
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

2.3 QUICKSORT

‣ quicksort

‣ selection

‣ duplicate keys

‣ system sorts

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

2

Two classic sorting algorithms: mergesort and quicksort

Critical components in the world’s computational infrastructure.

・Full scientific understanding of their properties has enabled us

to develop them into practical system sorts.

・Quicksort honored as one of top 10 algorithms of 20th century

in science and engineering.

Mergesort. [last lecture]

Quicksort. [this lecture]

...

...

3

Quicksort t-shirt

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ quicksort

‣ selection

‣ duplicate keys

‣ system sorts

2.3 QUICKSORT

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://www.cs.princeton.edu/~wayne
http://www.cs.princeton.edu/~wayne

5

Quicksort

Basic plan.

・Shuffle the array.

・Partition so that, for some j

– entry a[j] is in place

– no larger entry to the left of j

– no smaller entry to the right of j

・Sort each subarray recursively.

Q U I C K S O R T E X A M P L E

K R A T E L E P U I M Q C X O S

E C A I E K L P U T M Q R X O S

A C E E I K L P U T M Q R X O S

A C E E I K L M O P Q R S T U X

A C E E I K L M O P Q R S T U X

not greater not less

partitioning item

input

shuffle

partition

sort left

sort right

result

Quicksort overview

keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/23DemoQuicksort.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/23DemoQuicksort.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/23DemoQuicksort.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/23DemoQuicksort.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/23DemoQuicksort.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/23DemoQuicksort.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/23DemoQuicksort.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/23DemoQuicksort.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/23DemoQuicksort.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/23DemoQuicksort.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/23DemoQuicksort.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/23DemoQuicksort.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/23DemoQuicksort.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/23DemoQuicksort.key

・Invented quicksort to translate Russian into English.

・[but couldn't explain his algorithm or implement it!]

・Learned Algol 60 (and recursion).

・Implemented quicksort.

Tony Hoare

6

Tony Hoare
1980 Turing Award

4

A L G O R I T H M 61
P R O C E D U R E S F O R R A N G E A R I T H M E T I C
ALLAN GIBB*
U n i v e r s i t y of A l b e r t a , C a l g a r y , A l b e r t a , C a n a d a

b e g i n
p r o c e d u r e RANGESUM (a, b, c, d, e, f);

rea l a , b , c , d , e , f ;
c o m m e n t The term "range number" was used by P. S. Dwyer,
Linear Computations (Wiley, 1951). Machine procedures for
range ari thmetic were developed about 1958 by Ramon Moore,
"Automatic Error Analysis in Digital Computa t ion ," LMSD
Report 48421, 28 Jan. 1959, Lockheed Missiles and Space Divi-
sion, Palo Alto, California, 59 pp. If a _< x -< b and c ~ y ~ d,
then RANGESUM yields an interval [e, f] such tha t e =< (x + y)

f. Because of machine operation (truncation or rounding) the
machine sums a -4- c and b -4- d may not provide safe end-points
of the output interval. Thus RANGESUM requires a non-local
real procedure ADJUSTSUM which will compensate for the
machine ari thmetic. The body of ADJUSTSUM will be de-
pendent upon the type of machine for which it is wri t ten and so
is not given here. (An example, however, appears below.) I t
is assumed tha t ADJUSTSUM has as parameters real v and w,
and integer i, and is accompanied by a non-local real procedure
CORRECTION which gives an upper bound to the magnitude
of the error involved in the machine representat ion of a number.
The output ADJUSTSUM provides the left end-point of the
output interval of RANGESUM when ADJUSTSUM is called
with i = --1, and the right end-point when called with i = 1
The procedures RANGESUB, RANGEMPY, and RANGEDVD
provide for the remaining fundamental operations in range
ari thmetic. RANGESQR gives an interval within which the
square of a range nmnber must lie. RNGSUMC, RNGSUBC,
RNGMPYC and RNGDVDC provide for range ari thmetic with
complex range arguments, i.e. the real and imaginary parts
are range numbers~
b e g i n

e := ADJUSTSUM (a, c, - 1) ;
f : = ADJUSTSUM (b, d, 1)

end RANGESUM;
p r o c e d u r e RANGESUB (a, b, c, d, e, f) ;

real a, b ,c , d ,e , f;
c o m m e n t RANGESUM is a non-local procedure;
b e g i n

RANGESUM (a, b, - d , --c, e, f)
e n d RANGESUB ;
p r o c e d u r e RANGEMPY (a, b, c, d, e, f);

real a, b, c, d, e, f;
c o m m e n t ADJUSTPROD, which appears at the end of this
procedure, is analogous to ADJUSTSUM above and is a non-
local real procedure. MAX and MIN find the maximum and
minimum of a set of real numbers and are non-local;
b e g i n

rea l v, w;
i f a < 0 A c => 0 t h e n

1: b e g i n
v : = c ; c : = a ; a : = v ; w : = d ; d : = b ; b : = w

end 1;
i f a => O t h e n

2: b e g i n
i f c >= 0 t h e n

3 :beg in
e : = a X e ; f := b X d ; g o t o 8

en d 3 ;
e : = b X c ;
i f d ~ 0 t h e n

4: b e g i n
f : = b X d ; g o t o 8

end 4;
f : = a X d ; g o t o 8

5: en d 2;
i f b > 0 t h e n

6: b e g i n
i f d > 0 t h e n
b e g i n

e := MIN(a X d, b X c);
f : = MAX(a X c , b X d); go t o 8

e n d 6;
e : = b X c; f : = a X c; go t o 8

end 5;
f : = a X c ;
i f d _-< O t h e n

7: b e g i n
e : = b X d ; g o t o 8

end 7 ;
e : = a X d ;

8: e : = ADJUSTPROD (e, - 1) ;
f := ADJUSTPROD (f, 1)

en d RANGEMPY;
p r o c e d u r e RANGEDVD (a, b, c, d, e, f) ;

real a, b, c, d, e, f;
c o m m e n t If the range divisor includes zero the program
exists to a non-local label "zerodvsr" . RANGEDVD assumes a
non-local real procedure ADJUSTQUOT which is analogous
(possibly identical) to ADJUSTPROD;
b e g i n

i f c =< 0 A d ~ 0 t h e n go to zer0dvsr;
i f c < 0 t h e n

1: b e g i n
i f b > 0 t h e n

2: b e g i n
e : = b /d ; go t o 3

e n d 2;
e : = b /c ;

3: i f a -->_ 0 t h e n
4: b e g i n

f : = a /c ; go to 8
e n d 4;
f : = a /d ; go to 8

e nd 1 ;
i f a < 0 t h e n

5: b e g i n
e : = a/c; go t o 6

e nd 5 ;
e : = a /d ;

6: i f b > 0 t h e n
7: b e g i n

f : = b/c ; go t o 8
e n d 7 ;
f : = b /d ;

8: e := ADJUSTQUOT (e, - 1) ; f : = ADJUSTQUOT (f,1)
end RANGEDVD ;
p r o c e d u r e RANGESQR (a, b, e, f);

rea l a, b, e, f;
c o m m e n t ADJUSTPROD is a non-10cal procedure;
b e g i n

i f a < 0 t h e n

C o m m u n i c a t i o n s o f t h e &CM 319

n u m b e r) . 9.9 X 10 45 is u sed to r e p r e s e n t inf in i ty . I m a g i n a r y
v a l u e s of x m a y no t be n e g a t i v e a n d reM v a l u e s of x m a y n o t be
s m a l l e r t h a n 1.

