ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

4.2 DIRECTED GRAPHS

4.2 DIRECTED GRAPHS
» introduction

» introduction

» digraph API

» digraph search -
Algorithms

Algorithms :
» topological sort
» strong components
ROBERT SEDGEWICK | KEVIN WAYNE
http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Road network

Vertex = intersection; edge = one-way street.

.
Directed graphs
Digraph. Set of vertices connected pairwise by directed edges.
@ o - > g 2
kg &
t $ 5 % $ (& onmg
5 5 % = & $ S
@ S © J 5 S &
= & g % SIS &
Vestry 5y] 2 Canal 5t & 7S)
— = & o, Staten (1] Y’S ”"S‘,- ~
1l e\ Sl & /
outdegree = 4 | " 5 e g
indegree = 2 -8ight St = 5| YO sutenjace 7 S
s Laight st 8 ML 7
0 \ ;3. . Laight gy Gfeo
=z 'S ~* Laight St — o
s / t o = L cs /2 R4
bert 5t = A 'Z % g} N
% Huberrst | (4 / 5 hHE &
5 & b % AYANa)
i : 5 2 z v S 7 7
directed path £ g s \e y, ork St 8 S & 4
@ 3 g i Q & 52
from 0 to 2 \ Beach st 2 4R ’ t 'S 7 S’k&
. NN
Ei
f ncsson St ., /) S l/%
& = e,
I M t | S s (o 4,
e b Dy { 7 % v Mary
- >;§ S S
“~ N Moore 5 > Lo
' 7] N Moore g > 7 “apy
I3 B ™ S Canal St Stati
S Y, g N N.Q.R W]
di ted | - Frank] -;5 L3 £ ; [
<«— directed cycle % e s)/ S &/ s)
;,; = Frankling; —— ’m & N 5 /5 ke &
& = S 8 G‘Q ~)
a 5 TN 8= S
rsen s P e & $
° @ Famson 51— Ceon, s 5 t o, Y
@ 3y, Q)
J G 3 WY, *//"6‘, 4 X - ~
L Y 7
3 : 2
— ¥ ' ©2008 Google - Map data ©2008 Sanborit, NAVTEQ™ - Terms of Use

Political blogosphere graph

Vertex = political blog; edge = link.

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005

Uber taxi graph

Vertex = taxi pickup; edge = taxi ride.

A Fort Mason
Golden Gate e
Crissy Field anif 3 y
2 TP

outh Basin

Candlediick
Point Stal

National Pargy

http://blog.uber.com/2012/01/09/uberdata-san-franciscomics/

San =
Francisco Bay

Oakdand
Middle Horbor ",
by,
Ay

San
Francisco Bay

Overnight interbank loan graph

Vertex = bank; edge = overnight loan.

Tendril

The Topology of the Federal Funds Market, Bech and Atalay, 2008

Implication graph

Vertex = variable; edge = logical implication.

if x5 is true,
then xO0 is true

Combinational circuit

Vertex = logical gate; edge = wire.

B —¢—

Cin_/_r

Digraph applications

out

transportation
web
food web
WordNet
scheduling
financial
cell phone
infectious disease
game
citation
object graph
inheritance hierarchy

control flow

street intersection

web page
species
synset
task
bank
person
person
board position
journal article
object
class

code block

one-way street
hyperlink
predator-prey relationship
hypernym
precedence constraint
transaction
placed call
infection
legal move
citation
pointer
inherits from

jump

WordNet graph

Vertex = synset; edge = hypernym relationship.

happening occurrence occurrent natural_event

miracle \

change alteration modification

damage harm impairment transition

leap jump saltation

http:/ /wordnet.princeton.edu

Some digraph problems

act human_action human_activity

miracle \
group_action

\ N

increase forfeit forfeiture sacrifice action
T resistance opposition transgression
jumpleap

change

demotion /[\ variation

motion movement move

locomotion travel descent
runrunning jump parachuting
dash sprint

s—t path

shortest s—t path

directed cycle

topological sort

strong connectivity

transitive closure

PageRank

Is there a path from s to t ?

