

Robert Sedgewick I Kevin Wayne
http://algs4.cs.princeton.edu

Algorithms

Robert Sedgewick 1 Keyin $\mathrm{Waynne}^{\text {and }}$

2.2 Mergesort

- mergesort
- bottom-up mergesort
- sorting complexity
- comparators
- stability

2.2 Mergesort

- mergesort
- bołtom-uptmergesort
- sorting complexity
- comparators
- stability

Two classic sorting algorithms: mergesort and quicksort

Critical components in the world's computational infrastructure.

- Full scientific understanding of their properties has enabled us to develop them into practical system sorts.
- Quicksort honored as one of top 10 algorithms of $20^{\text {th }}$ century in science and engineering.

Mergesort. [this lecture]

Quicksort. [next lecture]

Mergesort

Basic plan.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves.

input	M	E	R	G	E	S	O	R	T	E	X	A	M	P	L	E
sort left half	E	E	G	M	O	R	R	S	T	E	X	A	M	P	L	E
sort right half	E	E	G	M	O	R	R	S	A	E	E	L	M	P	T	X
merge results	A	E	E	E	E	G	L	M	M	O	P	R	R	S	T	X

http://algs 4.cs.princeton.edu

Abstract in-place merge demo

Goal. Given two sorted subarrays $a[10]$ to $a[m i d]$ and $a[m i d+1]$ to $a[h i]$, replace with sorted subarray $a[10]$ to $a[h i]$.
a[]

Abstract in-place merge demo

Goal. Given two sorted subarrays a[1o] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray $a[10]$ to $a[h i]$.

10
hi
a[]

Mergesort: Java implementation

```
public class Merge
pub
    private static void merge(...)
    { /* as before */ }
    private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
            if (hi <= lo) return;
            int mid = 10 + (hi - 1o) / 2;
            sort(a, aux, lo, mid);
            sort(a, aux, mid+1, hi)
            merge(a, aux, lo, mid, hi)
    }
    public static void sort(Comparable[] a)
    {
            Comparable[] aux = new Comparable[a.length];
            sort(a, aux, 0, a.length - 1);
    }
}
```

```
private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
{
for (int k = lo; k <= hi; k++)
            aux[k] = a[k].
    int i = lo, j = mid+1;
    for (int k = lo; k <= hi; k++)
    for
        if (i > mid) a[k] = aux[j++];
        else if (j > hi) }\quada[k]=aux[i++];
        else if (less(aux[j], aux[i])) a[k] = aux[j++];
        else
    }
}
private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
for (int \(k=10 ; k<=h i ; k++)\) \(a u x[k]=a[k] ;\)
int \(\mathrm{i}=1 \mathrm{o}, \mathrm{j}=\mathrm{mid}+1\);
for (int \(k=10 ; k<=h i ; k++)\)
\{
\[
\begin{array}{ll}
\text { else if (less (aux[j], aux[i])) } & a[k]=a u x[j++] ; \\
\text { else } & a[k]=a u x[i++] ;
\end{array}
\]
\}
\}
```


Mergesort: animation

Mergesort: animation

Mergesort: empirical analysis

Running time estimates:

- Laptop executes 10^{8} compares/second.
- Supercomputer executes 10^{12} compares/second.

	insertion sort (N2)			mergesort (N $\log \mathrm{N})$		
computer	thousand	million	billion	thousand	million	billion
home	instant	2.8 hours	317 years	instant	1 second	18 min
super	instant	1 second	1 week	instant	instant	instant

[^0]
Mergesort: number of compares

Proposition. Mergesort uses $\leq N \lg N$ compares to sort an array of length N.

Pf sketch. The number of compares $C(N)$ to mergesort an array of length N satisfies the recurrence:

$$
C(N) \leq C(\underset{\uparrow}{\uparrow} \underset{\text { left half }}{C(2\rceil)}+\underset{\text { right half }}{\uparrow(\lfloor N / 2\rfloor)}+\underset{\text { merge }}{N} \text { for } N>1 \text {, with } C(1)=0 .
$$

We solve the recurrence when N is a power of 2 : \longleftarrow result holds for all N

$$
D(N)=2 D(N / 2)+N, \text { for } N>1, \text { with } D(1)=0
$$

Divide-and-conquer recurrence: proof by induction

Proposition. If $D(N)$ satisfies $D(N)=2 D(N / 2)+N$ for $N>1$, with $D(1)=0$, then $D(N)=N \lg N$.