Va lues of Qd~'(x) m a y be ca l cu l a t ed eas i ly by h y p e r g e o m e t r i c
ser ies if x is n o t too sma l l no r (n - m) too large. Q~m(x) can be
c o m p u t e d f rom an a p p r o p r i a t e se t of v a l u e s of Pnm(X) if X is nea r
1.0 or ix is nea r 0. Loss of s ign i f i can t d ig i t s occurs for x as sma l l as
1.1 if n is l a rge r t h a n 10. Loss of s ign i f i can t d ig i t s is a m a j o r diffi-
cu l t y in u s i n g finite p o l y n o m i M r e p r e s e n t a t i o n s also if n is l a rge r
t h a n m. Howeve r , Q L E G h a s been t e s t e d in reg ions of x a n d n
b o t h large a n d smal l ;
p r o c e d u r e Q L E G (m , n m a x , x, ri, R, Q); v a l u e In, n m a x , x, ri ;

r e a l In, m n a x , x, ri ; r e a l a r r a y R , Q;
b e g i n r e a l t , i, n, q0, s ;

n : = 20;
i f n m a x > 13 t h e n

n : = n m a x + 7 ;
i f ri = 0 t h e n

b e g i n i f m = 0 t h e n
Q[0] : = 0.5 X 10g((x + 1) / (x - 1))
e l s e

b e g i n t : = - - 1 . 0 / s q r t (x X x - - 1);
q0 : = 0;
Q[O] : = t ;
fo r i : = 1 s t e p 1 u n t i l m d o

b e g i n s : = (x + x) X (i - 1) X t
×Q [0] + (3 i - i× i - 2)×q 0 ;
q0 : = Q[0];
Q[0] : = s e n d e n d ;

i f x = 1 t h e n
Q[0] : = 9.9 I" 45;

R[n + 1] : = x - s q r t (x X x - 1);
for i : = n s t e p --1 u n t i l 1 d o

R[i] : = (i + m) / ((i + i + 1) X x
+ (m - i - 1) X R [i + l]) ;

go to t h e e n d ;
i f m = 0 t h e n

b e g i n i f x < 0.5 t b e n
Q[0] : = a r c t a n (x) - 1.5707963 e l s e
Q[0] : = - a r e t a n (1 / x) e n d e l s e

b e g i n t : = 1 / s q r t (x X x + 1);
q0 : = 0;
q[0] := t;
f o r i : = 2 s t e p 1 u n t i l m do

b e g i n s : = (x + x) X (i -- 1) X t X Q[0I
+ (3 i + i X i -- 2) × q0;
qO : = Q[0];
Q[0] := s e n d e n d ;

R[n + 1] : = x - s q r t (x × x + 1);
for i : = n s t e p - 1 u n t i l 1 do

R[i] : = (i + m) / ((i -- m + 1) × R[i + 1]
- - (i + i + 1) X x);

f o r i : = 1 s t e p 2 u n t i l n m a x do
Ril l : = -- Ri l l ;

t h e : f o r i : = 1 s t e p 1 u n t i l n n m x d o
Q[i] : = Q[i - 1] X R[i]

e n d Q L E G ;

* T h i s p r o c e d u r e was deve loped in p a r t u n d e r t he s p o n s o r s h i p
of t he Air Force C a m b r i d g e R e s e a r c h C en t e r .

ALGORITHM 63
PARTITION
C. A. R. HOARE
Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.
p r o c e d u r e p a r t i t i o n (A , M , N , I , J) ; v a l u e M , N ;

a r r a y A; i n t e g e r M , N , 1 , J ;

c o n u n e n t I and J are o u t p u t va r i ab le s , a n d A is t h e a r r a y (wi th
s u b s c r i p t b o u n d s M : N) wh i ch is o p e r a t e d u p o n by th i s p rocedure .
P a r t i t i o n t a k e s t h e va l ue X of a r a n d o m e l e m e n t of the a r r a y A,
a n d r e a r r a n g e s t he va lue s of t he e l e m e n t s of t he a r r a y in s u c h a
way t h a t t he r e ex is t i n t ege r s I a n d J w i t h t he fo l lowing p ro p e r t i e s :

M _-< J < I =< N p r o v i d e d M < N
A[R] =< X f o r M =< R _-< J
A[R] = X f o r J < R < I
A[R] ~ X f o r I =< R ~ N

T h e p roce du re uses an in tege r p rocedu re r a n d o m (M,N) wh ich
chooses e q u i p r o b a b l y a r a n d o m in t ege r F b e t w e e n M an d N, a n d
also a p roc e du re exchange , wh ich e x c h a n g e s t he v a lu e s of i t s two
p a r a m e t e r s ;
b e g i n r e a l X ; i n t e g e r F;

F : = r a n d o m (M , N) ; X : = A[F];
I : = M ; J : = N ;

up : for I : = I s t e p 1 u n t i l N d o
i f X < A [I] t h e n g o to do wn ;

I : = N ;
down: f o r J : = J s t e p --1 u n t i l M d o

i f A [J] < X t h e n g o t o c h a n g e ;
J : = M ;

c hange : i f I < J t h e n b e g i n e x c h a n g e (A[IL A[J]) ;
I : = I + 1 ; J : = J - 1;
g o to up

e n d
e l s e i f [< F t h e n b e g i n e x c h a n g e (A[IL A[F]) i

I : = I + l
e n d

e l s e i f F < J t l l e n b e g i n e x c h a n g e (A[F], A[J]) ;
J : = J - 1

e n d ;
e n d p a r t i t i o n

ALGORITHM 64
QUICKSORT
C. A. R. HOARE
Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.
p r o c e d u r e q u i c k s o r t (A , M , N) ; v a l u e M , N ;

a r r a y A; i n t e g e r M , N ;
c o m m e n t Q u i c k s o r t is a v e r y f a s t a n d c o n v e n i e n t m e t h o d of
s o r t i n g an a r r a y in t he r a n d o m - a c c e s s s tore of a c o m p u t e r . T h e
en t i r e c o n t e n t s of t he s tore m a y be so r t ed , s ince no e x t r a space is
r equ i red . T h e a ve rage n u m b e r of c o m p a r i s o n s m a d e is 2 (M - - N) In
(N - - M) , a n d t he ave r age n m n b e r of e x c h a n g e s is one s ix th th i s
a m o u n t . Su i t ab le r e f inemen t s of th i s m e t h o d will be des i rab le for
i t s i m p l e m e n t a t i o n on any ac tua l c o m p u t e r ;
b e g i n i n t e g e r 1,J ;

i f M < N t h e n b e g i n p a r t i t i o n (A , M , N , I , J) ;
q u i c k s o r t (A,M,J) ;
q u i c k s o r t (A, I, N)

e n d
e n d q u i e k s o r t

ALGORITHM 65
FIND
C. A. R. HOARE
Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.
p r o c e d u r e f ind (A , M , N , K) ; v a l u e M , N , K ;

a r r a y A; i n t e g e r M , N , K ;
c o m m e n t F i n d will a s s ign to A [K] t he va l u e wh ich it would
h a v e if t he a r r a y A [M:N] h a d been sor ted . T h e a r r a y A will be
p a r t l y so r t ed , a n d s u b s e q u e n t en t r i e s will be f a s t e r t h a n t h e f i rs t ;

C o m m u n i c a t i o n s o f t h e A C M 321

Communications of the ACM (July 1961)

・Invented quicksort to translate Russian into English.

