
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

4.2 DIRECTED GRAPHS

‣ introduction

‣ digraph API

‣ digraph search

‣ topological sort

‣ strong components
http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ digraph API

‣ digraph search

‣ topological sort

‣ strong components

4.2 DIRECTED GRAPHS

Digraph. Set of vertices connected pairwise by directed edges.

3

Directed graphs

1

4

9

2

5

3

0

1211

10

1

4

9

2

5

3

0

1211

10

8 76

outdegree = 4
indegree = 2

directed path
from 0 to 2

directed cycle

4

Road network

Vertex = intersection; edge = one-way street.
Address Holland Tunnel

New York, NY 10013

©2008 Google - Map data ©2008 Sanborn, NAVTEQ™ - Terms of Use

To see all the details that are visible on the screen,use the
"Print" link next to the map.

Vertex = political blog; edge = link.

5

Political blogosphere graph

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005
Figure 1: Community structure of political blogs (expanded set), shown using utilizing a GEM
layout [11] in the GUESS[3] visualization and analysis tool. The colors reflect political orientation,
red for conservative, and blue for liberal. Orange links go from liberal to conservative, and purple
ones from conservative to liberal. The size of each blog reflects the number of other blogs that link
to it.

longer existed, or had moved to a different location. When looking at the front page of a blog we did
not make a distinction between blog references made in blogrolls (blogroll links) from those made
in posts (post citations). This had the disadvantage of not differentiating between blogs that were
actively mentioned in a post on that day, from blogroll links that remain static over many weeks [10].
Since posts usually contain sparse references to other blogs, and blogrolls usually contain dozens of
blogs, we assumed that the network obtained by crawling the front page of each blog would strongly
reflect blogroll links. 479 blogs had blogrolls through blogrolling.com, while many others simply
maintained a list of links to their favorite blogs. We did not include blogrolls placed on a secondary
page.

We constructed a citation network by identifying whether a URL present on the page of one blog
references another political blog. We called a link found anywhere on a blog’s page, a “page link” to
distinguish it from a “post citation”, a link to another blog that occurs strictly within a post. Figure 1
shows the unmistakable division between the liberal and conservative political (blogo)spheres. In
fact, 91% of the links originating within either the conservative or liberal communities stay within
that community. An effect that may not be as apparent from the visualization is that even though
we started with a balanced set of blogs, conservative blogs show a greater tendency to link. 84%
of conservative blogs link to at least one other blog, and 82% receive a link. In contrast, 74% of
liberal blogs link to another blog, while only 67% are linked to by another blog. So overall, we see a
slightly higher tendency for conservative blogs to link. Liberal blogs linked to 13.6 blogs on average,
while conservative blogs linked to an average of 15.1, and this difference is almost entirely due to
the higher proportion of liberal blogs with no links at all.

Although liberal blogs may not link as generously on average, the most popular liberal blogs,
Daily Kos and Eschaton (atrios.blogspot.com), had 338 and 264 links from our single-day snapshot

4

Vertex = bank; edge = overnight loan.

6

Overnight interbank loan graph

The Topology of the Federal Funds Market, Bech and Atalay, 2008

GSCC

GWCC

Tendril

DC

GOUT
GIN

!"#$%& '(!&)&%*+ ,$-). -&/01%2 ,1% 3&4/&56&% 7'8 799:; <=>> ? #"*-/ 0&*2+@ A1--&A/&) A1541-&-/8
B> ?)".A1--&A/&) A1541-&-/8 <3>> ? #"*-/ ./%1-#+@ A1--&A/&) A1541-&-/8 <CD ? #"*-/ "-EA1541-&-/8
<FGH ? #"*-/ 1$/E A1541-&-/; F- /I".)*@ /I&%& 0&%& JK -1)&. "- /I& <3>>8 L9L -1)&. "- /I& <CD8 :K
-1)&. "- <FGH8 J9 -1)&. "- /I& /&-)%"+. *-) 7 -1)&. "- *)".A1--&A/&) A1541-&-/;