Pf 2. [assuming N is a power of 2]

- Base case: $N=1$.
- Inductive hypothesis: $D(N)=N \lg N$
- Goal: show that $D(2 N)=(2 N) \lg (2 N)$.

$$
\begin{aligned}
D(2 N) & =2 D(N)+2 N & & \text { given } \\
& =2 N \lg N+2 N & & \text { inductive hypothesis } \\
& =2 N(\lg (2 N)-1)+2 N & & \text { algebra } \\
& =2 N \lg (2 N) & & \text { QED }
\end{aligned}
$$

Divide-and-conquer recurrence: proof by picture

Proposition. If $D(N)$ satisfies $D(N)=2 D(N / 2)+N$ for $N>1$, with $D(1)=0$, then $D(N)=N \lg N$.

Pf 1. [assuming N is a power of 2]

Mergesort: number of array accesses

Proposition. Mergesort uses $\leq 6 N \lg N$ array accesses to sort an array of length N.

Pf sketch. The number of array accesses $A(N)$ satisfies the recurrence:

$$
A(N) \leq A(\lceil N / 2\rceil)+A(\lfloor N / 2\rfloor)+6 N \text { for } N>1, \text { with } A(1)=0
$$

Key point. Any algorithm with the following structure takes $N \log N$ time:

```
public static void linearithmic(int N)
{
    if (N == 0) return;
    linearithmic(N/2); «}\mathrm{ solve two problems
    linearithmic(N/2);
            \longleftarrow
                of half the size
    linear (N); «
}
```

Notable examples. FFT, hidden-line removal, Kendall-tau distance, ...

Mergesort analysis: memory

Proposition. Mergesort uses extra space proportional to N. Pf. The array aux[] needs to be of length N for the last merge.

Def. A sorting algorithm is in-place if it uses $\leq c \log N$ extra memory. Ex. Insertion sort, selection sort, shellsort.

Challenge 1 (not hard). Use aux[] array of length $\sim 1 / 2 N$ instead of N. Challenge 2 (very hard). In-place merge. [Kronrod 1969]

Mergesort: practical improvements

Use insertion sort for small subarrays.

- Mergesort has too much overhead for tiny subarrays.
- Cutoff to insertion sort for ≈ 10 items.

```
private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
    if (hi <= 10 + CUTOFF - 1)
    {
        Insertion.sort(a, lo, hi);
        return;
    }
        int mid = 10 + (hi - 1o) / 2;
        sort (a, aux, 1o, mid);
        sort (a, aux, mid+1, hi);
        sort (a, aux, mid+1, hi);
}
```


Mergesort: practical improvements

Stop if already sorted.

- Is largest item in first half \leq smallest item in second half?
- Helps for partially-ordered arrays.


```
private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{
    if (hi <= 1o) return;
    int mid = 1o + (hi - lo) / 2;
    sort (a, aux, 1o, mid);
    sort (a, aux, mid+1, hi);
    if (!less(a[mid+1], a[mid])) return;
    merge(a, aux, lo, mid, hi);
}
\}
```


Mergesort: practical improvements

Eliminate the copy to the auxiliary array. Save time (but not space) by switching the role of the input and auxiliary array in each recursive call.

```
private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
{
    int i = lo, j = mid+1;
    for (int k = 1o; k <= hi; k++)
    {
        if (i > mid) 
        else if (less(a[j], a[i])) aux[k] = a[j++];
        else aux[k] = a[i++];
    }
}
private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{
    if (hi <= 10) return;
    int mid = 10 + (hi - 10)/2;
    sort (aux, a, lo, mid);
    sort (aux, a, mid+1, hi);
    merge(a, aux, lo, mid, hi);
}
```

assumes aux[] is initialize to a[] once, before recursive calls

```
switch roles of aux[] and a[]
```


Java 6 system sort

Basic algorithm for sorting objects $=$ mergesort.

- Cutoff to insertion sort = 7
- Stop-if-already-sorted test.
- Eliminate-the-copy-to-the-auxiliary-array trick.

