

2.4 Priority Queues

- API and elementary implementations
- binary heaps
- heapsort
- event-driven simulation

Collections

A collection is a data types that store groups of items.

data type	key operations	data structure
stack	PUsh, Pop	linked list, resizing array
queue	EnQueue, Dequeue	linked list, resizing array
priority queue	Insert, Delete-Max	binary heap
symbol table	Put, Get, Delete	BST, hash table
set	Add, Contains, Delete	BST, hash table
Show me your code and conceal your data structures, and I shall		
continue to be mystified. Show me your data structures, and I won't		
usually need your code; it'll be obvious." - Fred Brooks		

Algorithms

Robert Sedgewick | Kevin Wayne http://algs4.cs.princeton.edu

2.4 Priority Queues

- API and elementary implementations
- binary heaps
- heapsorf
-event-driven simulatión

Priority queve

Collections. Insert and delete items. Which item to delete?

Stack. Remove the item most recently added.
Queue. Remove the item least recently added. Randomized queue. Remove a random item.

Priority queue. Remove the largest (or smallest) item.

operation	argument	$\begin{aligned} & \text { return } \\ & \text { value } \end{aligned}$
insert	P	
insert	Q	
insert	E	
remove max		Q
insert	X	
insert	A	
insert	M	
remove max		X
insert	P	
insert	,	
insert	E	
remove max		P

Priority queue API

Requirement. Generic items are Comparable.

Priority queue client example

Challenge. Find the largest M items in a stream of N items.

- Fraud detection: isolate $\$ \$$ transactions.
- NSA monitoring: flag most suspicious documents. N huge, m large

Constraint. Not enough memory to store N items.

\% more tinyBatch.txt		
Turing	$6 / 17 / 1990$	644.08
vonNeumann	$3 / 26 / 2002$	4121.85
Dijkstra	$8 / 22 / 2007$	2678.40
vonNeumann	$1 / 11 / 1999$	4409.74
Dijkstra	$11 / 18 / 1995$	837.42
Hoare	$5 / 10 / 1993$	3229.27
vonNeumann	$2 / 12 / 1994$	4732.35
Hoare	$8 / 18 / 1992$	4381.21
Turing	$1 / 11 / 2002$	66.10
Thompson	$2 / 27 / 2000$	4747.08
Turing	$2 / 11 / 1991$	2156.86
Hoare	$8 / 12 / 2003$	1025.70
vonNeumann	$10 / 13 / 1993$	2520.97
Dijkstra	$9 / 10 / 2000$	708.95
Turing	$10 / 12 / 1993$	3532.36
Hoare	$2 / 10 / 2005$	4050.20

Priority queue applications

- Event-driven simulation.
- Numerical computation.
- Data compression.
- Graph searching.
- Number theory.
- Artificial intelligence.
- Statistics.
- Operating systems.
- Computer networks.
- Discrete optimization.
- Spam filtering.
[customers in a line, colliding particles]
[reducing roundoff error]
[Huffman codes]
[Dijkstra's algorithm, Prim's algorithm]
[sum of powers]
[A* search]
[online median in data stream]
[load balancing, interrupt handling]
[web cache]
[bin packing, scheduling]
[Bayesian spam filter]

Generalizes: stack, queue, randomized queue.

Priority queue client example

Challenge. Find the largest M items in a stream of N items.

- Fraud detection: isolate $\$ \$$ transactions.
- NSA monitoring: flag most suspicious documents. N huge, m large

Constraint. Not enough memory to store N items.