!"#$%&%'$(HI& -1)&. 1, * -&/01%2 A*- 6& 4*%/"/"1-&) "-/1 * A1++&A/"1- 1,)".M1"-/ .&/. A*++&))".A1--&A/&)
A1541-&-/.8 !!!" # "!!!!!"; HI& -1)&. 0"/I"- &*AI)".A1--&A/&) A1541-&-/)1 -1/ I*N& +"-2. /1 1% ,%15
-1)&. "- *-@ 1/I&% A1541-&-/8 ";&;8 #!"# $"# !$# "" $ " $!!!!" % $ $!!!!!"& # ' ", % (# %!; HI& A1541-&-/
0"/I /I& +*%#&./ -$56&% 1, -1)&. ". %&,&%%&) /1 *. /I&)%*$& +"*,-. /'$$"/&"0 /'12'$"$& O<=>>P; C- 1/I&%
01%).8 /I& <=>> ". /I& +*%#&./ A1541-&-/ 1, /I& -&/01%2 "- 0I"AI *++ -1)&. A1--&A/ /1 &*AI 1/I&% N"*
$-)"%&A/&) 4*/I.; HI& %&5*"-"-#)".A1--&A/&) A1541-&-/. OB>.P *%& .5*++&% A1541-&-/. ,1% 0I"AI /I&
.*5& ". /%$&; C- &54"%"A*+ ./$)"&. /I& <=>> ". 1,/&- ,1$-) /1 6& .&N&%*+ 1%)&%. 1, 5*#-"/$)& +*%#&% /I*-
*-@ 1, /I& B>. O.&& Q%1)&% "& *-3 O7999PP;

HI& <=>> A1-."./. 1, *)%*$& 4&5'$)-. /'$$"/&"0 /'12'$"$& O<3>>P8 *)%*$& '6&7/'12'$"$& O<FGHP8
*)%*$& %$7/'12'$"$& O<CDP *-) &"$05%-4 O.&& !"#$%& 'P; HI& <3>> A154%".&. *++ -1)&. /I*/ A*- %&*AI &N&%@
1/I&% -1)& "- /I& <3>> /I%1$#I *)"%&A/&) 4*/I; R -1)& ". "- /I& <FGH ", "/ I*. * 4*/I ,%15 /I& <3>>
6$/ -1/ /1 /I& <3>>; C- A1-/%*./8 * -1)& ". "- /I& <CD ", "/ I*. * 4*/I /1 /I& <3>> 6$/ -1/ ,%15 "/; R
-1)& ". "- * /&-)%"+ ", "/)1&. -1/ %&.")& 1- *)"%&A/&) 4*/I /1 1% ,%15 /I& <3>>;S9

!%4/644%'$(C- /I& -&/01%2 1, 4*@5&-/. .&-/ 1N&% !&)0"%& *-*+@T&) 6@ 31%*5U2" "& *-3 O799:P8 /I& <3>>
". /I& +*%#&./ A1541-&-/; F- *N&%*#&8 *+51./ %&' 1, /I& -1)&. "- /I*/ -&/01%2 6&+1-# /1 /I& <3>>; C-
A1-/%*./8 /I& <3>> ". 5$AI .5*++&% ,1% /I& ,&)&%*+ ,$-). -&/01%2; C- 799:8 1-+@ (&') (' 1, /I& -1)&.
6&+1-# /1 /I". A1541-&-/; Q@ ,*% /I& +*%#&./ A1541-&-/ ". /I& <CD; C- 799:8)%'))' 1, /I& -1)&. 0&%&
"- /I". A1541-&-/; HI& <FGH A1-/*"-&) (*') +' 1, *++ -1)&. 4&%)*@8 0I"+& /I&%& 0&%& (+') ,' 1,
/I& -1)&. +1A*/&) "- /I& /&-)%"+.;SS V&.. /I*- -') (' 1, /I& -1)&. 0&%& "- /I& %&5*"-"-#)".A1--&A/&)
A1541-&-/. O.&& H*6+& JP;

S9HI& /&-)%"+. 5*@ *+.1 6&)"W&%&-/"*/&) "-/1 /I%&& .$6A1541-&-/.(* .&/ 1, -1)&. /I*/ *%& 1- * 4*/I &5*-*/"-# ,%15 <CD8 *
.&/ 1, -1)&. /I*/ *%& 1- * 4*/I +&*)"-# /1 <FGH8 *-) * .&/ 1, -1)&. /I*/ *%& 1- * 4*/I /I*/ 6&#"-. "- <CD *-) &-). "- <FGH;

SS!!"# 1, -1)&. 0&%& "- X,%15E<CDY /&-)%"+.8 $!%# 1, -1)&. 0&%& "- /I& X/1E<FGHY /&-)%"+. *-) "!&# 1, -1)&. 0&%& "-
X/$6&.Y ,%15 <CD /1 <FGH;

S7

Vertex = taxi pickup; edge = taxi ride.

7

Uber taxi graph

http://blog.uber.com/2012/01/09/uberdata-san-franciscomics/

Vertex = variable; edge = logical implication.

8

Implication graph

~x0

~x3

~x1~x5

x6

x5

~x6

~x4

~x2

x2

x4

x1

x3

x0

if x5 is true,
then x0 is true

Vertex = logical gate; edge = wire.

9

Combinational circuit

Vertex = synset; edge = hypernym relationship.

