Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

Shortest paths in an edge-weighted digraph

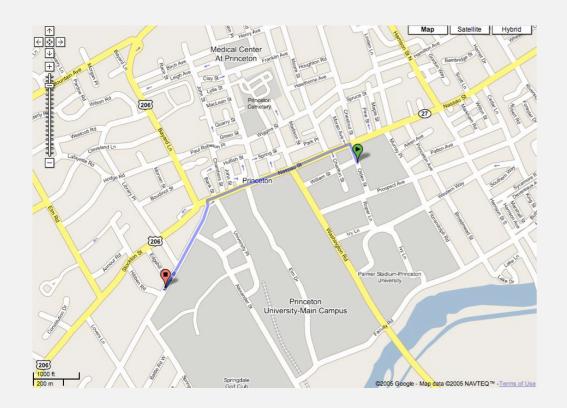
Given an edge-weighted digraph, find the shortest path from *s* to *t*.

4.4 SHORTEST PATHS ► APIs shortest-paths properties

- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights

edge-weighted digraph 4->5 0.35 5->4 0.35 4->7 0.37 5->7 0.28 7->5 0.28 5->1 0.32 0->4 0.38 0->2 0.26 7->3 0.39 shortest path from 0 to 6 1->3 0.29 0->2 0.26 2->7 0.34 2->7 0.34 6->2 0.40 7->3 0.39 3->6 0.52 3->6 0.52

Google maps



Shortest path applications

- PERT/CPM.
- Map routing.
- Seam carving.
- Texture mapping.
- Robot navigation.
- Typesetting in TeX.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Exploiting arbitrage opportunities in currency exchange.
- Optimal truck routing through given traffic congestion pattern.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

http://en.wikipedia.org/wiki/Seam_carving

0.58

6->4 0.93

6->0

Shortest path variants

Which vertices?

- Single source: from one vertex *s* to every other vertex.
- Single sink: from every vertex to one vertex t.
- Source-sink: from one vertex *s* to another *t*.
- All pairs: between all pairs of vertices.

Restrictions on edge weights?

- Nonnegative weights.
- Euclidean weights.
- Arbitrary weights.

Cycles?

• No "negative cycles."

which variant?

Simplifying assumption. Shortest paths from *s* to each vertex *v* exist.

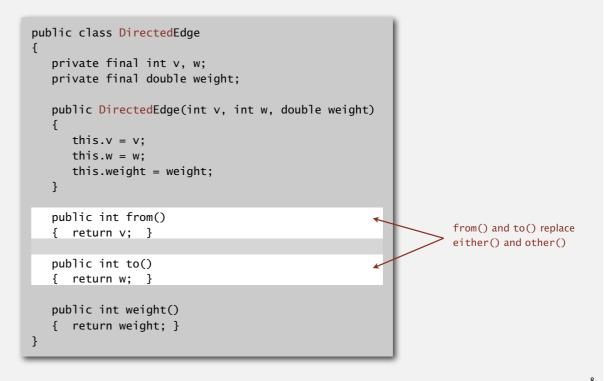
Weighted directed edge API

public class	DirectedEdge	
	DirectedEdge(int v, int w, double weight)	weighted edge $v \rightarrow w$
int	from()	vertex v
int	to()	vertex w
double	weight()	weight of this edge
String	toString()	string representation

weight

Weighted directed edge: implementation in Java

Similar to Edge for undirected graphs, but a bit simpler.



4.4 SHORTEST PATHS

shortest-paths properties

Dijkstra's algorithm

negative weights

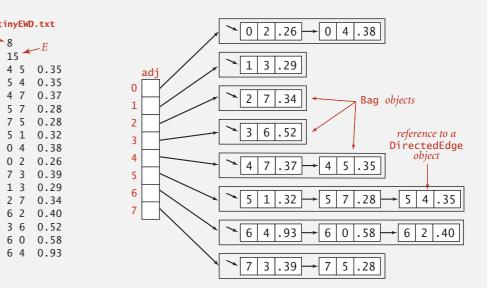
edge-weighted DAGs

► APIs

Edge-weighted digraph API

void	<pre>EdgeWeightedDigraph(int V) EdgeWeightedDigraph(In in) addEdge(DirectedEdge e)</pre>	
void		edge-weighted digraph from input stream
void	addEdge(DirectedEdge_e)	
		add weighted directed edge e
Iterable <directededge></directededge>	adj(int v)	edges pointing from v
int	V()	number of vertices
int	Ε()	number of edges
Iterable <directededge></directededge>	edges()	all edges
String	toString()	string representation

Edge-weighted digraph: adjacency-lists representation



Conventions. Allow self-loops and parallel edges.