Priority queue client example

Challenge. Find the largest M items in a stream of N items.

implementation	time	space
sort	$N \log N$	N
elementary PQ	$M N$	M
binary heap	$N \log M$	M
best in theory	N	M
order of growth of finding the largest \mathbf{M} in a stream of \mathbf{N} items		

Priority queue: unordered array implementation

public class UnorderedArrayMaxPQ<Key extends Comparable<Key>>
\{
private Key[] pq; // pq[i] = ith element on pq
private int N; // number of elements on pq
public UnorderedArrayMaxPQ(int capacity)
public boolean isEmpty()
\{ return $\mathrm{N}=0$; \}
public void insert(Key x)
\{ $\mathrm{pq}[\mathrm{N}++]=\mathrm{x} ; \quad\}$
public Key delMax()
\{
int $\max =0$;
for (int $\mathbf{i}=1$; $\mathbf{i}<\mathrm{N} ; \mathbf{i + +}$)
\qquad should null out entry
\}

operation	argument	return value	size	$\begin{aligned} & \text { contents } \\ & \text { (unordered) } \end{aligned}$							contents (ordered)						
insert	P		1	P							P						
insert	Q		2	P	Q						P	Q					
insert	E		3	P	Q	E					E	P	Q				
remove max		Q	2	P	E						E	P					
insert	X		3	P	E	X					E	P	X				
insert	A		4	P	E	X	A				A	E	P	X			
insert	M		5	P	E	X	A	M			A	E	M	P	X		
remove max		X	4	P	E	M	A				A	E	M	P			
insert	P		5	P	E	M	A	P			A	E	M	P	P		
insert	L		6	P	E	M	A	P	L		A	E	L	M	P	P	
insert	E		7	P	E	M	A	P	L	E	A	E	E	L	M	P	P
remove max		P	6	E	M	A	P	L	E		A	E	E	L	M	P	

A sequence of operations on a priority queue

Priority queue elementary implementations

Challenge. Implement all operations efficiently.

implementation	insert	del \max	\max
unordered array	1	N	N
ordered array	N	1	1
goal	$\log N$	$\log N$	$\log N$

order of growth of running time for priority queue with \mathbf{N} items

Complete binary tree

Binary tree. Empty or node with links to left and right binary trees.

Complete tree. Perfectly balanced, except for bottom level.

Property. Height of complete tree with N nodes is $\lfloor\lg N\rfloor$. Pf. Height increases only when N is a power of 2.

Binary heap representations

Binary heap. Array representation of a heap-ordered complete binary tree.

Heap-ordered binary tree.

- Keys in nodes.
- Parent's key no smaller than children's keys.

Array representation.

- Indices start at 1 .
- Take nodes in level order.
- No explicit links needed!

Binary heap properties

Proposition. Largest key is a[1], which is root of binary tree.

Proposition. Can use array indices to move through tree.

- Parent of node at k is at $k / 2$.
- Children of node at k are at $2 k$ and $2 k+1$.

Binary heap demo

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.
heap ordered

Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
heap ordered

(D)

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l}
\hline \mathrm{T} & \mathrm{P} & \mathrm{R} & \mathrm{~N} & \mathrm{H} & \mathrm{O} & \mathrm{~A} & \mathrm{E} & \mathrm{I} & \mathrm{G} \\
\hline
\end{array}
$$

Promotion in a heap

Scenario. Child's key becomes larger key than its parent's key.

To eliminate the violation:

- Exchange key in child with key in parent.
- Repeat until heap order restored.

```
private void swim(int k)
{
    while (k > 1 && less(k/2, k))
    {
        exch(k, k/2);
        k=k/2;
    } parent of node at }k\mathrm{ is at }k/
}
```


Insertion in a heap

Insert. Add node at end, then swim it up.
Cost. At most $1+\lg N$ compares.

```
public void insert(Key x)
{
    pq[++N] = x;
    swim(N);
}
```


Delete the maximum in a heap

Delete max. Exchange root with node at end, then sink it down.
Cost. At most $2 \lg N$ compares.

```
public Key delMax()
{
    Key max = pq[1];
    exch(1, N--);
    sink(1);
    pq[N+1] = nul1; \longleftarrow}\mathrm{ prevent loitering
    return max;
}
```


Demotion in a heap

Scenario. Parent's key becomes smaller than one (or both) of its children's.
To eliminate the violation: why not smaller child?