10

WordNet graph

http://wordnet.princeton.edu

event

happening occurrence occurrent natural_event

change alteraƟon modiĮcaƟon

damage harm ..impairment transiƟon

leap jump saltaƟon jump leap

act human_acƟon human_acƟvity

group_acƟon

forfeit forfeiture ƐĂĐƌŝĮĐĞ acƟon

change

resistance opposiƟon transgression

demoƟon variaƟon

moƟon movement move

locomoƟon travel

run running

dash sprint

descent

jump parachuƟng

increase

miracle

miracle

11

Digraph applications

digraph vertex directed edge

transportation street intersection one-way street

web web page hyperlink

food web species predator-prey relationship

WordNet synset hypernym

scheduling task precedence constraint

financial bank transaction

cell phone person placed call

infectious disease person infection

game board position legal move

citation journal article citation

object graph object pointer

inheritance hierarchy class inherits from

control flow code block jump

12

Some digraph problems

problem description

s→t path Is there a path from s to t ?

shortest s→t path What is the shortest path from s to t ?

directed cycle Is there a directed cycle in the graph ?

topological sort Can the digraph be drawn so that all edges point upwards?

strong connectivity Is there a directed path between all pairs of vertices ?

transitive closure For which vertices v and w is there a directed path from v to w ?

PageRank What is the importance of a web page ?

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ digraph API

‣ digraph search

‣ topological sort

‣ strong components

4.2 DIRECTED GRAPHS

Almost identical to Graph API.

14

Digraph API

 public class Digraph public class Digraph

Digraph(int V)Digraph(int V) create an empty digraph with V vertices

Digraph(In in)Digraph(In in) create a digraph from input stream

void addEdge(int v, int w)addEdge(int v, int w) add a directed edge v→w

Iterable<Integer> adj(int v)adj(int v) vertices pointing from v

int V()V() number of vertices

int E()E() number of edges

Digraph reverse()reverse() reverse of this digraph

String toString()toString() string representation

15

Digraph API

In in = new In(args[0]);
Digraph G = new Digraph(in);

for (int v = 0; v < G.V(); v++)
 for (int w : G.adj(v))
 StdOut.println(v + "->" + w);

% java Digraph tinyDG.txt
0->5
0->1
2->0
2->3
3->5
3->2
4->3
4->2
5->4
⋮

11->4
11->12
12->9

read digraph from
input stream

print out each
edge (once)

adj[]
0

1

2

3

4

5

6

7

8

9

10

11

12

5 2

3 2

0 3

5 1

6

0

11 10

6 9

4 12

4

12

9

9 4 8

13
22
 4 2
 2 3
 3 2
 6 0
 0 1
 2 0
11 12
12 9
 9 10
 9 11
 7 9
10 12
11 4
 4 3
 3 5
 6 8
 8 6
 5 4
 0 5
 6 4
 6 9
 7 6

tinyDG.txt
V

E

⋮

Maintain vertex-indexed array of lists.

adj[]
0

1

2

3

4

5

6

7

8

9

10

11

12

5 2

3 2

0 3

5 1

6

0

11 10

6 9

4 12

4

12

9

9 4 8

13
22
 4 2
 2 3
 3 2
 6 0
 0 1
 2 0
11 12
12 9
 9 10
 9 11
 7 9
10 12
11 4
 4 3
 3 5
 6 8
 8 6
 5 4
 0 5
 6 4
 6 9
 7 6

tinyDG.txt
V

E

16

Digraph representation: adjacency lists

adj[]
0

1

2

3

4

5

6

7

8

9

10

11

12

5 2

3 2

0 3

5 1

6

0

11 10

6 9

4 12

4

12

9

9 4 8

13
22
 4 2
 2 3
 3 2
 6 0
 0 1
 2 0
11 12
12 9
 9 10
 9 11
 7 9
10 12
11 4
 4 3
 3 5
 6 8
 8 6
 5 4
 0 5
 6 4
 6 9
 7 6

tinyDG.txt
V

E

In practice. Use adjacency-lists representation.

・Algorithms based on iterating over vertices pointing from v.

・Real-world digraphs tend to be sparse.

17

Digraph representations

representation space insert edge
from v to w

edge from
v to w?

iterate over vertices
pointing from v?

list of edges E 1 E E

adjacency matrix V 2 1† 1 V

adjacency lists E + V 1 outdegree(v) outdegree(v)

huge number of vertices,
small average vertex degree

† disallows parallel edges

18

Adjacency-lists graph representation (review): Java implementation

public class Graph
{
 private final int V;
 private final Bag<Integer>[] adj;

 public Graph(int V)
 {
 this.V = V;
 adj = (Bag<Integer>[]) new Bag[V];
 for (int v = 0; v < V; v++)
 adj[v] = new Bag<Integer>();
 }

 public void addEdge(int v, int w)
 {
 adj[v].add(w);
 adj[w].add(v);
 }

 public Iterable<Integer> adj(int v)
 { return adj[v]; }
}

adjacency lists

create empty graph
with V vertices

iterator for vertices
adjacent to v

add edge v–w

19

Adjacency-lists digraph representation: Java implementation

public class Digraph
{
 private final int V;
 private final Bag<Integer>[] adj;

 public Digraph(int V)
 {
 this.V = V;
 adj = (Bag<Integer>[]) new Bag[V];
 for (int v = 0; v < V; v++)
 adj[v] = new Bag<Integer>();
 }

 public void addEdge(int v, int w)
 {
 adj[v].add(w);