What is the shortest path from s to t ?

Is there a directed cycle in the graph ?

Can the digraph be drawn so that all edges point upwards?

Is there a directed path between all pairs of vertices ?

For which vertices v and w is there a directed path from v tow ?

What is the importance of a web page ?

4.2 DIRECTED GRAPHS

» digraph API

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Digraph API
tinyDG. txt % java Digraph tinyDG.txt
V\Al?’ 0->5
E _
22<2 0->1
‘2‘ § 2->0
3 2 §‘>§
6 0 ‘5¢‘, ->
0 1 _
e @) 3->2
11 12 4->3
12 9 @ © 4->2
- 5->4
o1 O dﬁ\}:) :
7 9 '
10 12 11->4
E 11->12
4 3
3 5 12->9
6 8
8 6
In in = new InCargs[0]); read digraph from
Digraph G = new Digraph(in); input stream
for (int v = 0; v < G.VQ; v++) "t
—

for (int w : G.adj(v))
StdOut.printin(v + "->" + w);

edge (once)

Digraph API

Almost identical to Graph API.

public class

Digraph

void
Iterable<Integer>
int

int

Digraph

String

Digraph representation: adjacency lists

Digraph(int V)
Digraph(In in)
addEdge(int v, int w)
adj(int v)

VO

EO

reverse()

toString()

create an empty digraph with V vertices
create a digraph from input stream

add a directed edge v—w

vertices pointing from v

number of vertices

number of edges

reverse of this digraph

string representation

Maintain vertex-indexed array of lists.

??

&

O 00 N o v A W N B O

&0

o

adj[

=
N

]

~[4]+{12

WZIIINNNN
i

Digraph representations

In practice. Use adjacency-lists representation.
« Algorithms based on iterating over vertices pointing from v.
« Real-world digraphs tend to be sparse.

\ huge number of vertices,
small average vertex degree

representation space insert edge edge from iterate over vertices
from v to w Vv to w? pointing from v?
E 1 E

list of edges E
adjacency matrix V2 17 1 \%
adjacency lists E+V 1 outdegree(v) outdegree(v)

t disallows parallel edges

Adjacency-lists digraph representation: Java implementation

pubTlic class Digraph

{
private final int V;
private final Bag<Integer>[] adj; <«—+— adjacency lists

public Digraph(int V)
{ create empty digraph
this.V = V; with V vertices
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<Integer>(Q);

}
public void addEdge(int v, int w) «—p— °ddedgevow
{
adj[v].add(w);
}

. L. iterator for vertices
public Iterable<Integer> adj(int v) pointing from v

{ return adj[v]; }

Adjacency-lists graph representation (review): Java implementation

public class Graph
{

private final int V;

private final Bag<Integer>[] adj; <«<—+— adjacency lists

pubTlic Graph(int V)

{ PEN create empty graph
this.V = V: [with V vertices
adj = (Bag<Integer>[]) new Bag[V];
for (int v=0; v <V; v++)

adj[v] = new Bag<Integer>(Q);

3

public void addEdge(int v, int w) «—p— °ddedgev-w

{
adj[v].add(w);
adj[w].add(v);

3

iterator for vertices
public Iterable<Integer> adj(int v) “TI adjacenttov

{ return adj[v]; }

}

4.2 DIRECTED GRAPHS

Al gori thms » digraph search

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Reachability Depth-first search in digraphs

Problem. Find all vertices reachable from s along a directed path. Same method as for undirected graphs.
» Every undirected graph is a digraph (with edges in both directions).
> I e DFSis a digraph algorithm.