- Exchange key in parent with key in larger child.
- Repeat until heap order restored.

```
private void sink(int k)
{
    while (2*k <= N) children of node at k
    {
        int j = 2*k
        if (j < N && less(j, j+1)) j++;
        if (!less(k, j)) break;
        exch(k, j);
        k = j;
    }
}
```


Power struggle. Better subordinate promoted.

Binary heap: Java implementation

implementation	insert	del \max	\max
unordered array	1	N	N
ordered array	N	1	1
binary heap	$\log N$	$\log N$	1

order-of-growth of running time for priority queue with \mathbf{N} items

Binary heap: practical improvements

Half-exchanges in sink and swim.

- Reduces number of array accesses
- Worth doing.

Binary heap: practical improvements

Floyd's sink-to-bottom trick.

- Sink key at root all the way to bottom. $\longleftarrow 1$ compare per node
- Swim key back up. \longleftarrow some extra compares and exchanges
- Fewer compares; more exchanges.
- Worthwhile depending on cost of compare and exchange.

Binary heap: practical improvements

Multiway heaps

- Complete d-way tree.
- Parent's key no smaller than its children's keys.
- Swim takes $\log _{d} N$ compares; sink takes $d \log _{d} N$ compares.
- Sweet spot: $d=4$.

Binary heap: practical improvements

Caching. Binary heap is not cache friendly.

Priority queues implementation cost summary

implementation	insert	del max	max	
unordered array	1	N	N	
ordered array	N	1	1	
binary heap	$\log N$	$\log N$	1	
d-ary heap	$\log _{d} N$	$d \log _{d} N$	1	
Fibonacci	1	$\log N^{\dagger}$	1	
Brodal queue	1	$\log N$	1	
impossible	1	1	1	\longleftarrow

order-of-growth of running time for priority queue with \mathbf{N} items

Binary heap: practical improvements

Caching. Binary heap is not cache friendly.

- Cache-aligned d-heap.
- Funnel heap.
- B-heap.
- ...

Binary heap considerations

Underflow and overflow.

- Underflow: throw exception if deleting from empty PQ.
- Overflow: add no-arg constructor and use resizing array.

Minimum-oriented priority queue. | leads to $\log N$ |
| :---: |
| amortized time per op |
| (how to make worst case?) |

- Replace less() with greater().
- Implement greater().

Other operations.

- Remove an arbitrary item. \qquad can implement efficiently with sink() and swim()
- Change the priority of an item. [stay tuned for Prim/Dijkstra]

Immutability of keys.

- Assumption: client does not change keys while they're on the PQ.
- Best practice: use immutable keys.

Immutability: implementing in Java

Data type. Set of values and operations on those values. Immutable data type. Can't change the data type value once created.

Immutable. String, Integer, Double, Color, Vector, Transaction, Point2D. Mutable. StringBuilder, Stack, Counter, Java array.

2.4 Priority Queues

\checkmark APH and elementary implementations

- binary heaps
- heapsort

Devent-driven simulatión.

Robert Sedgewick \| Keyin Wayne
http://algs4.cs.princeton.edu

Immutability: properties

Data type. Set of values and operations on those values.
Immutable data type. Can't change the data type value once created.

Advantages.

- Simplifies debugging.
- Safer in presence of hostile code.
- Simplifies concurrent programming.

- Safe to use as key in priority queue or symbol table.

Disadvantage. Must create new object for each data type value.
" Classes should be immutable unless there's a very good reason to make them mutable.... If a class cannot be made immutable, you should still limit its mutability as much as possible. "

- Joshua Bloch (Java architect)

Sorting with a binary heap

Q. What is this sorting algorithm?

```
public void sort(String[] a)
{
```

 int \(N=\) a.length;
 MaxPQ<String> \(p q=\) new MaxPQ<String>();
 for (int \(\mathbf{i}=0 ; \mathbf{i}<\mathbf{N} ; \mathbf{i}++\))
 pq.insert(a[i]);
 for (int \(\mathbf{i}=\mathrm{N}-1\); \(\mathbf{i}>=0\); \(\mathbf{i - -}\))
 \(\mathrm{a}[\mathrm{i}]=\mathrm{pq} \cdot \operatorname{del} \operatorname{Max}()\);
 \}
Q. What are its properties?
A. $N \log N$, extra array of length N, not stable.