 }

 public Iterable<Integer> adj(int v)
 { return adj[v]; }
}

adjacency lists

create empty digraph
with V vertices

add edge v→w

iterator for vertices
pointing from v

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ digraph API

‣ digraph search

‣ topological sort

‣ strong components

4.2 DIRECTED GRAPHS

21

Reachability

Problem. Find all vertices reachable from s along a directed path.

s

Same method as for undirected graphs.

・Every undirected graph is a digraph (with edges in both directions).

・DFS is a digraph algorithm.

22

Depth-first search in digraphs

Mark v as visited.
Recursively visit all unmarked
 vertices w pointing from v.

DFS (to visit a vertex v)

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

Depth-first search demo

23

a directed graph

4→2

2→3

3→2

6→0

0→1

2→0

11→12

12→9

9→10

9→11

8→9

10→12

11→4

4→3

3→5

6→8

8→6

5→4

0→5

6→4

6→9

7→6

1

4

9

2

5

3

0

1211

10

8 76

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices pointing from v.

T
T
T
T
T

T
F
F
F
F

F
F
F

marked[]

1

9

2

5

3

0

1211

10

8 76

Depth-first search demo

24

reachable from 0

reachable
from vertex 0

0
1
2
3
4

5
6
7
8
9

10
11
12

–
0
3
4
5

0
–
–
–
–

–
–
–

v edgeTo[]

4

Recall code for undirected graphs.

public class DepthFirstSearch
{
 private boolean[] marked;

 public DepthFirstSearch(Graph G, int s)
 {
 marked = new boolean[G.V()];
 dfs(G, s);
 }

 private void dfs(Graph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w);
 }

 public boolean visited(int v)
 { return marked[v]; }
}

25

Depth-first search (in undirected graphs)

true if connected to s

constructor marks
vertices connected to s

recursive DFS does the work

client can ask whether any
vertex is connected to s

Code for directed graphs identical to undirected one.

[substitute Digraph for Graph]

public class DirectedDFS
{
 private boolean[] marked;

 public DirectedDFS(Digraph G, int s)
 {
 marked = new boolean[G.V()];
 dfs(G, s);
 }

 private void dfs(Digraph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w);
 }

 public boolean visited(int v)
 { return marked[v]; }
}

26

Depth-first search (in directed graphs)

true if path from s

constructor marks
vertices reachable from s

recursive DFS does the work

client can ask whether any
vertex is reachable from s

27

Reachability application: program control-flow analysis

Every program is a digraph.

・Vertex = basic block of instructions (straight-line program).

・Edge = jump.

Dead-code elimination.

Find (and remove) unreachable code.

Infinite-loop detection.

Determine whether exit is unreachable.

Every data structure is a digraph.

・Vertex = object.

・Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program

(starting at a root and following a chain of pointers).

28

Reachability application: mark-sweep garbage collector

roots

29

Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]

・Mark: mark all reachable objects.

・Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS stack).

roots

DFS enables direct solution of simple digraph problems.

・Reachability.

・Path finding.

・Topological sort.

・Directed cycle detection.

Basis for solving difficult digraph problems.

・2-satisfiability.

・Directed Euler path.

・Strongly-connected components.

30

Depth-first search in digraphs summary

✓

SIAM J. COMPUT.
Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN"

Abstract. The value of depth-first search or "bacltracking" as a technique for solving problems is
illustrated by two examples. An improved version of an algorithm for finding the strongly connected
components of a directed graph and ar algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
k1V + k2E d- k for some constants kl, k2, and ka, where Vis the number of vertices and E is the number
of edges of the graph being examined.

Key words. Algorithm, backtracking, biconnectivity, connectivity, depth-first, graph, search,
spanning tree, strong-connectivity.

1. Introduction. Consider a graph G, consisting of a set of vertices U and a
set of edges g. The graph may either be directed (the edges are ordered pairs (v, w)
of vertices; v is the tail and w is the head of the edge) or undirected (the edges are
unordered pairs of vertices, also represented as (v, w)). Graphs form a suitable
abstraction for problems in many areas; chemistry, electrical engineering, and
sociology, for example. Thus it is important to have the most economical algo-
rithms for answering graph-theoretical questions.