+ 1,1_, [I DFS (to visit a vertex v)
T {] I”} 1
Mark v as visited.
¢<—¢—>I Recursively visit all unmarked

21

Depth-first search demo Depth-first search demo
To visit a vertex v: @ 4-2 To visit a vertex v:
.. 2-3 ..

e Mark vertex v as visited. _ e Mark vertex v as visited.

« Recursively visit all unmarked vertices pointing from v. 6—0 « Recursively visit all unmarked vertices pointing from v.
0—1
2—0
11—=12 v marked[] edgeTol]
129 0 T -
910 1 T 0
ot ‘ G reachable 2 T 3
8—9 from vertex 0 3 T 4
10—12 4 T 5
114 5 T 0

(10 4s 6 P -
o Lo
8—6 v 9 F -
@ 5—4 10 F =

05 11 F —
6—4 12 F =

a directed graph 6—9 reachable from 0

28]

Depth-first search (in undirected graphs)

Recall code for undirected graphs.

pubTlic class DepthFirstSearch

{
private boolean[] marked;
public DepthFirstSearch(Graph G, int s)
{
marked = new boolean[G.V()];
dfs(G, s);
}
private void dfs(Graph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if (!marked[w]) dfs(G, w);
}
public boolean visited(int v)
{ return marked[v]; }
}

<«———F— true if connected to s

constructor marks
vertices connected to s

<«——+— recursive DFS does the work

client can ask whether any
vertex is connected to s

25

Reachability application: program control-flow analysis

Every program is a digraph.

« Vertex = basic block of instructions (straight-line program).

« Edge = jump.

Dead-code elimination.
Find (and remove) unreachable code.

Infinite-loop detection.
Determine whether exit is unreachable.

32: 7<= 16

HR1B1517 1011

121310111
l VT
26: <=

l |zm4%‘ tneBuon

=
on

42 <= -
2:B3<=

_
Bron
v

tEu N

—_—
2B By

16: 5= 214 Qg e i)

30: B3<=13 tan

1121314110 T

112131415110 neun

teBEEnon

10: <=1t

LR neBe
v

1213141518110 i2iti0.c

H 2B 101 201 19<= 18 2B @0
3: <=7
1121311519110 14: <=
HRB5No l B0
3110
22: <= 19
36: <=

112131415110
@5

e o 24: 1< 14 @

1121315110111 46:M<=13

nRBBHoN

=

38: t4<= t11

27

Depth-first search (in directed graphs)

Code for directed graphs identical to undirected one.
[substitute Digraph for Graphl]

public class DirectedDFS
{
private boolean[] marked; <«———— true if path from s
public DirectedDFS(Digraph G, int s)
{ - constructor marks
:irlzzd =)new boolean[G.VQ1; ‘ vertices reachable from s
s(G, s);
}
private void dfs(Digraph G, int v) <«<——+— recursive DFS does the work
{
marked[v] = true;
for (int w : G.adj(v))
if (!'marked[w]) dfs(G, w);
}
lient k wheth
public boolean visited(int v) «——f clentcanaskwhetner any
{ c ked[v] } vertex is reachable from s
return marked[v];
}

Reachability application: mark-sweep garbage collector

Every data structure is a digraph.
« Vertex = object.
« Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program

[l
= anE §

(starting at a root and following a chain of pointers).

51004
[\

L

26

28

Reachability application: mark-sweep garbage collector Depth-first search in digraphs summary

Mark-sweep algorithm. [McCarthy, 1960] DFS enables direct solution of simple digraph problems.
« Mark: mark all reachable objects. v« Reachability.
» Sweep: if object is unmarked, it is garbage (so add to free list). Path finding.

» Topological sort.
Memory cost. Uses 1 extra mark bit per object (plus DFS stack). » Directed cycle detection.

Basis for solving difficult digraph problems.
« 2-satisfiability.
» Directed Euler path.
« Strongly-connected components.