Arrays.sort(a)

http://www.java2s.com/Open-Source/Java/6.0-JDK-Modules/j2me/java/util/Arrays.java.html

Bottom-up mergesort

Basic plan.

- Pass through array, merging subarrays of size 1 .
- Repeat for subarrays of size $2,4,8, \ldots$

Bottom-up mergesort: Java implementation

```
public class MergeBU
pub
    private static void merge(...)
    { /* as before */ }
    public static void sort(Comparable[] a)
    pub
        int N = a.length;
        Comparable[] aux = new Comparable[N];
        for (int sz = 1; sz < N; sz = sz+sz)
            for (int 1o = 0; 1o < N-sz; 1o += sz+sz)
                merge(a, aux, 1o, 1o+sz-1, Math.min(1o+sz+sz-1, N-1));
    }
}
```

but about 10% slower than recursive,
top-down mergesort on typical systems

Bottom line. Simple and non-recursive version of mergesort.

Natural mergesort

Idea. Exploit pre-existing order by identifying naturally-occurring runs.

Tradeoff. Fewer passes vs. extra compares per pass to identify runs.


```
.....|||||||||||||||||...||||||||.....|||||||||..|||||.|.|.|.|.||||||.||||||||.|.| |||..|....|
```

```
.....|||||||||||||||||...||||||||.....|||||||||..|||||.|.|.|.|.||||||.||||||||.|.| |||..|....|
```



```
_._._......|س||||||||||||||||||||||||||||....|||||||....|||||||||||||||.|.|.|.|||..|...|
```

```
_._._......|س||||||||||||||||||||||||||||....|||||||....|||||||||||||||.|.|.|.|||..|...|
```



```
.-._.....|||||||||||||||||||||||||||||||......||||||||||||||||....||||||||||||..| ...|
```

.-._.....|||||||||||||||||||||||||||||||......||||||||||||||||....||||||||||||..| ...|
._-........||||||||||||||||||||||||||||......||||||||||||||....|||||||.....||||||

```
._-........||||||||||||||||||||||||||||......||||||||||||||....|||||||.....||||||
```


top-down mergesort (cutoff = 12)

 - .-.
bottom-up mergesort (cutoff $=12$)

Timsort

- Natural mergesort.
- Use binary insertion sort to make initial runs (if needed).
- A few more clever optimizations.

Intro

This describes an adaptive, stable, natural mergesort, modestly called timsort (hey, I earned it <wink>). It has supernatural performance on many kinds of partially ordered arrays (less than $\mathrm{lg}(\mathrm{N}!)$ comparisons needed, and as few as $N-1$), yet as fast as Python's previous highly tuned samplesort hybrid on random arrays.

In a nutshell, the main routine marches over the array once, left to right, alternately identifying the next run, then merging it into the previous runs "intelligently". Everything else is complication for speed, and some hard-won measure of memory efficiency.

Consequence. Linear time on many arrays with pre-existing order. Now widely used. Python, Java 7, GNU Octave, Android,

http://www.python.org/dev/peps/pep-0020/
http://westmarch.sjsoft.com/2012/11/zen-of-python-poster/

Complexity of sorting

Computational complexity. Framework to study efficiency of algorithms for solving a particular problem X.

Model of computation. Allowable operations.
Cost model. Operation count(s).
Upper bound. Cost guarantee provided by some algorithm for X. Lower bound. Proven limit on cost guarantee of all algorithms for X. Optimal algorithm. Algorithm with best possible cost guarantee for X.
lower bound \sim upper bound

Example: sorting.

- Model of computation: decision tree. $\longleftarrow<\begin{gathered}\text { can access information } \\ \text { only through compares }\end{gathered}$
- Cost model: \# compares. (e.g., Java Comparable framework)
- Upper bound: $\sim N \lg N$ from mergesort.
- Lower bound:
- Optimal algorithm:

2.2 Mergesort

```
, mergesort
- bottom-uptmergesort
```

, sorting complexity

- comparators
- stability

Robert Sedgewick \mid Kevin Wayne
http://algs4.cs.princeton.edu

Algorithms

Compare-based lower bound for sorting

Proposition. Any compare-based sorting algorithm must use at least $\lg (N!) \sim N \lg N$ compares in the worst-case.