Edge-weighted digraph: adjacency-lists implementation in Java

Same as EdgeWeightedGraph except replace Graph with Digraph.



Single-source shortest paths API

tinyEWD.txt

15 **—** *E*

Goal. Find the shortest path from *s* to every other vertex.

pub	lic	class	SP
pub		c iu J J	51

11

		<pre>SP(EdgeWeightedDigraph G, int s)</pre>	shortest paths from s in graph G	
	double	distTo(int v)	length of shortest path from s to v	
Iterable <	DirectedEdge>	pathTo(int v)	shortest path from s to v	
	boolean	hasPathTo(int v)	is there a path from s to v?	
	SP sp = new for (int v =	SP(G, s); 0; v < G.V(); v++)		

```
StdOut.printf("%d to %d (%.2f): ", s, v, sp.distTo(v));
   for (DirectedEdge e : sp.pathTo(v))
      StdOut.print(e + " ");
   StdOut.println();
}
```

Single-source shortest paths API

Goal. Find the shortest path from *s* to every other vertex.

public class SP					
	SP(EdgeWeightedDigraph G, int s)	shortest paths from s in graph G			
double	distTo(int v)	length of shortest path from s to v			
Iterable <directededge></directededge>	pathTo(int v)	shortest path from s to v			
boolean	hasPathTo(int v)	is there a path from s to v?			

% java SP tinyEWD.txt 0 0 to 0 (0.00): 0 to 1 (1.05): 0->4 0.38 4->5 0.35 5->1 0.32 0 to 2 (0.26): 0->2 0.26 0 to 3 (0.99): 0->2 0.26 2->7 0.34 7->3 0.39 0 to 4 (0.38): 0->4 0.38 0 to 5 (0.73): 0->4 0.38 4->5 0.35 0 to 6 (1.51): 0->2 0.26 2->7 0.34 7->3 0.39 3->6 0.52 0 to 7 (0.60): 0->2 0.26 2->7 0.34

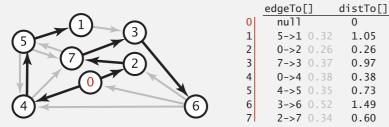
Data structures for single-source shortest paths

Goal. Find the shortest path from *s* to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

- distTo[v] is length of shortest path from s to v.
- edgeTo[v] is last edge on shortest path from s to v.



	eugerolj	uistioli
0	null	0
1	5->1 0.32	1.05
2 3	0->2 0.26	0.26
3	7->3 0.37	0.97
4	0->4 0.38	0.38
5	4->5 0.35	0.73
6	3->6 0.52	1.49
7	2->7 0.34	0.60

shortest-paths tree from 0

parent-link representation

Data structures for single-source shortest paths

Goal. Find the shortest path from *s* to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

- distTo[v] is length of shortest path from *s* to *v*.
- edgeTo[v] is last edge on shortest path from s to v.

```
public double distTo(int v)
{ return distTo[v]; }
public Iterable<DirectedEdge> pathTo(int v)
  Stack<DirectedEdge> path = new Stack<DirectedEdge>();
   for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])
      path.push(e);
   return path;
```

ł

}

Edge relaxation

Relax edge $e = v \rightarrow w$.

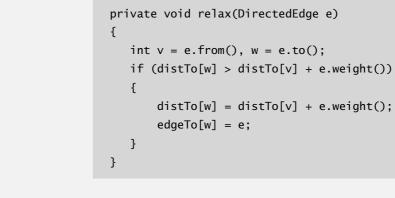
- distTo[v] is length of shortest known path from s to v.
- distTo[w] is length of shortest known path from s to w.
- edgeTo[w] is last edge on shortest known path from s to w.
- If e = v→w gives shorter path to w through v, update both distTo[w] and edgeTo[w].

v→w successfully relaxes

Edge relaxation

Relax edge $e = v \rightarrow w$.

- distTo[v] is length of shortest known path from s to v.
- distTo[w] is length of shortest known path from s to w.
- edgeTo[w] is last edge on shortest known path from s to w.
- If e = v→w gives shorter path to w through v, update both distTo[w] and edgeTo[w].