N -
j—uj
+— J?/J AT
)

)
o
g
DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*
ROBERT TARJANt
j/ Abstract. The value of depth-first search or “backtracking” as a technique for solving problems is
j—> illustrated by two examples. An improved version of an algorithm for finding the strongly connected
J components of a directed graph and an algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
kyV + k,E + k, for some constants k, , k,, and k5, where Vis the number of vertices and E is the number
J of edges of the graph being examined.
B .
Breadth-first search in digraphs Directed breadth-first search demo
Same method as for undirected graphs. Repeat until queue is empty: @
« Every undirected graph is a digraph (with edges in both directions). e Remove vertex v from queue.
« BFS is a digraph algorithm. « Add to queue all unmarked vertices pointing from v and mark them.
tinyDG2. txt
V
-
BFS (from source vertex s) @ :@ 6 E
n/ 8 /
Put s onto a FIFO queue, and mark s as visited. 50
Repeat until the queue is empty: 2 4
- remove the least recently added vertex v i ;
- for each unmarked vertex pointing from v: 01
add to queue and mark as visited. il 4 3
5 4 35
02

Proposition. BFS computes shortest paths (fewest number of edges)
from s to all other vertices in a digraph in time proportional to £ + V. graph G

31

Directed breadth-first search demo

Repeat until queue is empty:
« Remove vertex v from queue.

e Add to queue all unmarked vertices pointing from v and mark them.

O >(2)

done

v edgeTo[] distTo[]

0 0
1 0 1
2 0 1
3 4 3
4 2 2
5 3 4

33

Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu.

Solution. [BFS with implicit digraph]
* Choose root web page as source s.
« Maintain a Queue of websites to explore.
« Maintain a SET of discovered websites.
« Dequeue the next website and enqueue
websites to which it links
(provided you haven't done so before).

Q. Why not use DFS?

35

Multiple-source shortest paths

Multiple-source shortest paths. Given a digraph and a set of source

vertices, find shortest path from any vertex in the set to each other vertex.

Ex. $={1,7,10}.
» Shortest path to 4 is 7—=6—4.
» Shortest path to 5 is 7—=6—0—5.
» Shortest path to 12 is 10—12.

??)

@/’

&-@ &
o

Q. How to implement multi-source shortest paths algorithm?

A. Use BFS, but initialize by enqueuing all source vertices.

Bare-bones web crawler: Java implementation

34

Queue<String> queue = new Queue<String>(Q);
SET<String> marked = new SET<String>Q);

String root = "http://www.princeton.edu";
queue.enqueue(root);
marked.add(root);

while (!queue.isEmpty())
{
String v = queue.dequeue();
StdOut.printin(v);
In in = new In(v);
String input = in.readA11Q);

String regexp = "http://QO\\w+\\.D+Q\\w+)";
Pattern pattern = Pattern.compile(regexp);
Matcher matcher = pattern.matcher(input);
while (matcher.find())
{
String w = matcher.group(Q);
if (!marked.contains(w))
{
marked.add(w) ;
queue.enqueue(w);
}
1
}

A

queue of websites to crawl
set of marked websites

start crawling from root website

read in raw html from next
website in queue

use regular expression to find all URLs
in website of form http://xxx.yyy.zzz
[crude pattern misses relative URLs]

if unmarked, mark it and put
on the queue

36

Web crawler output

BFS crawl

http://www.princeton.edu
http://www.w3.o0rg

http://ogp.me
http://giving.princeton.edu
http://www.princetonartmuseum.org
http://www.goprincetontigers.com
http://1library.princeton.edu
http://helpdesk.princeton.edu
http://tigernet.princeton.edu
http://alumni.princeton.edu
http://gradschool.princeton.edu
http://vimeo.com
http://princetonusg.com
http://artmuseum.princeton.edu
http://jobs.princeton.edu
http://odoc.princeton.edu
http://blogs.princeton.edu
http://www. facebook.com
http://twitter.com
http://www.youtube.com
http://deimos.apple.com
http://geprize.org
http://en.wikipedia.org