Heapsort intuition. A heap is an array; do sort in place.

Heapsort

Basic plan for in-place sort.

- View input array as a complete binary tree.
- Heap construction: build a max-heap with all N keys.
- Sortdown: repeatedly remove the maximum key.
keys in arbitrary order

build max heap
(in place)
 sorted resu
(in place)

$\begin{array}{lllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ S & O & R & T & E & X & A & M & P & L & E\end{array}$
E E L M O P P R

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
array in sorted order

A

E

M
0
P

Heapsort demo

Heap construction. Build max heap using bottom-up method
we assume array entries are indexed 1 to N
array in arbitrary order

| S | O | R | T | E | X | A | M | P | L | E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |

Heapsort: heap construction

First pass. Build heap using bottom-up method.

```
for (int k = N/2; k >= 1; k--)
    sink(a, k, N);
```


$\operatorname{sink}(4,11)$

Heapsort: sortdown

Second pass.

- Remove the maximum, one at a time.
- Leave in array, instead of nulling out.

```
while (N > 1)
{
    exch(a, 1, N--);
    sink(a, 1, N);
}
```


Heapsort: Java implementation

```
public class Heap
{
    public static void sort(Comparable[] a)
    {
        int N = a.length;
        for (int k = N/2; k >= 1; k--)
        sink(a, k, N);
        while (N > 1)
        {
        exch(a, 1, N);
        sink(a, 1, --N);
        }
    }
    private static/void sink(Comparable[] a, int k, int N)
    { /* as before */ }
    private static boolean less(Comparable[] a, int i, int j)
    { /* as before */ }
    private static void exch(Object[] a, int i, int j)
    { /* as before *
}
but convert from 1-based
but convert from 1-based
```


Heapsort trace (array contents just after each sink)

Heapsort: mathematical analysis

Proposition. Heap construction uses $\leq 2 N$ compares and $\leq N$ exchanges.

Pf sketch. [assume $N=2^{h+1}-1$] max number of exchange

binary heap of height $h=3$
a tricky sum (see COS 340)

$$
\begin{aligned}
h+2(h-1)+4(h-2)+8(h-3)+\ldots+2^{h}(0) & \leq 2^{h+1} \\
& =N
\end{aligned}
$$

Heapsort: mathematical analysis

Proposition. Heap construction uses $\leq 2 N$ compares and $\leq N$ exchanges.
Proposition. Heapsort uses $\leq 2 N \lg N$ compares and exchanges.
algorithm can be improved to $\sim 1 \mathrm{~N} \operatorname{Ig} \mathrm{~N}$

Significance. In-place sorting algorithm with $N \log N$ worst-case.

- Mergesort: no, linear extra space. \longleftarrow in-place merge possible, not practical
- Quicksort: no, quadratic time in worst case. $\longleftarrow N \log N$ worst-case quicksort possible
- Heapsort: yes!

Bottom line. Heapsort is optimal for both time and space, but:

- Inner loop longer than quicksort's.
- Makes poor use of cache.
- Not stable.
advanced tricks for improving

Introsort

Goal. As fast as quicksort in practice; $N \log N$ worst case, in place

Introsort.

- Run quicksort.
- Cutoff to heapsort if stack depth exceeds $2 \lg N$.
- Cutoff to insertion sort for $N=16$.