・ [but couldn't explain his algorithm or implement it!]

・Learned Algol 60 (and recursion).

・Implemented quicksort.

“ There are two ways of constructing a software design: One way is
 to make it so simple that there are obviously no deficiencies, and
 the other way is to make it so complicated that there are no obvious
 deficiencies. The first method is far more difficult. ”

Tony Hoare

7

“ I call it my billion-dollar mistake. It was the invention of the null
 reference in 1965… This has led to innumerable errors,
 vulnerabilities, and system crashes, which have probably caused
 a billion dollars of pain and damage in the last forty years. ”

Tony Hoare
1980 Turing Award

・Refined and popularized quicksort.

・Analyzed quicksort.

Bob Sedgewick

8

Bob Sedgewick

Programming
Techniques

S. L. Graham, R. L. Rivest
Editors

Implementing
Quicksort Programs
Robert Sedgewick
Brown University

This paper is a practical study of how to implement
the Quicksort sorting algorithm and its best variants on
real computers, including how to apply various code
optimization techniques. A detailed implementation
combining the most effective improvements to
Quicksort is given, along with a discussion of how to
implement it in assembly language. Analytic results
describing the performance of the programs are
summarized. A variety of special situations are
considered from a practical standpoint to illustrate
Quicksort's wide applicability as an internal sorting
method which requires negligible extra storage.

Key Words and Phrases: Quicksort, analysis of
algorithms, code optimization, sorting

CR Categories: 4.0, 4.6, 5.25, 5.31, 5.5

Introduction

One of the most widely studied practical problems in
computer science is sorting: the use of a computer to put
files in order. A person wishing to use a computer to sort
is faced with the problem of determining which of the
many available algorithms is best suited for his purpose.
This task is becoming less difficult than it once was for
three reasons. First, sorting is an area in which the
mathematical analysis of algorithms has been particu-
larly successful: we can predict the performance of many
sorting methods and compare them intelligently. Second,
we have a great deal of experience using sorting algo-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

This work was supported in part by the Fannie and John Hertz
Foundation and in part by NSF Grants. No. GJ-28074 and MCS75-
23738.

Author's address: Division of Applied Mathematics and Computer
Science Program, Brown University, Providence, RI 02912.
© 1978 ACM 0001-0782/78/1000-0847 $00.75

847

rithms, and we can learn from that experience to separate
good algorithms from bad ones. Third, if the tile fits into
the memory of the computer, there is one algorithm,
called Quicksort, which has been shown to perform well
in a variety of situations. Not only is this algorithm
simpler than many other sorting algorithms, but empir-
ical [2, ll , 13, 21] and analytic [9] studies show that
Quicksort can be expected to be up to twice as fast as its
nearest competitors. The method is simple enough to be
learned by programmers who have no previous experi-
ence with sorting, and those who do know other sorting
methods should also find it profitable to learn about
Quicksort.

Because of its prominence, it is appropriate to study
how Quicksort might be improved. This subject has
received considerable attention (see, for example, [1, 4,
11, 13, 14, 18, 20]), but few real improvements have been
suggested beyond those described by C.A.R. Hoare, the
inventor of Quicksort, in his original papers [5, 6]. Hoare
also showed how to analyze Quicksort and predict its
running time. The analysis has since been extended to
the improvements that he suggested, and used to indicate
how they may best be implemented [9, 15, 17]. The
subject of the careful implementation of Quicksort has
not been studied as widely as global improvements to
the algorithm, but the savings to be realized are as
significant. The history of Quicksort is quite complex,
and [15] contains a full survey of the many variants
which, have been proposed.

The purpose of this paper is to describe in detail how
Quicksort can best be implemented to handle actual
applications on real computers. A general description of
the algorithm is followed by descriptions of the most
effective improvements that have been proposed (as
demonstrated in [15]). Next, an implementation of
Quicksort in a typical high level language is presented,
and assembly language implementation issues are con-
sidered. This discussion should easily translate to real
languages on real machines. Finally, a number of special
issues are considered which may be of importance in
particular sorting applications.

This paper is intended to be a self-contained overview
of the properties of Quicksort for use by those who need
to actually implement and use the algorithm. A compan-
ion paper [17] provides the analytical results which su-
port much of the discussion presented here.

The Algofithm

Quicksort is a recursive method for sorting an array
A[1], A[2] A[N] by first "partitioning" it so that the
following conditions hold:

(i) Some key v is in its final position in the array. (If it
is thejth smallest, it is in position A[j].)

(ii) All elements to the left of A[j] are less than or equal
to it. (These elements A [1], A [2] A [j - 1] are
called the "left subtile.")

Communications October 1978
of Volume 21
the ACM Number 10

Acta Informatica 7, 327--355 (1977)
 9 by Springer-Verlag 1977

The Analysis of Quicksort Programs*
Robert Sedgewick

Received January 19, t976

Summary. The Quicksort sorting algorithm and its best variants are presented
and analyzed. Results are derived which make it possible to obtain exact formulas de-
scribing the total expected running time of particular implementations on real com-
puters of Quick, sort and an improvement called the median-of-three modification.
Detailed analysis of the effect of an implementation technique called loop unwrapping
is presented. The paper is intended not only to present results of direct practical utility,
but also to illustrate the intriguing mathematics which arises in the complete analysis
of this important algorithm.

1. Introduction

In t96t-62 C.A.R. Hoare presented a new algorithm called Quicksort [7, 8]
which is suitable for putting files into order by computer. This method combines
elegance and efficiency, and it remains today the most useful general-purpose
sorting method for computers. The practical utility of the algorithm has meant
not only that it has been sfibjected to countless modifications (though few real
improvements have been suggested beyond those described by Hoare), but also
that it has been used .in countless applications, often to sort very large, f i les .
Consequently, it is important to be able to estimate how long an implementation
of Quicksort can be expected to run, in order to be able to compare variants or
estimate expenses. Fortunately, as we shall see, this is an algorithm which can be
analyzed. (Hoare recognized this, and gave some analytic results in [8].) I t is
possible to derive exact formulas describing the average performance of real
implementations of the algorithm.