Pf.

- Assume array consists of N distinct values a_{1} through a_{N}.
- Worst case dictated by height h of decision tree.
- Binary tree of height h has at most 2^{h} leaves.
- N ! different orderings \Rightarrow at least N ! leaves.

Compare-based lower bound for sorting

Proposition. Any compare-based sorting algorithm must use at least $\lg (N!) \sim N \lg N$ compares in the worst-case.

Pf.

- Assume array consists of N distinct values a_{1} through a_{N}.
- Worst case dictated by height h of decision tree.
- Binary tree of height h has at most 2^{h} leaves.
- N ! different orderings \Rightarrow at least N ! leaves.

$$
\begin{gathered}
2^{h} \geq \text { \# leaves } \geq N! \\
\Rightarrow h \geq \lg (N!) \underset{\text { Stirling's formula }}{\sim} N \lg N \\
\uparrow \underset{~}{\uparrow}
\end{gathered}
$$

Complexity of sorting

Model of computation. Allowable operations.

Cost model. Operation count(s).
Upper bound. Cost guarantee provided by some algorithm for X. Lower bound. Proven limit on cost guarantee of all algorithms for X. Optimal algorithm. Algorithm with best possible cost guarantee for X.

Example: sorting.

- Model of computation: decision tree.
- Cost model: \# compares.
- Upper bound: $\sim N \lg N$ from mergesort.
- Lower bound: $\sim N \lg N$.
- Optimal algorithm = mergesort.

First goal of algorithm design: optimal algorithms

Complexity results in context

Compares? Mergesort is optimal with respect to number compares.
Space? Mergesort is not optimal with respect to space usage.

Lessons. Use theory as a guide.
Ex. Design sorting algorithm that guarantees $1 / 2 N \lg N$ compares?
Ex. Design sorting algorithm that is both time- and space-optimal?

Complexity results in context (continued)

Lower bound may not hold if the algorithm can take advantage of:

- The initial order of the input.

Ex: insert sort requires only a linear number of compares on partiallysorted arrays.

- The distribution of key values.

Ex: 3-way quicksort requires only a linear number of compares on arrays with a constant number of distinct keys. [stay tuned]

- The representation of the keys.

Ex: radix sort requires no key compares - it accesses the data via character/digit compares.

Sort countries by gold medals

2.2 Mergesort

```
Mmergesort
bottom-up mergesort
sorting complexity.
```

- comparators
\checkmark stability

Sort countries by total medals

Sort music library by artist

Comparable interface: review

Comparable interface: sort using a type's natural order.

Sort music library by song name

Comparator interface

Comparator interface: sort using an alternate order.

public interface Comparator<Key>

```
int compare (Key v, Key w)
```

compare keys v and w

Required property. Must be a total order.

string order	example
natural order	Now is the time
case insensitive	is Now the time digraphs ch and II and rr
Spanish language	café cafetero cuarto churro nube ñoño
British phone book	McKinley Mackintosh

Comparator interface: system sort

To use with Java system sort:

- Create Comparator object
- Pass as second argument to Arrays.sort().

Bottom line. Decouples the definition of the data type from the definition of what it means to compare two objects of that type.

Comparator interface: using with our sorting libraries

To support comparators in our sort implementations:

- Use Object instead of Comparable.
- Pass Comparator to sort() and less() and use it in less().

insertion sort using a Comparator

```
public static void sort(Object[] a, Comparator comparator)
{
    int N = a.length;
    for (int i = 0; i < N; i++)
        for (int j = i; j > 0 && less(comparator, a[j], a[j-1]); j--)
            exch(a, j, j-1);
}
private static boolean less(Comparator c, Object v, Object w)
{ return c.compare(v,w) < 0; }
private static void exch(Object[] a, int i, int j)
{ Object swap = a[i]; a[i] = a[j]; a[j] = swap; }
```


Comparator interface: implementing

To implement a comparator:

- Define a (nested) class that implements the Comparator interface.
- Implement the compare() method.

```
public class Student
{
    private final String name;
    private final int section;
    public static class ByName implements Comparator<Student>
    {
        public int compare(Student v, Student w)
        { return v.name.compareTo(w.name); }
    }
    public static class BySection implements Comparator<Student>
    {
        public int compare(Student v, Student w)
        { return v.section - w.section; }
    }
}
this trick works here
since no danger of overflow
```


Comparator interface: implementing

To implement a comparator:

- Define a (nested) class that implements the Comparator interface.
- Implement the compare() method.