Precedence scheduling

DFS crawl

http://www.princeton.edu
http://deimos.apple.com
http://www.youtube.com
http://www.google.com
http://news.google.com
http://csi.gstatic.com
http://googlenewsblog.blogspot.com
http://labs.google.com
http://groups.google.com
http://imgl.blogblog.com
http://feeds.feedburner.com
http:/buttons.googlesyndication.com
http://fusion.google.com
http://insidesearch.blogspot.com
http://agoogleaday.com
http://static.googleusercontent.com
http://searchresearchl.blogspot.com
http://feedburner.google.com
http://www.dot.ca.gov
http://www.TahoeRoads.com
http://www.LakeTahoeTransit.com
http://www.1aketahoe.com
http://ethel.tahoeguide.com

37

Goal. Given a set of tasks to be completed with precedence constraints,

in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

0. Algorithms

1. Complexity Theory
Artificial Intelligence
Intro to CS
Cryptography
Scientific Computing

S v AW N

Advanced Programming

tasks

precedence constraint graph

feasible schedule

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Topological sort

4.2 DIRECTED GRAPHS

» topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

0—=5 02
0—-1 3-—6
3—5 3—4
5-2 6—4
6—0 32
14

directed edges

Solution. DFS. What else?

DAG

©-G®

topological order

40

Topological sort demo

o Run depth-first search. @
« Return vertices in reverse postorder.

a directed acyclic graph

Depth-first search order

tinyDAG7.txt

7

11
0 5
0 2
0 1
3 6
3 5
3 4
5 2
6 4
6 0
3 2

public class DepthFirstOrder

{

private boolean[] marked;
private Stack<Integer> reversePostorder;

public DepthFirstOrder(Digraph G)
{
reversePostorder = new Stack<Integer>(Q);
marked = new boolean[G.V()];
for (int v =0; v < G.VQ; v++)
if (!marked[v]) dfs(G, v);
1

private void dfs(Digraph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if (!'marked[w]) dfs(G, w);
reversePostorder.push(v);

}

public Iterable<Integer> reversePostorder() «———

{ return reversePostorder; }

returns all vertices in
“reverse DFS postorder”

Topological sort demo

» Run depth-first search.
« Return vertices in reverse postorder.

;

%

done

41

Topological sort in a DAG: intuition

postorder

412506 3

topological order

36 05 2

1

4

Why does topological sort algorithm work?
« First vertex in postorder has outdegree 0.

« Second-to-last vertex in postorder can only point to last vertex.

;

%

43

postorder

41 25 06 3

topological order

36 05 2

1

4

42

44

Topological sort in a DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge v—w. When dfs(v) is called:

dfs(0)

« Case 1: dfs(w) has already been called and returned.
Thus, w was done before v.

o Case 2: dfs(w) has not yet been called.

dfs(1)
dfs(4)
4 done

1 done

dfs(2)

2 done

dfs(5)

5 done

dfs(w) will get called directly or indirectly 0 done

by dfs(v) and will finish before dfs(v).
Thus, w will be done before v.

« Case 3: dfs(w) has already been called, case 2
but has not yet returned.
Can’t happen in a DAG: function call stack contains

v=3 —— dfs(3)

3 done
path from w to v, so v—w would complete a cycle. /

all vertices pointing from 3 are done before 3 is done, done

so they appear after 3 in topological order

Directed cycle detection application: precedence scheduling

45

Scheduling. Given a set of tasks to be completed with precedence
constraints, in what order should we schedule the tasks?

PRGE 3
DEPARTMENT COURSE DESCRIPTON PREREQS
COMPUTER CPSC Y32) INTERMEDIATE COMPILER [CPSC 432
SCIENCE DESIGN, WITH A FOCUS ON
DEPENDENCY RESOLUTION.

http://xkcd.com/754

Remark. A directed cycle implies scheduling problem is infeasible.

47

Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle.
Pf.

« If directed cycle, topological order impossible.