20

Shortest-paths optimality conditions

black edges
are in edgeTo[]

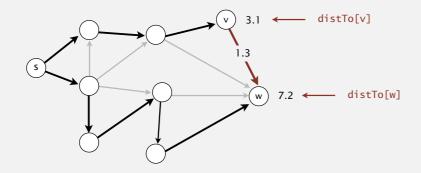
Proposition. Let *G* be an edge-weighted digraph.

Then distTo[] are the shortest path distances from s iff:

- distTo[s] = 0.
- For each vertex v, distTo[v] is the length of some path from s to v.
- For each edge $e = v \rightarrow w$, distTo[w] \leq distTo[v] + e.weight().

Pf. \leftarrow [necessary]

- Suppose that distTo[w] > distTo[v] + e.weight() for some edge e = v→w.
- Then, e gives a path from s to w (through v) of length less than distTo[w].



3.1

7.2 4.4

Shortest-paths optimality conditions

Proposition. Let *G* be an edge-weighted digraph.

Then distTo[] are the shortest path distances from s iff:

- distTo[s] = 0.
- For each vertex v, distTo[v] is the length of some path from s to v.
- For each edge e = v→w, distTo[w] ≤ distTo[v] + e.weight().

Pf. \Rightarrow [sufficient]

- Suppose that $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \dots \rightarrow v_k = w$ is a shortest path from s to w.
- Then, distTo[v₁] \leq distTo[v₀] + e₁.weight() distTo[v₂] \leq distTo[v₁] + e₂.weight() \rightarrow $e_i = i^{th} edge on shortest path from s to w$... distTo[v_k] \leq distTo[v_{k-1}] + e_k.weight()
- Add inequalities; simplify; and substitute distTo[v₀] = distTo[s] = 0:

 $distTo[w] = distTo[v_k] \le e_1.weight() + e_2.weight() + ... + e_k.weight()$

weight of shortest path from s to w

• Thus, distTo[w] is the weight of shortest path to w.

weight of some path from s to w

Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat until optimality conditions are satisfied:

- Relax any edge.

Proposition. Generic algorithm computes SPT (if it exists) from s. Pf sketch.

- The entry distTo[v] is always the length of a simple path from s to v.
- Each successful relaxation decreases distTo[v] for some v.
- The entry distTo[v] can decrease at most a finite number of times.

Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat until optimality conditions are satisfied: - Relax any edge.

Efficient implementations. How to choose which edge to relax?

- Ex 1. Dijkstra's algorithm (nonnegative weights).
- Ex 2. Topological sort algorithm (no directed cycles).
- Ex 3. Bellman-Ford algorithm (no negative cycles).

21

Algorithms Algorithms Algorithms Algorithms Algorithm Algorit

Robert Sedgewick | Kevin Wayne http://algs4.cs.princeton.edu edge-weighted DAGs
 negative weights

Edsger W. Dijkstra: select quotes

" Do only what only you can do."

- " In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind."
- "The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence."
- " It is practically impossible to teach good programming to students that have had a prior exposure to BASIC: as potential programmers they are mentally mutilated beyond hope of regeneration."
- " APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums."

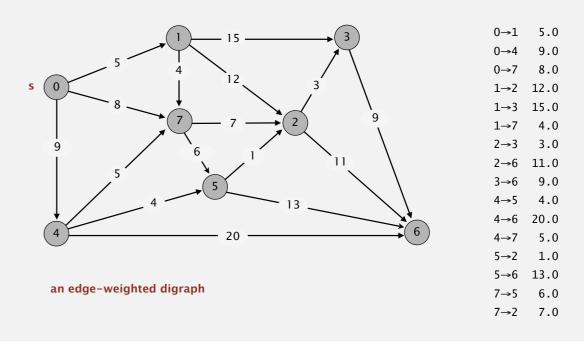
Edsger W. Dijkstra Turing award 1972

Edsger W. Dijkstra: select quotes

Dijkstra's algorithm demo

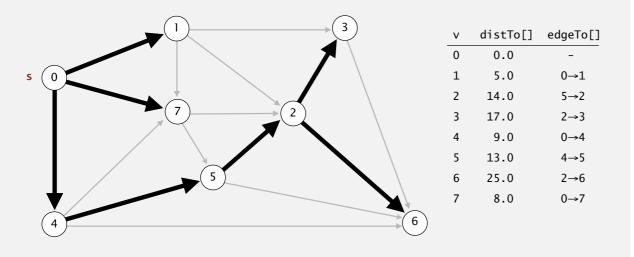
 Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).