In the wild. C++ STL, Microsoft .NET Framework.

	inplace?	stable?	best	average	worst	remarks
selection	\checkmark		$1 / 2 N^{2}$	$1 / 2 N^{2}$	$1 / 2 N^{2}$	N exchanges
insertion	\checkmark	\checkmark	N	$1 / 4 N^{2}$	$1 / 2 N^{2}$	use for small N or partially ordered
shell	\checkmark		$N \log _{3} N$?	$c N^{3 / 2}$	tight code; subquadratic
merge		\checkmark	$1 / 2 N \lg N$	$N \lg N$	$N \lg N$	$N \log N$ guarantee; stable
timsort		\checkmark	N	$N \lg N$	$N \lg N$	improves mergesort when preexisting order
quick	\checkmark		$N \lg N$	$2 N \ln N$	$1 / 2 N^{2}$	$N \log N$ probabilistic guarantee; fastest in practice
3-way quick	\checkmark		N	$2 N \ln N$	$1 / 2 N^{2}$	improves quicksort when duplicate keys
heap	\checkmark		N	$2 N \lg N$	$2 N \lg N$	$N \log N$ guarantee; in-place
?	\checkmark	\checkmark	N	$N \lg N$	$N \lg N$	holy sorting grail

Molecular dynamics simulation of hard discs

Goal. Simulate the motion of N moving particles that behave according to the laws of elastic collision.

Warmup: bouncing balls

Time-driven simulation. N bouncing balls in the unit square.

```
public class BouncingBalls
pub
    public static void main(String[] args)
    pub
        int N = Integer.parseInt(args[0]);
        Ball[] balls = new Ball[N];
        for (int i = 0; i < N; i++)
            balls[i] = new Ball();
        while(true)
        {
            StdDraw.clear();
            for (int i = 0; i < N; i++)
            {
            ba11s[i].move(0.5);
            balls[i].draw();
        }
            StdDraw.show(50);
    }
    }
}
```

\% java BouncingBalls 100

Molecular dynamics simulation of hard discs

Goal. Simulate the motion of N moving particles that behave according to the laws of elastic collision.

Hard disc model.

- Moving particles interact via elastic collisions with each other and walls.
- Each particle is a disc with known position, velocity, mass, and radius.
- No other forces.

motion of individual atoms and molecules

Significance. Relates macroscopic observables to microscopic dynamics.

- Maxwell-Boltzmann: distribution of speeds as a function of temperature.
- Einstein: explain Brownian motion of pollen grains.

Warmup: bouncing balls

```
public class Ball
{
    private double rx, ry; // position
    private double vx, vy; // velocity
    private final double radius; // radius
    public Ba11(...)
        check for collision with walls
    public void move(double dt)
        if ((rx + vx*dt < radius) || (rx + vx*dt > 1.0 - radius)) { vx = -vx; }
        if ((ry + vy*dt < radius) || (ry + vy*dt > 1.0 - radius)) { vy = -vy; }
        rx = rx + vx*dt;
        ry = ry + vy*dt;
    }
    public void draw()
    { StdDraw.filledCircle(rx, ry, radius); }
}
```

Missing. Check for balls colliding with each other.

- Physics problems: when? what effect?
- CS problems: which object does the check? too many checks?

Time-driven simulation

- Discretize time in quanta of size $d t$.
- Update the position of each particle after every $d t$ units of time, and check for overlaps.
- If overlap, roll back the clock to the time of the collision, update the velocities of the colliding particles, and continue the simulation.

Event-driven simulation

Change state only when something happens

- Between collisions, particles move in straight-line trajectories.
- Focus only on times when collisions occur
- Maintain PQ of collision events, prioritized by time.
- Remove the $\min =$ get next collision.

Collision prediction. Given position, velocity, and radius of a particle, when will it collide next with a wall or another particle?

Collision resolution. If collision occurs, update colliding particle(s) according to laws of elastic collisions.

```
prediction (at time t)
    particles hit unless one passes
    intersection point before the ot
```

 arrives

Time-driven simulation

Main drawbacks.