In studying graph algorithms we cannot avoid at least a few definitions.
These definitions are more-or-less standard in the literature. (See Harary [3],
for instance.) If G (, g) is a graph, a path p’v w in G is a sequence of vertices
and edges leading from v to w. A path is simple if all its vertices are distinct. A path
p’v v is called a closed path. A closed path p’v v is a cycle if all its edges are
distinct and the only vertex to occur twice in p is v, which occurs exactly twice.
Two cycles which are cyclic permutations of each other are considered to be the
same cycle. The undirected version of a directed graph is the graph formed by
converting each edge of the directed graph into an undirected edge and removing
duplicate edges. An undirected graph is connected if there is a path between every
pair of vertices.

A (directed rooted) tree T is a directed graph whose undirected version is
connected, having one vertex which is the head of no edges (called the root),
and such that all vertices except the root are the head of exactly one edge. The
relation "(v, w) is an edge of T" is denoted by v- w. The relation "There is a
path from v to w in T" is denoted by v w. If v - w, v is the father ofw and w is a
son of v. If v w, v is an ancestor ofw and w is a descendant of v. Every vertex is an
ancestor and a descendant of itself. If v is a vertex in a tree T, T is the subtree of T
having as vertices all the descendants of v in T. If G is a directed graph, a tree T
is a spanning tree of G if T is a subgraph of G and T contains all the vertices of G.

If R and S are binary relations, R* is the transitive closure of R, R-1 is the
inverse of R, and

RS {(u, w)lZlv((u, v) R & (v, w) e S)}.

* Received by the editors August 30, 1971, and in revised form March 9, 1972.

" Department of Computer Science, Cornell University, Ithaca, New York 14850. This research
was supported by the Hertz Foundation and the National Science Foundation under Grant GJ-992.

146

Same method as for undirected graphs.

・Every undirected graph is a digraph (with edges in both directions).

・BFS is a digraph algorithm.

Proposition. BFS computes shortest paths (fewest number of edges)

from s to all other vertices in a digraph in time proportional to E + V.
31

Breadth-first search in digraphs

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:
 - remove the least recently added vertex v
 - for each unmarked vertex pointing from v:
 add to queue and mark as visited.

BFS (from source vertex s)

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices pointing from v and mark them.

Directed breadth-first search demo

32

graph G

0

4

2

1

5

3

0

4

2

1

5

3

6
8
5 0
2 4
3 2
1 2
0 1
4 3
3 5
0 2

tinyDG2.txt
V

E

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices pointing from v and mark them.

Directed breadth-first search demo

33

done

0

4

2

1

5

3

0
1
2
3
4

5

v edgeTo[] distTo[]

–
0
0
4
2

3

0
1
1
3
2

4

Multiple-source shortest paths. Given a digraph and a set of source

vertices, find shortest path from any vertex in the set to each other vertex.

Ex. S = { 1, 7, 10 }.

・Shortest path to 4 is 7→6→4.

・Shortest path to 5 is 7→6→0→5.

・Shortest path to 12 is 10→12.

・…

Q. How to implement multi-source shortest paths algorithm?

A. Use BFS, but initialize by enqueuing all source vertices.
34

Multiple-source shortest paths

adj[]
0

1

2

3

4

5

6

7

8

9

10

11

12

5 2

3 2

0 3

5 1

6

0

11 10

6 9

4 12

4

12

9

9 4 8

13
22
 4 2
 2 3
 3 2
 6 0
 0 1
 2 0
11 12
12 9
 9 10
 9 11
 7 9
10 12
11 4
 4 3
 3 5
 6 8
 8 6
 5 4
 0 5
 6 4
 6 9
 7 6

tinyDG.txt
V

E

35

Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu.

Solution. [BFS with implicit digraph]

・Choose root web page as source s.

・Maintain a Queue of websites to explore.

・Maintain a SET of discovered websites.

・Dequeue the next website and enqueue

websites to which it links

(provided you haven't done so before).

Q. Why not use DFS?

18

31

6

42 13

28

32

49

22

45

1 14

40

48

7

44

10

41
29

0

39

11

9

12

30
26

21

46

5

24

37

43

35

47

38

23

16

36

4

3 17

27

20

34

15

2

19 33

25

8

How many strong components are there in this digraph? 36

Bare-bones web crawler: Java implementation

 Queue<String> queue = new Queue<String>();
 SET<String> marked = new SET<String>();

 String root = "http://www.princeton.edu";
 queue.enqueue(root);
 marked.add(root);

 while (!queue.isEmpty())
 {
 String v = queue.dequeue();
 StdOut.println(v);
 In in = new In(v);
 String input = in.readAll();