• Add vertex to tree and relax all edges pointing from that vertex.



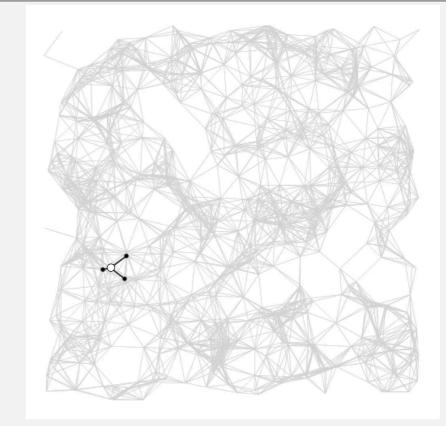
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.



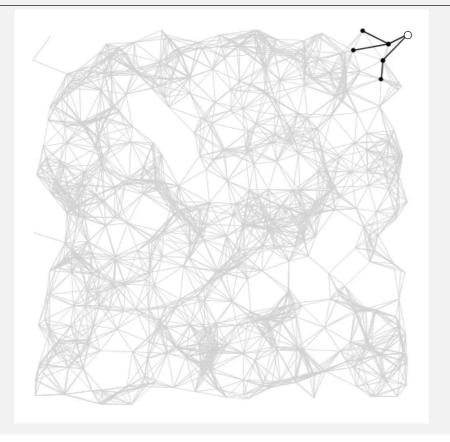
shortest-paths tree from vertex s

Dijkstra's algorithm visualization



25

Dijkstra's algorithm visualization



Dijkstra's algorithm: correctness proof

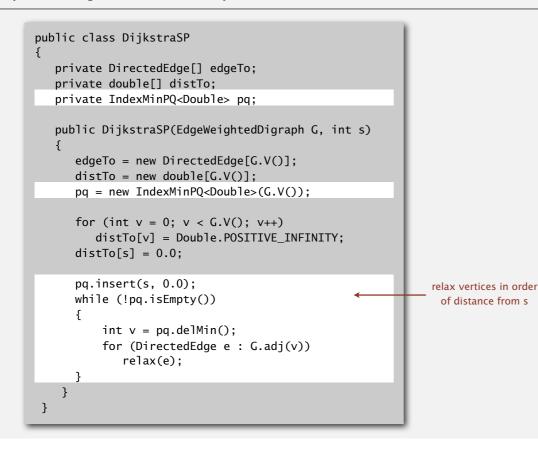
Proposition. Dijkstra's algorithm computes a SPT in any edge-weighted digraph with nonnegative weights.

Pf.

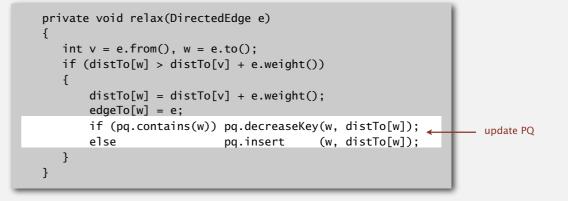
- Each edge e = v→w is relaxed exactly once (when vertex v is relaxed), leaving distTo[w] ≤ distTo[v] + e.weight().
- Inequality holds until algorithm terminates because:
- Thus, upon termination, shortest-paths optimality conditions hold.

29

Dijkstra's algorithm: Java implementation



Dijkstra's algorithm: Java implementation



30

Dijkstra's algorithm: which priority queue?

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

PQ implementation	insert	delete-min	decrease-key	total
unordered array	1	V	1	V^2
binary heap	log V	log V	log V	$E \log V$
d-way heap	$\log_d V$	$d \log_d V$	$\log_d V$	$E \log_{E/V} V$
Fibonacci heap	1†	$\log V^{\dagger}$	1†	$E + V \log V$

† amortized

Bottom line.

- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.

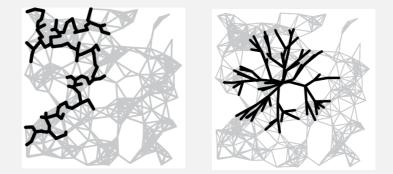
Computing a spanning tree in a graph

Dijkstra's algorithm seem familiar?