« If no directed cycle, DFS-based algorithm finds a topological order.

a digraph with a directed cycle

Goal. Given a digraph, find a directed cycle.
Solution. DFS. What else? See textbook.

Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

public class A extends B % javac A.java
{ A.java:1l: cyclic inheritance
“s involving A
} public class A extends B { }
A
1 error

public class B extends C

{
3

public class C extends A

{
3

46

48

Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)

Workbook1
< A B C D
1 "=B1+1" "=Cl+1" "=A1+1"
2
3
4
5
6
Microsoft Excel cannot calculate a formula.
7 ‘:
8 5 »_Qf Cell references in the formula refer to the formula's
G result, creating a circular reference. Try one of the
9 following:
10 « If you accidentally created the circular reference, click
OK. This will display the Circular Reference toolbar and
1 1 help for using it to correct your formula.
» To continue leaving the formula as it is, click Cancel.
12 Cancel) (OK)
13
14
15
16
17
18

| Sheetl |Sheet2 ' Sheet3 |

4.2 DIRECTED GRAPHS

Algorithms

» strong components

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

49

Depth-first search orders

Observation. DFS visits each vertex exactly once. The order in which it

does so can be important.

Orderings.
» Preorder: order in which dfs() is called.
» Postorder: order in which dfs() returns.
» Reverse postorder: reverse order in which dfs() returns.

private void dfs(Graph G, int v)
{
marked[v] = true;
preorder.enqueue(Vv);
for (int w : G.adj(v))
if (!'marked[w]) dfs(G, w);
postorder.enqueue(Vv);
reversePostorder.push(v);

50

Strongly-connected components

Def. Vertices v and w are strongly connected if there is both a directed path
from v to w and a directed path from w to v.

Key property. Strong connectivity is an equivalence relation:
« vis strongly connected to v.
« If v is strongly connected to w, then w is strongly connected to v.
« If v is strongly connected to w and w to x, then v is strongly connected to x.

Def. A strong component is a maximal subset of strongly-connected vertices.

5 strongly-connected components 5

Connected components vs. strongly-connected components

v and w are connected if there is
a path between v and w

3 connected components

connected component id (easy to compute with DFS)

9 10 11 12
2 2

3 4 5 6 7 8
0 0 01 1 1 2 2

o N

0 1
id[1] 0 O

public boolean connected(int v, int w)
{ return id[v] == id[w]; }

1

constant-time client connectivity query

v and w are strongly connected if there is both a directed
path from v to w and a directed path from w to v

£ \050

5 strongly-connected components

strongly-connected component id (how to compute?)

0 1 2 3 4 5
1 01 111

6 8
3 3

N | ©

7 10 11 12
id[] 4 2 2 2

public boolean stronglyConnected(int v, int w)
{ return id[v] == id[w]; }

1

constant-time client strong-connectivity query
53

Strong component application: software modules

Software module dependency graph.
» Vertex = software module.

« Edge: from module to dependency.

Firefox

Aée’ = A
_. N J.ﬁ ’// w "

ooreo> ‘
| ~ r

Internet Explorer

Strong component. Subset of mutually interacting modules.
Approach 1. Package strong components together.

Approach 2. Use to improve design!

55

Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.

m pa voie gveat eglef

(OX

llue qlll fish

/

sl»w

4|gac (magnified)

cattails

http:/ /www.twingroves.district96.k12.il.us /Wetlands /Salamander/SalGraphics/salfoodweb.gif

Strong component. Subset of species with common energy flow.

Strong components algorithms: brief history

1960s: Core OR problem.
» Widely studied; some practical algorithms.
Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).
Classic algorithm.
« Level of difficulty: Algs4++.
« Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).
» Forgot notes for lecture; developed algorithm in order to teach it!
« Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.
Gabow: fixed old OR algorithm.
Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

54

56

Kosaraju-Sharir algorithm: intuition

Reverse graph. Strong components in G are same as in G~.