- $\sim N^{2 / 2}$ overlap checks per time quantum.
- Simulation is too slow if $d t$ is very small.
- May miss collisions if $d t$ is too large.
(if colliding particles fail to overlap when we are looking)

> dt too small: excessive computation dt too large: may miss collisions

Particle-wall collision

Collision prediction and resolution.

- Particle of radius s at position $(r x, r y)$.
- Particle moving in unit box with velocity ($v x, v y$).
- Will it collide with a vertical wall? If so, when?
prediction (at time t)
$d t \equiv$ time to hit wall $=$ distance/velocity $=\left(1-s-r_{x}\right) / v_{x}$

Predicting and resolving a particle-wall collision

Particle-particle collision prediction

Collision prediction.

- Particle i : radius $s i$, position $\left(r x_{i}, r y_{i}\right)$, velocity $\left(v x_{i}, v y_{i}\right)$.
- Particle j : radius s_{j}, position $\left(r x_{j}, r y_{j}\right)$, velocity $\left(v x_{j}, v y_{j}\right)$.
- Will particles i and j collide? If so, when?

Particle-particle collision resolution

Collision resolution. When two particles collide, how does velocity change?

$$
\begin{aligned}
& \begin{aligned}
v x_{i}^{\prime} & =v x_{i}+J x / m_{i} \\
v y_{i}^{\prime} & =v y_{i}+J y / m_{i} \\
v x_{j}^{\prime} & =v x_{j}-J x / m_{j} \\
v y_{j}^{\prime} & =v y_{j}-J y / m_{j}
\end{aligned} \quad \begin{array}{c}
\text { Newton's second law } \\
\text { (momentum form) }
\end{array} \\
& J x=\frac{J \Delta r x}{\sigma}, J y=\frac{J \Delta r y}{\sigma}, J=\frac{2 m_{i} m_{j}(\Delta v \cdot \Delta r)}{\sigma\left(m_{i}+m_{j}\right)} \\
& \text { impulse due to normal force }
\end{aligned}
$$

Particle-particle collision prediction

Collision prediction.

- Particle i : radius $s i$, position ($r x_{i}, r y_{i}$), velocity ($v x_{i}, v y_{i}$).
- Particle j : radius s_{j}, position $\left(r x_{j}, r y_{j}\right)$, velocity $\left(v x_{j}, v y_{j}\right)$.
- Will particles i and j collide? If so, when?

$$
\left.\begin{array}{l}
\Delta t= \begin{cases}\infty & \text { if } \Delta v \cdot \Delta r \geq 0 \\
\infty & \text { if } d<0 \\
-\frac{\Delta v \cdot \Delta r+\sqrt{d}}{\Delta v \cdot \Delta v} & \text { otherwise }\end{cases} \\
d=(\Delta v \cdot \Delta r)^{2}-(\Delta v \cdot \Delta v)\left(\Delta r \cdot \Delta r-\sigma^{2}\right) \quad \sigma=\sigma_{i}+\sigma_{j}
\end{array}\right] \begin{array}{ll}
\Delta v=(\Delta v x, \Delta v y)=\left(v x_{i}-v x_{j}, v y_{i}-v y_{j}\right) & \Delta v \cdot \Delta v=(\Delta v x)^{2}+(\Delta v y)^{2} \\
\Delta r=(\Delta r x, \Delta r y)=\left(r x_{i}-r x_{j}, r y_{i}-r y_{j}\right) & \begin{array}{ll}
\Delta r \cdot \Delta r=(\Delta r x)^{2}+(\Delta r y)^{2} \\
\Delta v \cdot \Delta r=(\Delta v x)(\Delta r x)+(\Delta v y)(\Delta r y)
\end{array}
\end{array}
$$

Important note: This is physics, so we won't be testing you on it!