- Prim's algorithm is essentially the same algorithm.
- Both are in a family of algorithms that compute a spanning tree.

Main distinction: Rule used to choose next vertex for the tree.

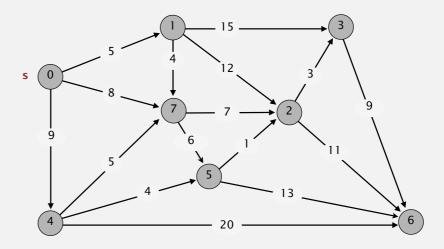
- Prim: Closest vertex to the tree (via an undirected edge).
- Dijkstra: Closest vertex to the source (via a directed path).



Note: DFS and BFS are also in this family of algorithms.

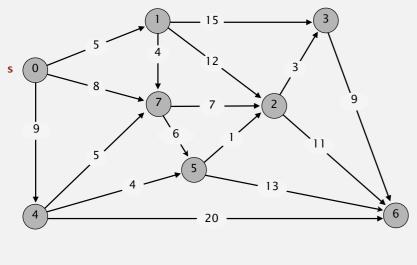
Acyclic edge-weighted digraphs

Q. Suppose that an edge-weighted digraph has no directed cycles. Is it easier to find shortest paths than in a general digraph?



Acyclic shortest paths demo

- · Consider vertices in topological order.
- Relax all edges pointing from that vertex.



an edge-weighted DAG

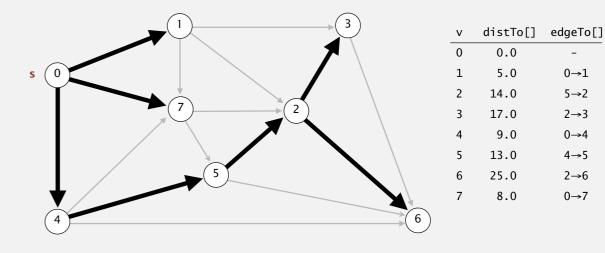
9.0 8.0 0→7 1→2 12.0 1→3 15.0 1→7 4.0 3.0 2→3 2→6 11.0 9.0 3→6 4.0 4→5 4→6 20.0 4→7 5.0 5→2 1.0 5→6 13.0 7→5 6.0 7→2 7.0

can be negative!

0→1 5.0

Acyclic shortest paths demo

- · Consider vertices in topological order.
- Relax all edges pointing from that vertex.



shortest-paths tree from vertex s

37

Shortest paths in edge-weighted DAGs

public class AcyclicSP { private DirectedEdge[] edgeTo; private double[] distTo; public AcyclicSP(EdgeWeightedDigraph G, int s) edgeTo = new DirectedEdge[G.V()]; distTo = new double[G.V()]; for (int v = 0; v < G.V(); v++) distTo[v] = Double.POSITIVE_INFINITY; distTo[s] = 0.0; Topological topological = new Topological(G); ← topological order for (int v : topological.order()) for (DirectedEdge e : G.adj(v)) relax(e);

Shortest paths in edge-weighted DAGs

Proposition. Topological sort algorithm computes SPT in any edgeweighted DAG in time proportional to E + V. edge weights

Pf.

- Each edge $e = v \rightarrow w$ is relaxed exactly once (when vertex v is relaxed), leaving distTo[w] \leq distTo[v] + e.weight().
- Inequality holds until algorithm terminates because:
 - distTo[w] cannot increase \leftarrow distTo[] values are monotone decreasing
- distTo[v] will not change because of topological order, no edge pointing to v
 - will be relaxed after v is relaxed
- Thus, upon termination, shortest-paths optimality conditions hold.

Content-aware resizing

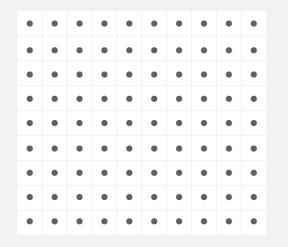
Seam carving. [Avidan and Shamir] Resize an image without distortion for display on cell phones and web browsers.

http://www.youtube.com/watch?v=vIFCV2spKtg

Content-aware resizing

To find vertical seam:

- Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = energy function of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.