The history of Quicksort is quite complex, and a full survey of the many variants
which have been proposed is given in [t 7]. In addition, [t 7] gives analytic results
describing many of the improvements which have been suggested for the purpose
of determining which are the most effective. There are many examples in [~ 7]
which illustrate that the simplicity of Quicksort is deceiving. The algorithm has
hidden subtleties which can have significant effects on performance. Furthermore,
as we shall see, simple changes to the algorithm or its implementation can radically
change the analysis. In this paper, we shall consider in detail how practical
implementations of the best versions of Quicksort may be analyzed.

In this paper, we will deal with the analysis of: (i) the basic Quicksort algo-
ri thm; (ii) an improvement called the "median-of-three" modification which
reduces the average number of comparisons required; and (iii) an implementation
technique called "loop unwrapping" which reduces the amount of overhead per
comparison. These particular methods not only represent the most effective vari-

* This work was supported in part by the Fannie and John Hertz Foundation, and
in part by the National Science Foundation Grants No. GJ-28074 and MCS75-23738.
22 Acta Informatica, Vol. 7

9

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K R A T E L E P U I M Q C X O S

i j

keynote:/Users/wayne/Dropbox/algs4/slides/coursera/23DemoPartitioning.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/23DemoPartitioning.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/23DemoPartitioning.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/23DemoPartitioning.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/23DemoPartitioning.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/23DemoPartitioning.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/23DemoPartitioning.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/23DemoPartitioning.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/23DemoPartitioning.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/23DemoPartitioning.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/23DemoPartitioning.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/23DemoPartitioning.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/23DemoPartitioning.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/23DemoPartitioning.key

10

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

When pointers cross.

・Exchange a[lo] with a[j].

lo

E C A I E K L P U T M Q R X O S

hij

partitioned!

11

The music of quicksort partitioning (by Brad Lyon)

https://googledrive.com/host/0B2GQktu-wcTicjRaRjV1NmRFN1U/index.html

12

Quicksort: Java code for partitioning

private static int partition(Comparable[] a, int lo, int hi)
{
 int i = lo, j = hi+1;
 while (true)
 {
 while (less(a[++i], a[lo]))
 if (i == hi) break;

 while (less(a[lo], a[--j]))
 if (j == lo) break;

 if (i >= j) break;
 exch(a, i, j);
 }

 exch(a, lo, j);
 return j;
}

swap with partitioning item

check if pointers cross

find item on right to swap

find item on left to swap

swap

return index of item now known to be in place

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

13

Quicksort: Java implementation

public class Quick
{
 private static int partition(Comparable[] a, int lo, int hi)
 { /* see previous slide */ }

 public static void sort(Comparable[] a)
 {
 StdRandom.shuffle(a);
 sort(a, 0, a.length - 1);
 }

 private static void sort(Comparable[] a, int lo, int hi)
 {
 if (hi <= lo) return;
 int j = partition(a, lo, hi);
 sort(a, lo, j-1);
 sort(a, j+1, hi);
 }
}

shuffle needed for
performance guarantee

(stay tuned)

Quicksort trace

14

 lo j hi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 Q U I C K S O R T E X A M P L E
 K R A T E L E P U I M Q C X O S
 0 5 15 E C A I E K L P U T M Q R X O S
 0 3 4 E C A E I K L P U T M Q R X O S
 0 2 2 A C E E I K L P U T M Q R X O S
 0 0 1 A C E E I K L P U T M Q R X O S
 1 1 A C E E I K L P U T M Q R X O S
 4 4 A C E E I K L P U T M Q R X O S
 6 6 15 A C E E I K L P U T M Q R X O S
 7 9 15 A C E E I K L M O P T Q R X U S
 7 7 8 A C E E I K L M O P T Q R X U S
 8 8 A C E E I K L M O P T Q R X U S
 10 13 15 A C E E I K L M O P S Q R T U X
 10 12 12 A C E E I K L M O P R Q S T U X
 10 11 11 A C E E I K L M O P Q R S T U X
 10 10 A C E E I K L M O P Q R S T U X
 14 14 15 A C E E I K L M O P Q R S T U X
 15 15 A C E E I K L M O P Q R S T U X

 A C E E I K L M O P Q R S T U X

no partition
 for subarrays

 of size 1

initial values

random shuffle

result

Quicksort trace (array contents after each partition)

Quicksort animation

15

http://www.sorting-algorithms.com/quick-sort

50 random items

in order

current subarray

algorithm position

not in order

16

Quicksort: implementation details

Partitioning in-place. Using an extra array makes partitioning easier

(and stable), but is not worth the cost.

Terminating the loop. Testing whether the pointers cross is trickier

than it might seem.

Equal keys. When duplicates are present, it is (counter-intuitively)

better to stop scans on keys equal to the partitioning item's key.

Preserving randomness. Shuffling is needed for performance guarantee.

Equivalent alternative. Pick a random partitioning item in each subarray.

17

Quicksort: empirical analysis (1961)

Running time estimates:

・Algol 60 implementation.

・National-Elliott 405 computer.

Elliott 405 magnetic disc
(16K words)

sorting N 6-word items with 1-word keys

18

Quicksort: empirical analysis

Running time estimates:

・Home PC executes 108 compares/second.

・Supercomputer executes 1012 compares/second.

Lesson 1. Good algorithms are better than supercomputers.

Lesson 2. Great algorithms are better than good ones.

insertion sort (N2)insertion sort (N2)insertion sort (N2) mergesort (N log N)mergesort (N log N)mergesort (N log N) quicksort (N log N)quicksort (N log N)quicksort (N log N)

computer thousand million billion thousand million billion thousand million billion

home instant 2.8 hours 317 years instant 1 second 18 min instant 0.6 sec 12 min

super instant 1 second 1 week instant instant instant instant instant instant

19

Quicksort: best-case analysis

Best case. Number of compares is ~ N lg N.

random shuffle

initial values

Worst case. Number of compares is ~ ½ N 2 .

20

Quicksort: worst-case analysis

random shuffle

initial values

Proposition. The average number of compares CN to quicksort an array of

N distinct keys is ~ 2N ln N (and the number of exchanges is ~ ⅓ N ln N).

Pf. CN satisfies the recurrence C0 = C1 = 0 and for N ≥ 2:

・Multiply both sides by N and collect terms:

・Subtract from this equation the same equation for N - 1:

・Rearrange terms and divide by N (N + 1):

21

Quicksort: average-case analysis

CN

N + 1
=

CN�1

N
+

2
N + 1

NCN = N(N + 1) + 2(C0 + C1 + . . . + CN�1)

NCN � (N � 1)CN�1 = 2N + 2CN�1

CN = (N + 1) +

�
C0 + CN�1

N

�
+

�
C1 + CN�2

N

�
+ . . . +

�
CN�1 + C0

N

�
partitioning

partitioning probability

left right

・Repeatedly apply above equation:

・Approximate sum by an integral:

・Finally, the desired result:

CN

N + 1
=

CN�1

N
+

2
N + 1

=
CN�2

N � 1
+

2
N

+
2

N + 1

=
CN�3

N � 2
+

2
N � 1

+
2
N

+
2

N + 1

=
2
3

+
2
4

+
2
5

+ . . . +
2

N + 1

22

Quicksort: average-case analysis

CN � 2(N + 1) lnN ⇥ 1.39N lg N

previous equation

CN = 2(N + 1)
✓

1
3

+
1
4

+
1
5

+ . . .