Particle data type skeleton

```
public class Particle
{
    lol}\begin{array}{l}{\mathrm{ private double rx, ry; // position}}\\{\mathrm{ private double vx, vy; // velocity}}
    prrvate double vx, vy;
    private final double mass; // mass
    private int count;
    public Particle(...) { }
    public void move(double dt) { }
    public void draw() {
    public double timeToHit(Particle that) { }
    public double timeToHitVerticalWall() { }
    public double timeToHitHorizontalWal1() { }
    public void bounceOff(Particle that) { }
    public void bounceOffVerticalWal1()
    public void bounceOffHorizonta7Wa11() {}
}
```


Particle-particle collision and resolution implementation

```
public double timeToHit(Particle that)
{
    if (this == that) return INFINITY;
    double dx = that.rx - this.rx, dy = that.ry - this.ry;
    dol
    doub7e dvdr = dx*dvx + dy*dvy;
    double dvdv = dvx*dvx + dvy*dvy;
    double drdr = dx*dx + dy*dy;
    double sigma = this.radius + that.radius;
    double d = (dvdr*dvdr) - dvdv * (drdr - sigma*sigma);
    if (d < 0) return INFINITY;
    return -(dvdr + Math.sqrt(d)) / dvdv
```

\}
public void bounceOff(Particle that)
double $\mathrm{dx}=$ that.rx - this.rx, $\mathrm{dy}=$ that.ry - this.ry;
double dvx = that.vx - this.vx, dvy = that.vy - this.vy;
double dvdr = dx*dvx + dy*dvy;
double J = 2 * this.mass * that.mass * dvdr / ((this.mass + that.mass) * dist)
double $J \mathrm{x}=\mathrm{J} * \mathrm{dx} /$ dist;
double $\mathrm{Jy}=\mathrm{J} * \mathrm{dy} /$ dist;
this.vx += Jx / this.mass;
this.vy $+=J y /$ this.mass;
that.vy $-=\mathrm{Jy} /$ that.mass;
this.count++;
that.count++; Important note: This is physics, so we won't be testing you on it!

Event data type

Conventions.

- Neither particle nu11 \Rightarrow particle-particle collision.
- One particle nul1 \Rightarrow particle-wall collision.
- Both particles null \Rightarrow redraw event.

$$
\begin{array}{ll}
\text { private class Event implements } & \text { Comparable<Event> } \\
\begin{cases}\text { private double time; } & \text { // time of event } \\
\text { private Particle } a, b ; & \text { // particles involved in event } \\
\text { private int countA, countB; } & \text { // collision counts for a and } b\end{cases}
\end{array}
$$

Collision system: event-driven simulation main loop

Initialization.

- Fill PQ with all potential particle-wall collisions.
- Fill PQ with all potential particle-particle collisions.

> "potential" since collision may not happen if some other collision intervenes

Main loop

- Delete the impending event from PQ (min priority $=t$)
- If the event has been invalidated, ignore it
- Advance all particles to time t, on a straight-line trajectory.
- Update the velocities of the colliding particle(s).
- Predict future particle-wall and particle-particle collisions involving the colliding particle(s) and insert events onto PQ.

Collision system implementation: skeleton

```
public class CollisionSystem
{
    private MinPQ<Event> pq; // the priority queue
    private doub7e t = 0.0; // simulation clock time
    private Particle[] particles; // the array of particles
    public CollisionSystem(Particle[] particles) { }
    private void predict(Particle a) add to PQ all particle-wall and particle-
    {
        if (a == null) return;
        for (int i = 0; i < N; i++)
        {
            double dt = a.timeToHit(particles[i]);
            pq.insert(new Event(t + dt, a, particles[i]));
        }
        pq.insert(new Event(t + a.timeToHitVerticalWal1() , a, nul1));
        pq.insert(new Event(t + a.timeToHitHorizontalWall(), null, a));
}
    private void redraw() { }
    public void simulate() { /* see next slide */ }
}
```


Particle collision simulation example 2
\% java CollisionSystem 100

Particle collision simulation example 3

\% java CollisionSystem < brownian.txt

\% java CollisionSystem < diffusion.txt