 String regexp = "http://(\\w+\\.)+(\\w+)";
 Pattern pattern = Pattern.compile(regexp);
 Matcher matcher = pattern.matcher(input);
 while (matcher.find())
 {
 String w = matcher.group();
 if (!marked.contains(w))
 {
 marked.add(w);
 queue.enqueue(w);
 }
 }
 }

read in raw html from next
website in queue

use regular expression to find all URLs
in website of form http://xxx.yyy.zzz
[crude pattern misses relative URLs]

if unmarked, mark it and put
on the queue

start crawling from root website

queue of websites to crawl
set of marked websites

37

Web crawler output

http://www.princeton.edu
http://www.w3.org
http://ogp.me
http://giving.princeton.edu
http://www.princetonartmuseum.org
http://www.goprincetontigers.com
http://library.princeton.edu
http://helpdesk.princeton.edu
http://tigernet.princeton.edu
http://alumni.princeton.edu
http://gradschool.princeton.edu
http://vimeo.com
http://princetonusg.com
http://artmuseum.princeton.edu
http://jobs.princeton.edu
http://odoc.princeton.edu
http://blogs.princeton.edu
http://www.facebook.com
http://twitter.com
http://www.youtube.com
http://deimos.apple.com
http://qeprize.org
http://en.wikipedia.org
...

BFS crawl

http://www.princeton.edu
http://deimos.apple.com
http://www.youtube.com
http://www.google.com
http://news.google.com
http://csi.gstatic.com
http://googlenewsblog.blogspot.com
http://labs.google.com
http://groups.google.com
http://img1.blogblog.com
http://feeds.feedburner.com
http:/buttons.googlesyndication.com
http://fusion.google.com
http://insidesearch.blogspot.com
http://agoogleaday.com
http://static.googleusercontent.com
http://searchresearch1.blogspot.com
http://feedburner.google.com
http://www.dot.ca.gov
http://www.TahoeRoads.com
http://www.LakeTahoeTransit.com
http://www.laketahoe.com
http://ethel.tahoeguide.com
...

DFS crawl

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ digraph API

‣ digraph search

‣ topological sort

‣ strong components

4.2 DIRECTED GRAPHS

Goal. Given a set of tasks to be completed with precedence constraints,

in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

39

Precedence scheduling

tasks precedence constraint graph

0

1

4

52

6

3

feasible schedule

0. Algorithms

1. Complexity Theory

2. Artificial Intelligence

3. Intro to CS

4. Cryptography

5. Scientific Computing

6. Advanced Programming

40

Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

Solution. DFS. What else?

directed edges

 0→5 0→2

 0→1 3→6

 3→5 3→4

 5→2 6→4

 6→0 3→2

 1→4

DAG

0

1

4

52

6

3

topological order

・Run depth-first search.

・Return vertices in reverse postorder.

0

1

4

52

6

3

Topological sort demo

41

a directed acyclic graph

1

4

52

6

3

0
7
11
 0 5
 0 2
 0 1
 3 6
 3 5
 3 4
 5 2
 6 4
 6 0
 3 2

tinyDAG7.txt

・Run depth-first search.

・Return vertices in reverse postorder.

Topological sort demo

42

4 1 2 5 0 6 3

postorder

done

0

1

4

52

6

3

0

1

4

52

6

3

3 6 0 5 2 1 4

topological order

43

Depth-first search order

public class DepthFirstOrder
{
 private boolean[] marked;
 private Stack<Integer> reversePostorder;

 public DepthFirstOrder(Digraph G)
 {
 reversePostorder = new Stack<Integer>();
 marked = new boolean[G.V()];
 for (int v = 0; v < G.V(); v++)
 if (!marked[v]) dfs(G, v);
 }

 private void dfs(Digraph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w);
 reversePostorder.push(v);
 }

 public Iterable<Integer> reversePostorder()
 { return reversePostorder; }
}

returns all vertices in
“reverse DFS postorder”

Why does topological sort algorithm work?

・First vertex in postorder has outdegree 0.

・Second-to-last vertex in postorder can only point to last vertex.

・...

44

Topological sort in a DAG: intuition

4 1 2 5 0 6 3

postorder

0

1

4

52

6

3

0

1

4

52

6

3

3 6 0 5 2 1 4

topological order

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge v→w. When dfs(v) is called:

・Case 1: dfs(w) has already been called and returned.

Thus, w was done before v.

・Case 2: dfs(w) has not yet been called.

dfs(w) will get called directly or indirectly

by dfs(v) and will finish before dfs(v).

Thus, w will be done before v.

・Case 3: dfs(w) has already been called,

but has not yet returned.

Can’t happen in a DAG: function call stack contains

path from w to v, so v→w would complete a cycle.

dfs(0)
 dfs(1)
 dfs(4)
 4 done
 1 done
 dfs(2)
 2 done
 dfs(5)
 check 2
 5 done
0 done
check 1
check 2
dfs(3)
 check 2
 check 4
 check 5
 dfs(6)
 check 0
 check 4
 6 done
3 done
check 4
check 5
check 6
done

45

Topological sort in a DAG: correctness proof

all vertices pointing from 3 are done before 3 is done,
so they appear after 3 in topological order

case 2

v = 3

case 1

Proposition. A digraph has a topological order iff no directed cycle.