Content-aware resizing

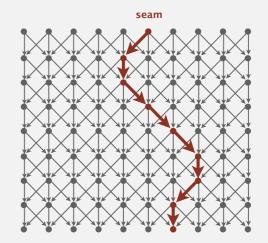
Seam carving. [Avidan and Shamir] Resize an image without distortion for display on cell phones and web browsers.

In the wild. Photoshop CS 5, Imagemagick, GIMP, ...

Content-aware resizing

To find vertical seam:

- Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = energy function of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.



Content-aware resizing

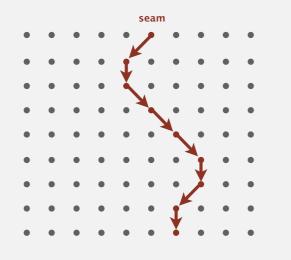
To remove vertical seam:

• Delete pixels on seam (one in each row).

Content-aware resizing

To remove vertical seam:

• Delete pixels on seam (one in each row).



45

Longest paths in edge-weighted DAGs

Formulate as a shortest paths problem in edge-weighted DAGs.

shortest paths input

5->4 -0.35

4->7 -0.37

5->7 -0.28

5->1 -0.32

4->0 -0.38

0->2 -0.26

3->7 -0.39

1->3 -0.29

7->2 -0.34

6->2 -0.40

3->6 -0.52

6->0 -0.58

6->4 -0.93

- Negate all weights.
- Find shortest paths.

• Negate weights in result.

longest paths input

5->4 0.35

4->7 0.37

5->7 0.28

5->1 0.32

4->0 0.38

0->2 0.26

3->7 0.39

1->3 0.29

7->2 0.34

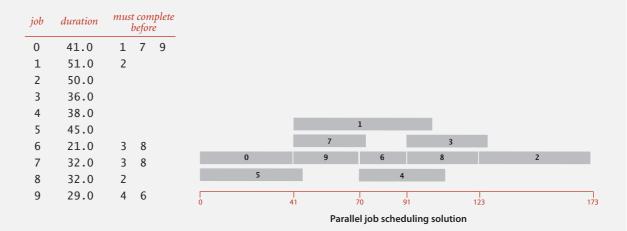
6->2 0.40

3->6 0.52

6->0 0.58 6->4 0.93 equivalent: reverse sense of equality in relax()

Longest paths in edge-weighted DAGs: application

Parallel job scheduling. Given a set of jobs with durations and precedence constraints, schedule the jobs (by finding a start time for each) so as to achieve the minimum completion time, while respecting the constraints.

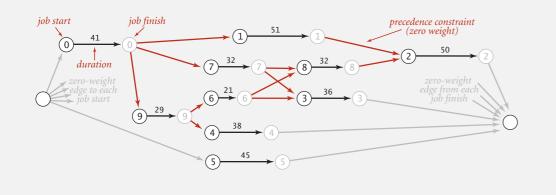


Key point. Topological sort algorithm works even with negative weights.

Critical path method

CPM. To solve a parallel job-scheduling problem, create edge-weighted DAG:

- Source and sink vertices.
- Two vertices (begin and end) for each job.
- Three edges for each job.
- begin to end (weighted by duration)
- source to begin (0 weight)
- end to sink (0 weight)
- One edge for each precedence constraint (0 weight).



Critical path method

must complete

before 1 7 9

3 8

3 8

2

4 6

49

41.0

51.0 50.0

36.0 38.0

45.0

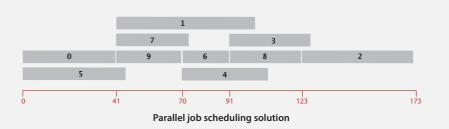
21.0

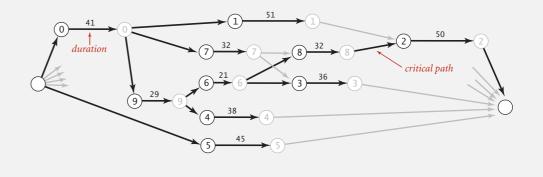
32.0

32.0

29.0

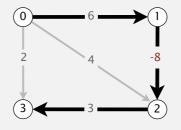
CPM. Use longest path from the source to schedule each job.





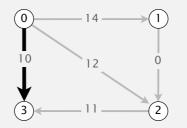
Shortest paths with negative weights: failed attempts

Dijkstra. Doesn't work with negative edge weights.



