi)) return x.interval;
    else if (x.left == nul1) x = x.right;
    else if (x.left.max < lo) x = x.right;
    else x = x.left;
}
return null;
```


Search for an intersecting interval: analysis

To search for any one interval that intersects query interval ($l o, h i$):

- If interval in node intersects query interval, return it.
- Else if left subtree is null, go right.
- Else if max endpoint in left subtree is less than lo, go right.
- Else go left.

Case 1. If search goes right, then no intersection in left.

Pf. Suppose search goes right and left subtree is non empty.

- Since went right, we have max $<l o$.
- For any interval (a, b) in left subtree of x, we have $b \leq \max <l$.

- Thus, (a, b) will not intersect ($l o, h i$).

Search for an intersecting interval: analysis

To search for any one interval that intersects query interval (lo, hi) :

- If interval in node intersects query interval, return it
- Else if left subtree is null, go right.
- Else if max endpoint in left subtree is less than lo, go right.
- Else go left.

Case 2. If search goes left, then there is either an intersection in left subtree or no intersections in either.

Pf. Suppose no intersection in left.

- Since went left, we have $l o \leq m a x$.
- Then for any interval (a, b) in right subtree of x,

45

Interval search tree: analysis

Implementation. Use a red-black BST to guarantee performance.
easy to maintain auxiliary information (log N extra work per operation)

operation	brute	interval search tree	best in theory
insert interval	1	$\log N$	$\log N$
find interval	N	$\log N$	$\log N$
delete interval	N	$\log N$	$\log N$
find any one interval that intersects (lo, hi)	N	$\log N$	$\log N$
find all intervals that intersects (lo, hi)	N	$R \log N$	$R+\log N$

order of growth of running time for N intervals

Orthogonal rectangle intersection

Goal. Find all intersections among a set of N orthogonal rectangles.

Quadratic algorithm. Check all pairs of rectangles for intersection.

[^1]
Microprocessors and geometry

Early 1970s. microprocessor design became a geometric problem.

- Very Large Scale Integration (VLSI).
- Computer-Aided Design (CAD).

Design-rule checking.

- Certain wires cannot intersect.
- Certain spacing needed between different types of wires.
- Debugging = orthogonal rectangle intersection search.

Algorithms and Moore's law

"Moore's law." Processing power doubles every 18 months.

- 197x: check N rectangles.
- 197(x+1.5): check $2 N$ rectangles on a $2 x$-faster computer.

Bootstrapping. We get to use the faster computer for bigger circuits.

But bootstrapping is not enough if using a quadratic algorithm:

- 197x: takes M days.
- 197(x+1.5): takes (4M)/2=2M days. (!)
quadratic

Bottom line. Linearithmic algorithm is necessary to sustain Moore's Law.

Orthogonal rectangle intersection: sweep-line analysis

Proposition. Sweep line algorithm takes time proportional to $N \log N+R \log N$ to find R intersections among a set of N rectangles.

Pf

- Put x-coordinates on a PQ (or sort). $\longleftarrow N \log N$
- Insert y-intervals into ST.
$\longleftarrow N \log N$
- Delete y-intervals from ST. $\longleftarrow N \log N$
- Interval searches for y-intervals. $\longleftarrow N \log N+R \log N$

Bottom line. Sweep line reduces 2d orthogonal rectangle intersection search to 1d interval search.

Geometric applications of BSTs

problem	example	solution
1d range search	BST
2d orthogonal line segment intersection	$\underset{-}{\square}$	sweep line reduces to ld range search
kd range search		kd tree
1d interval search	$\because \ldots$	interval search tree
2d orthogonal rectangle intersection		sweep line reduces to ld interval search

[^0]: Impact. Running time per step is $N \log N \Rightarrow$ enables new research.

[^1]: Non-degeneracy assumption. All x - and y-coordinates are distinct