1
N + 1

◆

⇠ 2(N + 1)
Z N+1

3

1
x

dx

substitute previous equation

Proposition. The average number of compares CN to quicksort an array of

N distinct keys is ~ 2N ln N (and the number of exchanges is ~ ⅓ N ln N).

Pf 2. Consider BST representation of keys 1 to N.

1

2

3

4

6

75

8

9

11

12

1310

23

Quicksort: average-case analysis

9 10 2 5 8 7 6 1 11 12 13 3 4

shuffle

first partitioning
item

first partitioning
item in

left subarray

Proposition. The average number of compares CN to quicksort an array of

N distinct keys is ~ 2N ln N (and the number of exchanges is ~ ⅓ N ln N).

Pf 2. Consider BST representation of keys 1 to N.

・A key is compared only with its ancestors and descendants.

・Probability i and j are compared equals 2 / | j - i + 1|.

24

Quicksort: average-case analysis

first partitioning
item

first partitioning
item in

left subarray

1

2

3

4

6

75

8

9

11

12

1310

3 and 6 are compared
(when 3 is partition)

1 and 6 are not compared
(because 3 is partition)

Proposition. The average number of compares CN to quicksort an array of

N distinct keys is ~ 2N ln N (and the number of exchanges is ~ ⅓ N ln N).

Pf 2. Consider BST representation of keys 1 to N.

・A key is compared only with its ancestors and descendants.

・Probability i and j are compared equals 2 / | j - i + 1|.

・Expected number of compares =

25

Quicksort: average-case analysis

NX

i=1

NX

j=i+1

2
j � i + 1

= 2
NX

i=1

N�i+1X

j=2

1
j

 2N

NX

j=1

1
j

⇠ 2N

Z
N

x=1

1
x

dx

= 2N lnN

all pairs i and j

26

Quicksort: summary of performance characteristics

Quicksort is a (Las Vegas) randomized algorithm.

・Guaranteed to be correct.

・Running time depends on random shuffle.

Average case. Expected number of compares is ~ 1.39 N lg N.

・39% more compares than mergesort.

・Faster than mergesort in practice because of less data movement.

Best case. Number of compares is ~ N lg N.

Worst case. Number of compares is ~ ½ N 2.

[but more likely that lightning bolt strikes computer during execution]

Proposition. Quicksort is an in-place sorting algorithm.

Pf.

・Partitioning: constant extra space.

・Depth of recursion: logarithmic extra space (with high probability).

Proposition. Quicksort is not stable.

Pf. [by counterexample]

27

Quicksort properties

i j 0 1 2 3

B1 C1 C2 A1

1 3 B1 C1 C2 A1

1 3 B1 A1 C2 C1

0 1 A1 B1 C2 C1

can guarantee logarithmic depth by recurring
on smaller subarray before larger subarray
(requires using an explicit stack)

Insertion sort small subarrays.

・Even quicksort has too much overhead for tiny subarrays.

・Cutoff to insertion sort for ≈ 10 items.

 private static void sort(Comparable[] a, int lo, int hi)
 {
 if (hi <= lo + CUTOFF - 1)
 {
 Insertion.sort(a, lo, hi);
 return;
 }
 int j = partition(a, lo, hi);
 sort(a, lo, j-1);
 sort(a, j+1, hi);
 }

28

Quicksort: practical improvements

29

Quicksort: practical improvements

Median of sample.

・Best choice of pivot item = median.

・Estimate true median by taking median of sample.

・Median-of-3 (random) items.

~ 12/7 N ln N compares (14% less)
~ 12/35 N ln N exchanges (3% more)

 private static void sort(Comparable[] a, int lo, int hi)
 {
 if (hi <= lo) return;

 int median = medianOf3(a, lo, lo + (hi - lo)/2, hi);
 swap(a, lo, median);

 int j = partition(a, lo, hi);
 sort(a, lo, j-1);
 sort(a, j+1, hi);
 }

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ quicksort

‣ selection

‣ duplicate keys

‣ system sorts

2.3 QUICKSORT

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://www.cs.princeton.edu/~wayne
http://www.cs.princeton.edu/~wayne

31

Selection

Goal. Given an array of N items, find the kth smallest item.

Ex. Min (k = 0), max (k = N - 1), median (k = N / 2).

Applications.

・Order statistics.

・Find the "top k."

Use theory as a guide.

・Easy N log N upper bound. How?

・Easy N upper bound for k = 1, 2, 3. How?

・Easy N lower bound. Why?

Which is true?

・N log N lower bound?

・N upper bound?
is selection as hard as sorting?

is there a linear-time algorithm?

Partition array so that:

・Entry a[j] is in place.

・No larger entry to the left of j.

・No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.

32

Quick-select

public static Comparable select(Comparable[] a, int k)
{
 StdRandom.shuffle(a);
 int lo = 0, hi = a.length - 1;
 while (hi > lo)
 {
 int j = partition(a, lo, hi);
 if (j < k) lo = j + 1;
 else if (j > k) hi = j - 1;
 else return a[k];
 }
 return a[k];
}

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

if a[k] is here
set hi to j-1

if a[k] is here
set lo to j+1

keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/23DemoQuickSelect.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/23DemoQuickSelect.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/23DemoQuickSelect.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/23DemoQuickSelect.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/23DemoQuickSelect.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/23DemoQuickSelect.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/23DemoQuickSelect.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/23DemoQuickSelect.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/23DemoQuickSelect.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/23DemoQuickSelect.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/23DemoQuickSelect.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/23DemoQuickSelect.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/23DemoQuickSelect.key
keynote:/Users/wayne/Dropbox/algs4/slides/spring14/keynote/23DemoQuickSelect.key

33

Quick-select: mathematical analysis

Proposition. Quick-select takes linear time on average.

Pf sketch.

・Intuitively, each partitioning step splits array approximately in half:

N + N / 2 + N / 4 + … + 1 ~ 2N compares.

・Formal analysis similar to quicksort analysis yields:

・Ex: (2 + 2 ln 2) N ≈ 3.38 N compares to find median.

CN = 2 N + 2 k ln (N / k) + 2 (N – k) ln (N / (N – k))

Proposition. [Blum, Floyd, Pratt, Rivest, Tarjan, 1973] Compare-based

selection algorithm whose worst-case running time is linear.

Remark. Constants are high ⇒ not used in practice.

Use theory as a guide.

・Still worthwhile to seek practical linear-time (worst-case) algorithm.

・Until one is discovered, use quick-select if you don’t need a full sort.
34

Theoretical context for selection

L

i

i
L

L

L

Time Bounds for Selection

bY .

Manuel Blum, Robert W. Floyd, Vaughan Watt,

Ronald L. Rive&, and Robert E. Tarjan

Abstract

The number of comparisons required to select the i-th smallest of

n numbers is shown to be at most a linear function of n by analysis of

a new selection algorithm -- PICK. Specifically, no more than

5.4305 n comparisons are ever required. This bound is improved for

extreme values of i , and a new lower bound on the requisite number

of comparisons is also proved.