Dijkstra selects vertex 3 immediately after 0. But shortest path from 0 to 3 is $0 \rightarrow 1 \rightarrow 2 \rightarrow 3$.

Re-weighting. Add a constant to every edge weight doesn't work.

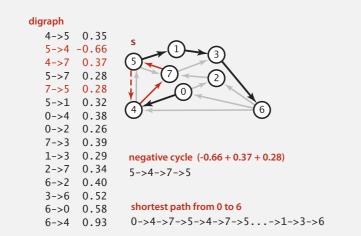


Adding 8 to each edge weight changes the shortest path from $0 \rightarrow 1 \rightarrow 2 \rightarrow 3$ to $0 \rightarrow 3$.

Conclusion. Need a different algorithm.

Negative cycles

Def. A negative cycle is a directed cycle whose sum of edge weights is negative.

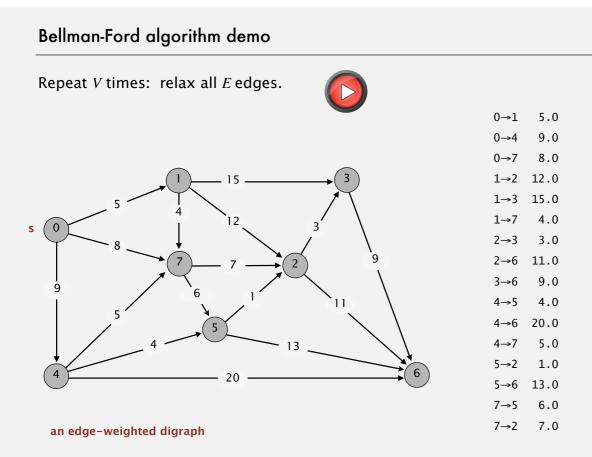


Bellman-Ford algorithm

Bellman-Ford algorithmInitialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.Repeat V times:
- Relax each edge.for (int i = 0; i < G.V(); i++)
for (int v = 0; v < G.V(); v++)
for (DirectedEdge e : G.adj(v))
relax(e);for (relax each edge)

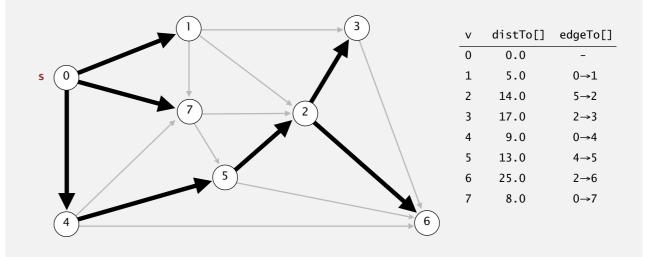
Proposition. A SPT exists iff no negative cycles.

assuming all vertices reachable from s



Bellman-Ford algorithm demo

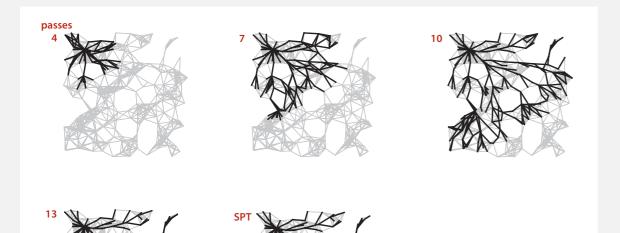
Repeat V times: relax all E edges.



shortest-paths tree from vertex s

53

Bellman-Ford algorithm: visualization



Bellman-Ford algorithm: analysis

Bellman-Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat V times: - Relax each edge.

Proposition. Dynamic programming algorithm computes SPT in any edgeweighted digraph with no negative cycles in time proportional to $E \times V$.

Pf idea. After pass i, found path that is at least as short as any shortest path containing i (or fewer) edges.

Bellman-Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass i, no need to relax any edge pointing from v in pass i+1.

FIFO implementation. Maintain queue of vertices whose distTo[] changed.

be careful to keep at most one copy of each vertex on queue (why?)

Overall effect.

- The running time is still proportional to $E \times V$ in worst case.
- But much faster than that in practice.