Andrews	3	A	$664-480-0023$	097 Little
Battle	4	C	$874-088$-1212	121 Whitman
Chen	3	A	$991-878-4944$	308 Blair
Fox	3	A	$884-232-5341$	11 Dickinson
Furia	1	A	$766-093-9873$	101 Brown
Gazsi	4	B	766 -093-9873	101 Brown
Kanaga	3	B	$898-122-9643$	22 Brown
Rohde	2	A	$232-343-5555$	343 Forbes

Arrays.sort(a, new Student.BySection());

Furia	1	A	$766-093-9873$	101 Brown
Rohde	2	A	$232-343-5555$	343 Forbes
Andrews	3	A	$664-480-0023$	097 Little
Chen	3	A	$991-878-4944$	308 Blair
Fox	3	A	$884-232-5341$	11 Dickinson
Kanaga	3	B	$898-122-9643$	22 Brown
Battle	4	C	$874-088-1212$	121 Whitman
Gazsi	4	B	$766-093-9873$	101 Brown

A typical application. First, sort by name; then sort by section.

Selection.sort(a, new Student.ByName());

Andrews	3	A	$664-480-0023$	097 Little
Battle	4	C	$874-088$-1212	121 Whitman
Chen	3	A	$991-878-4944$	308 Blair
Fox	3	A	$884-232-5341$	11 Dickinson
Furia	1	A	$766-093-9873$	101 Brown
Gazsi	4	B	$766-093-9873$	101 Brown
Kanaga	3	B	$898-122-9643$	22 Brown
Rohde	2	A	$232-343-5555$	343 Forbes

Selection.sort(a, new Student.BySection());

2.2 Mergesort

```
Mmergesort
- boftom-up-mergesort
- sorting complexity
\nu}\mathrm{ comparators
```

```
- stability
- mergesort
-bottom-up mergesort
- sorting complexity
```

Furia	1	A	$766-093-9873$	101 Brown
Rohde	2	A	$232-343-5555$	343 Forbes
Chen	3	A	991 -878-4944	308 Blair
Fox	3	A	$884-232-5341$	11 Dickinson
Andrews	3	A	$664-480-0023$	097 Little
Kanaga	3	B	$898-122-9643$	22 Brown
Gazsi	4	B	$766-093-9873$	101 Brown
Battle	4	C	$874-088$-1212	121 Whitman

http://algs4.cs.princeton.edu

Stability

Q. Which sorts are stable?

A. Need to check algorithm (and implementation).

soled 09 :00:00
Chicago 09:00:00 Phoenix 09:00:00 Phoenix 09:00:03 Houston 09:00:13 Chicago 09:00:59 Ouston 09:01:10 Chicago 09:03:13 $\begin{array}{ll}\text { Seattle } & \text { 09:10:11 } \\ \text { Seattle } & 09: 10: 25\end{array}$ $\begin{array}{ll}\text { Seattle } & 09: 10: 25 \\ \text { Phoenix } & 09: 14: 25\end{array}$ $\begin{array}{ll}\text { Phoenix } & 09: 14: 25 \\ \text { Chicago } & 09: 19: 32\end{array}$ $\begin{array}{ll}\text { Chicago } & 09: 19: 32 \\ \text { Chicago } & 09: 19: 46\end{array}$ $\begin{array}{ll}\text { Chicago } & 09: 19: 46 \\ \text { Chicago } & 09: 21: 05\end{array}$ $\begin{array}{ll}\text { Chicago } & 09: 21: 05 \\ \text { Seattle 09:22:43 }\end{array}$ $\begin{array}{ll}\text { Seattle } & 09: 22: 43 \\ \text { Seatt }\end{array}$ $\begin{array}{ll}\text { Seattle } & 09: 22: 54 \\ \text { Chicago } & 09: 25: 52\end{array}$ Chicago 09:35:21 Seattle 09:36:14 Phoenix 09:37:44

Seattle 09:22:54
sorted by location (stable)
Chicago 09:00:00 Chicago 09:00:00 Chicago 09:00:59 Chicago 09:03:13 Chicago 09:19:32 Chicago 09:19:46 Chicago 09:21:05 Chicago 09:25:52 Chicago 09:35:21 Houston 09:00:13
Houston 09:01:10 Phoenix 09:00:03 sorted Phoenix 09:00:03 Phoenix 09:37:44 Seattle 09:10:11 Seattle 09:10:25 Seattle 09:22:43
Seattle 09:22:54
Seattle 09:36:14
@\#\%\&@! Students in section 3 no longer sorted by name.