This work was supported by the National Science Foundation under grants
GJ-992 and GJ-33170X.

1

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ quicksort

‣ selection

‣ duplicate keys

‣ system sorts

2.3 QUICKSORT

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://www.cs.princeton.edu/~wayne
http://www.cs.princeton.edu/~wayne

36

Duplicate keys

Often, purpose of sort is to bring items with equal keys together.

・Sort population by age.

・Remove duplicates from mailing list.

・Sort job applicants by college attended.

 Typical characteristics of such applications.

・Huge array.

・Small number of key values.

Chicago 09:00:00
Phoenix 09:00:03
Houston 09:00:13
Chicago 09:00:59
Houston 09:01:10
Chicago 09:03:13
Seattle 09:10:11
Seattle 09:10:25
Phoenix 09:14:25
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Seattle 09:22:43
Seattle 09:22:54
Chicago 09:25:52
Chicago 09:35:21
Seattle 09:36:14
Phoenix 09:37:44

Chicago 09:00:00
Chicago 09:00:59
Chicago 09:03:13
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Chicago 09:25:52
Chicago 09:35:21
Houston 09:00:13
Houston 09:01:10
Phoenix 09:00:03
Phoenix 09:14:25
Phoenix 09:37:44
Seattle 09:10:11
Seattle 09:10:25
Seattle 09:22:43
Seattle 09:22:54
Seattle 09:36:14

Chicago 09:25:52
Chicago 09:03:13
Chicago 09:21:05
Chicago 09:19:46
Chicago 09:19:32
Chicago 09:00:00
Chicago 09:35:21
Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54

Stability when sorting on a second key

sorted

sorted by time sorted by city (unstable) sorted by city (stable)

NOT
sorted

key

37

Duplicate keys

Quicksort with duplicate keys. Algorithm can go quadratic unless

partitioning stops on equal keys!

Caveat emptor. Some textbook (and commercial) implementations

go quadratic when many duplicate keys.

S T O P O N E Q U A L K E Y S

swap if we don't stop
on equal keys

if we stop on
equal keys

What is the result of partitioning the following array?

A.

B.

C.

38

A A A A A A A A A A A A A A A A

A A A A A A A A A A A A A A A A

A A A A A A A A A A A A A A A A

A A A A A A A A A A A A A A A A

Partitioning an array with all equal keys

39

Duplicate keys: the problem

Recommended. Stop scans on items equal to the partitioning item.

Consequence. ~ N lg N compares when all keys equal.

Mistake. Don't stop scans on items equal to the partitioning item.

Consequence. ~ ½ N 2 compares when all keys equal.

Desirable. Put all items equal to the partitioning item in place.

40

B A A B A B B B C C C A A A A A A A A A A A

B A A B A B C C B C B A A A A A A A A A A A

A A A B B B B B C C C A A A A A A A A A A A

Goal. Partition array into three parts so that:

・Entries between lt and gt equal to the partition item.

・No larger entries to left of lt.

・No smaller entries to right of gt.

Dutch national flag problem. [Edsger Dijkstra]

・Conventional wisdom until mid 1990s: not worth doing.

・Now incorporated into C library qsort() and Java 6 system sort.
41

3-way partitioning

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt

– (a[i] == v): increment i

42

Dijkstra 3-way partitioning demo

lo

P A B X W P P V P D P C Y Z

hi

lt gt

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

i

invariant

keynote:/Users/wayne/Dropbox/algs4/slides/coursera/23DemoPartitioningDijkstra.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/23DemoPartitioningDijkstra.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/23DemoPartitioningDijkstra.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/23DemoPartitioningDijkstra.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/23DemoPartitioningDijkstra.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/23DemoPartitioningDijkstra.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/23DemoPartitioningDijkstra.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/23DemoPartitioningDijkstra.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/23DemoPartitioningDijkstra.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/23DemoPartitioningDijkstra.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/23DemoPartitioningDijkstra.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/23DemoPartitioningDijkstra.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/23DemoPartitioningDijkstra.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/23DemoPartitioningDijkstra.key

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt

– (a[i] == v): increment i

43

Dijkstra 3-way partitioning demo

lo

A B C D P P P P P V W Y Z X

hi

lt gt

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

invariant

44

Dijkstra's 3-way partitioning: trace

 a[]
lt i gt 0 1 2 3 4 5 6 7 8 9 10 11
 0 0 11 R B W W R W B R R W B R
 0 1 11 R B W W R W B R R W B R
 1 2 11 B R W W R W B R R W B R
 1 2 10 B R R W R W B R R W B W
 1 3 10 B R R W R W B R R W B W
 1 3 9 B R R B R W B R R W W W
 2 4 9 B B R R R W B R R W W W
 2 5 9 B B R R R W B R R W W W
 2 5 8 B B R R R W B R R W W W
 2 5 7 B B R R R R B R W W W W
 2 6 7 B B R R R R B R W W W W
 3 7 7 B B B R R R R R W W W W
 3 8 7 B B B R R R R R W W W W
 3 8 7 B B B R R R R R W W W W

v

3-way partitioning trace (array contents after each loop iteration)

private static void sort(Comparable[] a, int lo, int hi)
{
 if (hi <= lo) return;
 int lt = lo, gt = hi;
 Comparable v = a[lo];
 int i = lo;
 while (i <= gt)
 {
 int cmp = a[i].compareTo(v);
 if (cmp < 0) exch(a, lt++, i++);
 else if (cmp > 0) exch(a, i, gt--);
 else i++;
 }

 sort(a, lo, lt - 1);
 sort(a, gt + 1, hi);
}

45

3-way quicksort: Java implementation

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

46

3-way quicksort: visual trace

equal to partitioning element

Visual trace of quicksort with 3-way partitioning

47

Duplicate keys: lower bound

Sorting lower bound. If there are n distinct keys and the ith one occurs

xi times, any compare-based sorting algorithm must use at least

compares in the worst case.

Proposition. [Sedgewick-Bentley 1997]

Quicksort with 3-way partitioning is entropy-optimal.

Pf. [beyond scope of course]

Bottom line. Quicksort with 3-way partitioning reduces running time

from linearithmic to linear in broad class of applications.

N lg N when all distinct;
linear when only a constant number of distinct keys

proportional to lower bound

lg
�

N !
x1! x2! · · · xn!

⇥
⇤ �

n⇤

i=1

xi lg
xi

N

48

Sorting summary

inplace? stable? best average worst remarks

selection

insertion

shell

merge

timsort

quick

3-way quick

?