Single source shortest-paths implementation: cost summary

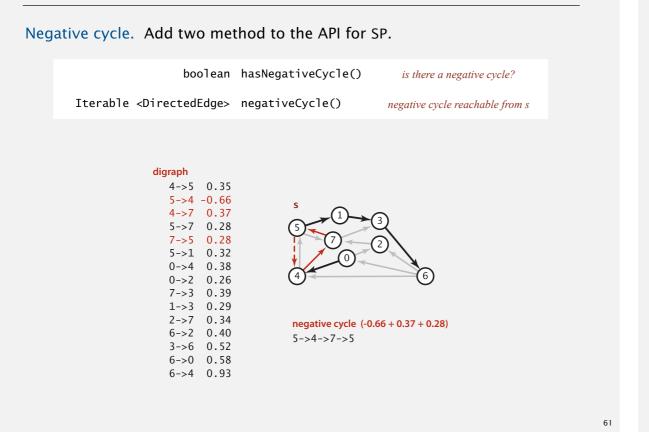
algorithm	restriction	typical case	worst case	extra space
topological sort	no directed cycles	E + V	E + V	V
Dijkstra (binary heap)	no negative weights	$E \log V$	$E \log V$	V
Bellman-Ford	no negative cycles	EV	E V	V
Bellman-Ford (queue-based)		E + V	E V	V

Remark 1. Directed cycles make the problem harder.

Remark 2. Negative weights make the problem harder.

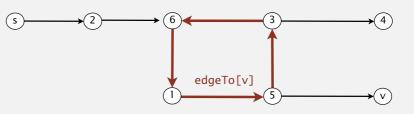
Remark 3. Negative cycles makes the problem intractable.

Finding a negative cycle



Finding a negative cycle

Observation. If there is a negative cycle, Bellman-Ford gets stuck in loop, updating distTo[] and edgeTo[] entries of vertices in the cycle.



Proposition. If any vertex v is updated in pass V, there exists a negative cycle (and can trace back edgeTo[v] entries to find it).

In practice. Check for negative cycles more frequently.

52

Negative cycle application: arbitrage detection

Problem. Given table of exchange rates, is there an arbitrage opportunity?

	USD	EUR	GBP	CHF	CAD
USD	1	0.741	0.657	1.061	1.011
EUR	1.350	1	0.888	1.433	1.366
GBP	1.521	1.126	1	1.614	1.538
CHF	0.943	0.698	0.620	1	0.953
CAD	0.995	0.732	0.650	1.049	1

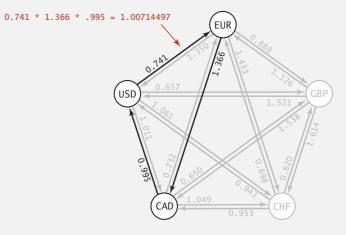
Ex. $1,000 \Rightarrow 741$ Euros $\Rightarrow 1,012.206$ Canadian dollars $\Rightarrow 1,007.14497$.

 $1000 \times 0.741 \times 1.366 \times 0.995 = 1007.14497$

Negative cycle application: arbitrage detection

Currency exchange graph.

- Vertex = currency.
- Edge = transaction, with weight equal to exchange rate.
- Find a directed cycle whose product of edge weights is > 1.

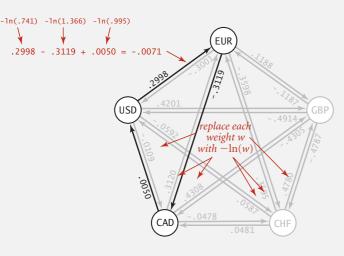


Challenge. Express as a negative cycle detection problem.

Negative cycle application: arbitrage detection

Model as a negative cycle detection problem by taking logs.

- Let weight of edge $v \rightarrow w$ be -ln (exchange rate from currency v to w).
- Multiplication turns to addition; > 1 turns to < 0.
- Find a directed cycle whose sum of edge weights is < 0 (negative cycle).



Remark. Fastest algorithm is extraordinarily valuable!

Shortest paths summary

Nonnegative weights.

- Arises in many application.
- Dijkstra's algorithm is nearly linear-time.

Acyclic edge-weighted digraphs.

- Arise in some applications.
- Topological sort algorithm is linear time.
- Edge weights can be negative.

Negative weights and negative cycles.

- Arise in some applications.
- If no negative cycles, can find shortest paths via Bellman-Ford.
- If negative cycles, can find one via Bellman-Ford.

Shortest-paths is a broadly useful problem-solving model.