A stable sort preserves the relative order of items with equal keys.

Stability: insertion sort

Proposition. Insertion sort is stable.

```
public class Insertion
```

\{
public static void sort(Comparable[] a)
pub
$\{$
int $N=$ a. length;
for (int i = 0; i < N; i++)
for (int $j=1 ; j>0$ \&\& less(a[j], a[j-1]); j--)
exch $(a, j, j-1)$;
\}

Pf. Equal items never move past each other.

Stability: selection sort

Proposition. Selection sort is not stable.

```
public class Selection
{
    public static void sort(Comparable[] a)
    {
int N = a.length;
        for (int i = 0; i < N; i++)
        {
            int min = i;
            for (int j = i+1; j < N; j++)
                if (less(a[j], a[min]))
                min = j;
            exch(a, i, min)
        }
}
\}
```


Pf by counterexample. Long-distance exchange can move one equal item past another one.

Stability: mergesort

Proposition. Mergesort is stable.

```
public class Merge
{
    private static void merge(...)
    { /* as before */ }
    private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
        if (hi <= 1o) return;
        int mid = 1o + (hi - 1o) / 2;
        sort(a, aux, lo, mid);
        sort(a, aux, mid+1, hi);
        merge(a, aux, lo, mid, hi);
    }
    public static void sort(Comparable[] a)
    { /* as before */ }
}
```

Pf. Suffices to verify that merge operation is stable.

Stability: shellsort

Proposition. Shellsort sort is not stable.

```
public class Shell
{
    public static void sort(Comparable[] a)
    { int N = a. length
        int h = 1;
        while (h<N/3) h = 3*h + 1;
        while (h >= 1)
        {
            for (int i = h; i < N; i++)
            {
                for (int j = i; j > h && less(a[j], a[j-h]); j -= h)
                    exch(a, j, j-h);
        }
        h = h/3
        }
    }
}
```



```
Pf by counterexample. Long-distance exchanges.
```


Stability: mergesort

Proposition. Merge operation is stable.

```
private static void merge(...)
    {
        for (int k = lo; k <= hi; k++)
        aux[k] = a[k];
```

 int \(i=1 o, j=m i d+1\);
 for (int k = lo; k <= hi; k++)
 \{
 if (i > mid)
 else if (\(\mathrm{j}>\mathrm{hi}\))
 \(a[k]=\operatorname{aux}[j++]\);
 lse if (j > hi) \(\quad a[k]=a u x[i++]\);
 else if (less(aux[j], aux[i])) \(a[k]=a u x[j++\);
 else
 \(a[k]=\operatorname{aux}[j++] ;\)
 $a[k]=\operatorname{aux}[i++] ;$
\}
\}

$$
\begin{array}{ccccc}
0 & 1 & 2 & 3 & 4 \\
\hline \mathrm{~A}_{1} & \mathrm{~A}_{2} & \mathrm{~A}_{3} & \mathrm{~B} & \mathrm{D}
\end{array} \quad \begin{array}{cccccc}
5 & 6 & 7 & 8 & 9 & 10 \\
\hline \mathrm{~A}_{4} & \mathrm{~A}_{5} & \mathrm{C} & \mathrm{E} & \mathrm{~F} & \mathrm{G}
\end{array}
$$

Pf. Takes from left subarray if equal keys.

Sorting summary

	inplace?	stable?	best	average	worst	remarks
selection	\boldsymbol{v}		$1 / 2 N^{2}$	$1 / 2 N^{2}$	$1 / 2 N^{2}$	N exchanges

[^0]: Bottom line. Good algorithms are better than supercomputers.