Pf.

・If directed cycle, topological order impossible.

・If no directed cycle, DFS-based algorithm finds a topological order.

Goal. Given a digraph, find a directed cycle.

Solution. DFS. What else? See textbook.
46

Directed cycle detection

Finding a directed cycle in a digraph

dfs(0)
 dfs(5)
 dfs(4)
 dfs(3)
 check 5

 marked[] edgeTo[] onStack[]
0 1 2 3 4 5 ... 0 1 2 3 4 5 ... 0 1 2 3 4 5 ...

1 0 0 0 0 0 - - - - - 0 1 0 0 0 0 0
1 0 0 0 0 1 - - - - 5 0 1 0 0 0 0 1
1 0 0 0 1 1 - - - 4 5 0 1 0 0 0 1 1
1 0 0 1 1 1 - - - 4 5 0 1 0 0 1 1 1

a digraph with a directed cycle

Scheduling. Given a set of tasks to be completed with precedence

constraints, in what order should we schedule the tasks?

Remark. A directed cycle implies scheduling problem is infeasible.
47

Directed cycle detection application: precedence scheduling

http://xkcd.com/754

48

Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

public class A extends B
{
 ...
}

public class B extends C
{
 ...
}

public class C extends A
{
 ...
}

% javac A.java
A.java:1: cyclic inheritance
involving A
public class A extends B { }
 ^
1 error

Microsoft Excel does cycle detection (and has a circular reference toolbar!)

49

Directed cycle detection application: spreadsheet recalculation

Observation. DFS visits each vertex exactly once. The order in which it

does so can be important.

Orderings.

・Preorder: order in which dfs() is called.

・Postorder: order in which dfs() returns.

・Reverse postorder: reverse order in which dfs() returns.

50

Depth-first search orders

 private void dfs(Graph G, int v)
 {
 marked[v] = true;
 preorder.enqueue(v);
 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w);
 postorder.enqueue(v);
 reversePostorder.push(v);
 }

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ digraph API

‣ digraph search

‣ topological sort

‣ strong components

4.2 DIRECTED GRAPHS

Def. Vertices v and w are strongly connected if there is both a directed path

from v to w and a directed path from w to v.

Key property. Strong connectivity is an equivalence relation:

・v is strongly connected to v.

・If v is strongly connected to w, then w is strongly connected to v.

・If v is strongly connected to w and w to x, then v is strongly connected to x.

Def. A strong component is a maximal subset of strongly-connected vertices.

Strongly-connected components

52
A digraph and its strong components5 strongly-connected components

public boolean connected(int v, int w)
{ return id[v] == id[w]; }

Connected components vs. strongly-connected components

53

 0 1 2 3 4 5 6 7 8 9 10 11 12
id[] 0 0 0 0 0 0 1 1 1 2 2 2 2

v and w are connected if there is
a path between v and w

constant-time client connectivity query

3 connected components

connected component id (easy to compute with DFS)

A digraph and its strong componentsA graph and its connected components

v and w are strongly connected if there is both a directed
path from v to w and a directed path from w to v

 0 1 2 3 4 5 6 7 8 9 10 11 12
 id[] 1 0 1 1 1 1 3 4 3 2 2 2 2

constant-time client strong-connectivity query

5 strongly-connected components

strongly-connected component id (how to compute?)

public boolean stronglyConnected(int v, int w)
{ return id[v] == id[w]; }

A digraph and its strong components

54

Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.

Strong component. Subset of species with common energy flow.

http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.gif

55

Strong component application: software modules

Software module dependency graph.

・Vertex = software module.

・Edge: from module to dependency.

Strong component. Subset of mutually interacting modules.

Approach 1. Package strong components together.

Approach 2. Use to improve design!

Internet ExplorerFirefox

Strong components algorithms: brief history

1960s: Core OR problem.

・Widely studied; some practical algorithms.

・Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

・Classic algorithm.

・Level of difficulty: Algs4++.

・Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).

・Forgot notes for lecture; developed algorithm in order to teach it!

・Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.

・Gabow: fixed old OR algorithm.

・Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.
56

A digraph and its strong components

Reverse graph. Strong components in G are same as in GR.

Kernel DAG. Contract each strong component into a single vertex.

Idea.

・Compute topological order (reverse postorder) in kernel DAG.

・Run DFS, considering vertices in reverse topological order.

57

Kosaraju-Sharir algorithm: intuition

digraph G and its strong components

how to compute?

kernel DAG of G

Kernel DAG in reverse topological order

first vertex is a sink
(has no edges pointing from it)

AB

C

D
E

(topological order: A B C D E)

Phase 1. Compute reverse postorder in GR.