✔ ½ N 2 ½ N 2 ½ N 2 N exchanges

✔ ✔ N ¼ N 2 ½ N 2 use for small N
or partially ordered

✔ N log3 N ? c N 3/2 tight code;
subquadratic

✔ ½ N lg N N lg N N lg N N log N guarantee;
stable

✔ N N lg N N lg N
improves mergesort

when preexisting order

✔ N lg N 2 N ln N ½ N 2 N log N probabilistic guarantee;
fastest in practice

✔ N 2 N ln N ½ N 2
improves quicksort
when duplicate keys

✔ ✔ N N lg N N lg N holy sorting grail

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ quicksort

‣ selection

‣ duplicate keys

‣ system sorts

2.3 QUICKSORT

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://www.cs.princeton.edu/~wayne
http://www.cs.princeton.edu/~wayne

Sorting algorithms are essential in a broad variety of applications:

・Sort a list of names.

・Organize an MP3 library.

・Display Google PageRank results.

・List RSS feed in reverse chronological order.

・Find the median.

・Identify statistical outliers.

・Binary search in a database.

・Find duplicates in a mailing list.

・Data compression.

・Computer graphics.

・Computational biology.

・Load balancing on a parallel computer.

. . .
50

obvious applications

problems become easy once items
are in sorted order

non-obvious applications

Sorting applications

51

War story (system sort in C)

A beautiful bug report. [Allan Wilks and Rick Becker, 1991]

We found that qsort is unbearably slow on "organ-pipe" inputs like "01233210":

main (int argc, char**argv) {
 int n = atoi(argv[1]), i, x[100000];
 for (i = 0; i < n; i++)
 x[i] = i;
 for (; i < 2*n; i++)
 x[i] = 2*n-i-1;
 qsort(x, 2*n, sizeof(int), intcmp);
}

Here are the timings on our machine:
$ time a.out 2000
real 5.85s
$ time a.out 4000
real 21.64s
$time a.out 8000
real 85.11s

52

War story (system sort in C)

Bug. A qsort() call that should have taken seconds was taking minutes.

At the time, almost all qsort() implementations based on those in:

・Version 7 Unix (1979): quadratic time to sort organ-pipe arrays.

・BSD Unix (1983): quadratic time to sort random arrays of 0s and 1s.

Why is qsort() so slow?

Basic algorithm for sorting primitive types = quicksort.

・Cutoff to insertion sort for small subarrays.

・Partitioning item: median of 3 or Tukey's ninther.

・Partitioning scheme: Bentley-McIlroy 3-way partitioning.

Very widely used. C, C++, Java 6, ….
53

Engineering a system sort (in 1993)

SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 23(11), 1249–1265 (NOVEMBER 1993)

Engineering a Sort Function

JON L. BENTLEY
M. DOUGLAS McILROY

AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, U.S.A.

SUMMARY
We recount the history of a new qsort function for a C library. Our function is clearer, faster and more
robust than existing sorts. It chooses partitioning elements by a new sampling scheme; it partitions by a
novel solution to Dijkstra’s Dutch National Flag problem; and it swaps efficiently. Its behavior was
assessed with timing and debugging testbeds, and with a program to certify performance. The design
techniques apply in domains beyond sorting.

KEY WORDS Quicksort Sorting algorithms Performance tuning Algorithm design and implementation Testing

INTRODUCTION
C libraries have long included a qsort function to sort an array, usually implemented by
Hoare’s Quicksort.1 Because existing qsorts are flawed, we built a new one. This paper
summarizes its evolution.
Compared to existing library sorts, our new qsort is faster—typically about twice as

fast—clearer, and more robust under nonrandom inputs. It uses some standard Quicksort
tricks, abandons others, and introduces some new tricks of its own. Our approach to build-
ing a qsort is relevant to engineering other algorithms.
The qsort on our home system, based on Scowen’s ‘Quickersort’,2 had served faith-

fully since Lee McMahon wrote it almost two decades ago. Shipped with the landmark Sev-
enth Edition Unix System,3 it became a model for other qsorts. Yet in the summer of
1991 our colleagues Allan Wilks and Rick Becker found that a qsort run that should have
taken a few minutes was chewing up hours of CPU time. Had they not interrupted it, it
would have gone on for weeks.4 They found that it took n 2 comparisons to sort an ‘organ-
pipe’ array of 2n integers: 123..nn.. 321.
Shopping around for a better qsort, we found that a qsort written at Berkeley in 1983

would consume quadratic time on arrays that contain a few elements repeated many
times—in particular arrays of random zeros and ones.5 In fact, among a dozen different
Unix libraries we found no qsort that could not easily be driven to quadratic behavior; all
were derived from the Seventh Edition or from the 1983 Berkeley function. The Seventh

0038-0644/93/111249–17$13.50 Received 21 August 1992
 1993 by John Wiley & Sons, Ltd. Revised 10 May 1993

similar to Dijkstra 3-way partitioning
(but fewer exchanges when not many equal keys)

samples 9 items

54

A beautiful mailing list post (Yaroslavskiy, September 2011)

Replacement of quicksort in java.util.Arrays with new dual-pivot quicksort

Hello All,

I'd like to share with you new Dual-Pivot Quicksort which is faster than the
known implementations (theoretically and experimental). I'd like to propose
to replace the JDK's Quicksort implementation by new one.

...

The new Dual-Pivot Quicksort uses *two* pivots elements in this manner:

1. Pick an elements P1, P2, called pivots from the array.
2. Assume that P1 <= P2, otherwise swap it.
3. Reorder the array into three parts: those less than the smaller pivot,
 those larger than the larger pivot, and in between are those elements
 between (or equal to) the two pivots.
4. Recursively sort the sub-arrays.

The invariant of the Dual-Pivot Quicksort is:

[< P1 | P1 <= & <= P2 } > P2]

...

http://mail.openjdk.java.net/pipermail/core-libs-dev/2009-September/002630.html

55

Dual-pivot quicksort

Use two partitioning items p1 and p2 and partition into three subarrays:

・Keys less than p1.

・Keys between p1 and p2.

・Keys greater than p2.

Recursively sort three subarrays.

Note. Skip middle subarray if p1 = p2.

< p1 p1 ≥ p1 and ≤ p2 p2 > p2

lo hilt gt

degenerates to Dijkstra's 3-way partitioning

Dual-pivot partitioning demo

Initialization.

・Choose a[lo] and a[hi] as partitioning items.

・Exchange if necessary to ensure a[lo] ≤ a[hi].

S E A Y R L F V Z Q T C M K

lo hi

exchange a[lo] and a[hi]

keynote:/Users/wayne/Dropbox/algs4/slides/coursera/keynote/23DemoPartitioningDualPivot.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/keynote/23DemoPartitioningDualPivot.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/keynote/23DemoPartitioningDualPivot.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/keynote/23DemoPartitioningDualPivot.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/keynote/23DemoPartitioningDualPivot.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/keynote/23DemoPartitioningDualPivot.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/keynote/23DemoPartitioningDualPivot.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/keynote/23DemoPartitioningDualPivot.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/keynote/23DemoPartitioningDualPivot.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/keynote/23DemoPartitioningDualPivot.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/keynote/23DemoPartitioningDualPivot.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/keynote/23DemoPartitioningDualPivot.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/keynote/23DemoPartitioningDualPivot.key
keynote:/Users/wayne/Dropbox/algs4/slides/coursera/keynote/23DemoPartitioningDualPivot.key

Dual-pivot partitioning demo

Main loop. Repeat until i and gt pointers cross.