Kernel DAG. Contract each strong component into a single vertex.

ldea. how to compute?
« Compute topological order (reverse postorder) in kernel DAG.

« Run DFS, considering vertices in reverse topological order.

first vertex is a sink
(has no edges pointing from it)

E 6 A
D

kernel DAG of G (topological order: AB C D E)

digraph G and its strong components

57

Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G~.
102 453 11 9 12 10 6 7 8

reverse digraph GR

59

Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G~.
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G~.

digraph G

Kosaraju-Sharir algorithm demo

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G~.

v id[]
0 1
1 0
2 1
3 1
4 1
5 1
6 3
7 4
8 3
9 2
10 2
11 2
12 2

done

58

60

Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.
* Phase 1: run DFS on G to compute reverse postorder.
e Phase 2: run DFS on G, considering vertices in order given by first DFS.

DFS in reverse digraph G*

@8\

check unmarked vertices in the order
012345678910 11 12

reverse postorder for use in second dfs ()
102453119121067 8

dfs(0)
dfs(6)
dfs(8)
check 6
8 done
dfs(7)
7 done
6 done
dfs(2)
dfs(4)
dfs(11)
dfs(9)
dfs(12)
check 11
dfs(10)
check 9
10 done
12 done
check 7
check 6
61
Kosaraju-Sharir algorithm
Proposition. Kosaraju-Sharir algorithm computes the strong components of
a digraph in time proportional to E + V.
Pf.
* Running time: bottleneck is running DFS twice (and computing GR).
« Correctness: tricky, see textbook (24 printing).
« Implementation: easy!
63

Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.

* Phase 1: run DFS on G® to compute reverse postorder.

« Phase 2: run DFS on G, considering vertices in order given by first DFS.

DFS in original digraph G

O,
©)O

o4

ORI

o @

check unmarked vertices in the order

102453119121067 8

A4 A A4

dfs(1) dfs(0)
1 done dfs(5)
dfs(4)
dfs(3)
check 5
dfs(2)
check 0
check 3
2 done
3 done
check 2
4 done
5 done
check 1
0 done

dfs(11)
check 4
dfs(12)
dfs(9)
check 11
dfs(10)
check 12

10 done
9 done
12 done
11 done

dfs(6) dfs(7)
check 9 check 6
check 4 check 9
dfs(8) 7 done

check 6

8 done
check 0

6 done

Connected components in an undirected graph (with DFS)

public class CC

{

}

private boolean marked[];
private int[] id;
private int count;

pubTic CC(Graph G)
{

marked = new boolean[G.V()];
id = new int[G.VQ];

for (int v = 0; v < G.VQ; Vv++)
{
if (Imarked[v])

dfs(G, v);
count++;
3
}
}

private void dfs(Graph G, int v)

marked[v] = true;
id[v] = count;
for (int w : G.adj(v))
if (Imarked[w])
dfs(G, w);
}

public boolean connected(int v, int w)

{ return id[v] == id[w]; }

62

64

Strong components in a digraph (with two DFSs) Digraph-processing summary: algorithms of the day

public class KosarajuSharirSCC

{

private boolean marked[]; .
private int[] id; single-source
private int count; .
reachability DFS
!:{)ub'l'ic KosarajuSharirSCC(Digraph G) ina digraph
marked = new boolean[G.V(];
id = new int[G.VQ];

DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
for (int v : dfs.reversePostorder())

{
if (!marked[v])
{ dFs(C. V)5 topological sort DFS
) count++; in a DAG
}
}
private void dfs(Digraph G, int v)
! ()
marked[v] = true;
id[v] = count; strong \@* _ _
for (int w : G.adj(v)) (1) () Kosaraju-Sharir
if ('marked[w]) components © DFS (twice)
dfs(G, w); in a digraph N wice
} / (1«12

public boolean stronglyConnected(int v, int w)
{ return id[v] == id[w]; }
}

65