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of GR.

1

4

9

2

5

3

0

1211

10

Kosaraju-Sharir algorithm demo

58

digraph G

1

4

9

2

5

3

0

1211

10

8 76 8 76

Phase 1. Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

Kosaraju-Sharir algorithm demo

59

1 0 2 4 5 3 11 9 12 10 6 7 8

reverse digraph GR

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of GR.

1

4

9

2

5

3

0

1211

10

86 7

Kosaraju-Sharir algorithm demo

60

done

0
1
2
3
4

5
6
7
8
9

10
11
12

1
0
1
1
1

1
3
4
3
2

2
2
2

1 0 2 4 5 3 11 9 12 10 6 7 8

v id[]

Simple (but mysterious) algorithm for computing strong components.

・Phase 1: run DFS on GR to compute reverse postorder.

・Phase 2: run DFS on G, considering vertices in order given by first DFS.

61

Kosaraju-Sharir algorithm

...

check unmarked vertices in the order
0 1 2 3 4 5 6 7 8 9 10 11 12

dfs(0)
 dfs(6)
 dfs(8)
 check 6
 8 done
 dfs(7)
 7 done
 6 done
 dfs(2)
 dfs(4)
 dfs(11)
 dfs(9)
 dfs(12)
 check 11
 dfs(10)
 check 9
 10 done
 12 done
 check 7
 check 6
 9 done
 11 done
 check 6
 dfs(5)
 dfs(3)
 check 4
 check 2
 3 done
 check 0
 5 done
 4 done
 check 3
 2 done
0 done
dfs(1)
 check 0
1 done
check 2
check 3
check 4
check 5
check 6
check 7
check 8
check 9
check 10
check 11
check 12

 DFS in reverse digraph GR

reverse postorder for use in second dfs()
1 0 2 4 5 3 11 9 12 10 6 7 8

Simple (but mysterious) algorithm for computing strong components.

・Phase 1: run DFS on GR to compute reverse postorder.

・Phase 2: run DFS on G, considering vertices in order given by first DFS.

62

Kosaraju-Sharir algorithm

dfs(7)
 check 6
 check 9
7 done
check 8

check unmarked vertices in the order
1 0 2 4 5 3 11 9 12 10 6 7 8

 DFS in original digraph G

dfs(1)
1 done

dfs(0)
 dfs(5)
 dfs(4)
 dfs(3)
 check 5
 dfs(2)
 check 0
 check 3
 2 done
 3 done
 check 2
 4 done
 5 done
 check 1
0 done
check 2
check 4
check 5
check 3

dfs(11)
 check 4
 dfs(12)
 dfs(9)
 check 11
 dfs(10)
 check 12
 10 done
 9 done
 12 done
11 done
check 9
check 12
check 10

dfs(6)
 check 9
 check 4
 dfs(8)
 check 6
 8 done
 check 0
6 done

Proposition. Kosaraju-Sharir algorithm computes the strong components of

a digraph in time proportional to E + V.

Pf.

・Running time: bottleneck is running DFS twice (and computing GR).

・Correctness: tricky, see textbook (2nd printing).

・Implementation: easy!

63

Kosaraju-Sharir algorithm

64

Connected components in an undirected graph (with DFS)

public class CC
{
 private boolean marked[];
 private int[] id;
 private int count;

 public CC(Graph G)
 {
 marked = new boolean[G.V()];
 id = new int[G.V()];

 for (int v = 0; v < G.V(); v++)
 {
 if (!marked[v])
 {
 dfs(G, v);
 count++;
 }
 }
 }

 private void dfs(Graph G, int v)
 {
 marked[v] = true;
 id[v] = count;
 for (int w : G.adj(v))
 if (!marked[w])
 dfs(G, w);
 }

 public boolean connected(int v, int w)
 { return id[v] == id[w]; }
}

65

Strong components in a digraph (with two DFSs)

public class KosarajuSharirSCC
{
 private boolean marked[];
 private int[] id;
 private int count;

 public KosarajuSharirSCC(Digraph G)
 {
 marked = new boolean[G.V()];
 id = new int[G.V()];
 DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
 for (int v : dfs.reversePostorder())
 {
 if (!marked[v])
 {
 dfs(G, v);
 count++;
 }
 }
 }

 private void dfs(Digraph G, int v)
 {
 marked[v] = true;
 id[v] = count;
 for (int w : G.adj(v))
 if (!marked[w])
 dfs(G, w);
 }

 public boolean stronglyConnected(int v, int w)
 { return id[v] == id[w]; }
}

Digraph-processing summary: algorithms of the day

66

single-source
reachability
in a digraph

DFS

topological sort
in a DAG

DFS

strong
components
in a digraph

Kosaraju-Sharir
DFS (twice)

0
6

4

21

5

3

7

12

109

11

8