・If (a[i] < a[lo]), exchange a[i] with a[lt] and increment lt and i.

・Else if (a[i] > a[hi]), exchange a[i] with a[gt] and decrement gt.

・Else, increment i.

K E A F R L M C Z Q T V Y S

< p1 p1 ≥ p1 and ≤ p2 ? p2 > p2

lo i hilt gt

gtlt ilo hi

Dual-pivot partitioning demo

Finalize.

・Exchange a[lo] with a[--lt].

・Exchange a[hi] with a[++gt].

C E A F K L M R Q S Z V Y T

gtltlo hi

3-way partitioned

< p1 p1 ≥ p1 and ≤ p2 p2 > p2

lo hilt gt

59

Dual-pivot quicksort

Use two partitioning items p1 and p2 and partition into three subarrays:

・Keys less than p1.

・Keys between p1 and p2.

・Keys greater than p2.

Now widely used. Java 7, Python unstable sort, …

< p1 p1 ≥ p1 and ≤ p2 p2 > p2

lo hilt gt

60

Three-pivot quicksort

Use three partitioning items p1, p2, and p3 and partition into four subarrays:

・Keys less than p1.

・Keys between p1 and p2.

・Keys between p2 and p3.

・Keys greater than p3.

Multi-Pivot Quicksort: Theory and Experiments

Shrinu Kushagra

skushagr@uwaterloo.ca

University of Waterloo

Alejandro López-Ortiz

alopez-o@uwaterloo.ca

University of Waterloo

J. Ian Munro

imunro@uwaterloo.ca

University of Waterloo

Aurick Qiao

a2qiao@uwaterloo.ca

University of Waterloo

November 7, 2013

Abstract

The idea of multi-pivot quicksort has recently received
the attention of researchers after Vladimir Yaroslavskiy
proposed a dual pivot quicksort algorithm that, con-
trary to prior intuition, outperforms standard quicksort
by a a significant margin under the Java JVM [10]. More
recently, this algorithm has been analysed in terms of
comparisons and swaps by Wild and Nebel [9]. Our con-
tributions to the topic are as follows. First, we perform
the previous experiments using a native C implementa-
tion thus removing potential extraneous e↵ects of the
JVM. Second, we provide analyses on cache behavior
of these algorithms. We then provide strong evidence
that cache behavior is causing most of the performance
di↵erences in these algorithms. Additionally, we build
upon prior work in multi-pivot quicksort and propose
a 3-pivot variant that performs very well in theory and
practice. We show that it makes fewer comparisons and
has better cache behavior than the dual pivot quicksort
in the expected case. We validate this with experimen-
tal results, showing a 7-8% performance improvement
in our tests.

1 Introduction

1.1 Background Up until about a decade ago it was
thought that the classic quicksort algorithm [3] using
one pivot is superior to any multi-pivot scheme. It was
previously believed that using more pivots introduces
too much overhead for the advantages gained. In 2002,
Sedgewick and Bentley [7] recognised and outlined some
of the advantages to a dual-pivot quicksort. However,
the implementation did not perform as well as the classic
quicksort algorithm [9] and this path was not explored
again until recent years.

In 2009, Vladimir Yaroslavskiy introduced a novel
dual-pivot partitioning algorithm. When run on a bat-
tery of tests under the JVM, it outperformed the stan-
dard quicksort algorithm [10]. In the subsequent re-
lease of Java 7, the internal sorting algorithm was re-
placed by Yaroslavskiy’s variant. Three years later,
Wild and Nebel [9] published a rigorous average-case
analysis of the algorithm. They stated that the previ-
ous lower bound relied on assumptions that no longer
hold in Yaroslavskiy’s implementation. The dual pivot
approach actually uses less comparisons (1.9n lnn vs
2.0n lnn) on average. However, the di↵erence in run-
time is much greater than the di↵erence in number of
comparisons. We address this issue and provide an ex-
planation in §5.

Aumüller and Dietzfelbinger [1] (ICALP2013) have
recently addressed the following question: If the previ-
ous lower bound does not hold, what is really the best
we can do with two pivots? They prove a 1.8n lnn lower
bound on the number of comparisons for all dual-pivot
quicksort algorithms and introduced an algorithm that
actually achieves that bound. In their experimentation,
the algorithm is outperformed by Yaroslavskiy’s quick-
sort when sorting integer data. However, their algo-
rithm does perform better with large data (eg. strings)
since comparisons incur high cost.

1.2 The Processor-Memory Performance Gap
Both presently and historically, the performance of CPU
registers have far outpaced that of main memory. Ad-
ditionally, this performance gap between the processor
and memory has been increasing since their introduc-
tion. Every year, the performance of memory improves
by about 10% while that of the processor improves by
60% [5]. The performance di↵erence grows so quickly

47 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

02
/0

7/
14

 to
 9

6.
24

8.
80

.7
5.

 R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

< p1 p1 ≥ p1 and ≤ p2 p2 ≥ p2 and ≤ p3 p3 > p3

lo hia1 a3a2

61

Performance

Q. Why do 2-pivot (and 3-pivot) quicksort perform better than 1-pivot?

A. Fewer compares?

A. Fewer exchanges?

A. Fewer cache misses.

Bottom line. Caching can have a significant impact on performance.

partitioning compares exchanges cache misses

1-pivot 2 N ln N 0.333 N ln N

median-of-3 1.714 N ln N 0.343 N ln N

2-pivot 1.9 N ln N 0.6 N ln N

3-pivot 1.846 N ln N 0.616 N ln N

2
N

B
ln

N

M

1.714
N

B
ln

N

M

1.6
N

B
ln

N

M

1.385
N

B
ln

N

M

beyond scope
of this course

62

Which sorting algorithm to use?

Many sorting algorithms to choose from:

sorts algorithms

elementary sorts insertion sort, selection sort, bubblesort, shaker sort, ...

subquadratic sorts quicksort, mergesort, heapsort, shellsort, samplesort, ...

system sorts dual-pivot quicksort, timsort, introsort, ...

external sorts Poly-phase mergesort, cascade-merge, psort, .…

radix sorts MSD, LSD, 3-way radix quicksort, …

parallel sorts bitonic sort, odd-even sort, smooth sort, GPUsort, ...

63

Which sorting algorithm to use?

Applications have diverse attributes.

・Stable?

・Parallel?

・In-place?

・Deterministic?

・Duplicate keys?

・Multiple key types?

・Linked list or arrays?

・Large or small items?

・Randomly-ordered array?

・Guaranteed performance?

Q. Is the system sort good enough?

A. Usually.

many more combinations of
attributes than algorithms

64

System sort in Java 7

Arrays.sort().

・Has method for objects that are Comparable.

・Has overloaded method for each primitive type.

・Has overloaded method for use with a Comparator.

・Has overloaded methods for sorting subarrays.

Algorithms.

・Dual-pivot quicksort for primitive types.

・Timsort for reference types.

Q. Why use different algorithms for primitive and reference types?

65

Ineffective sorts

http://xkcd.com/1185

