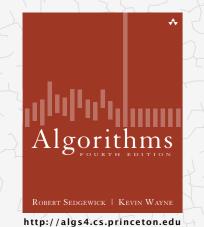
Algorithms



1.4 ANALYSIS OF ALGORITHMS

- introduction
- observations
- mathematical models
- order-of-growth classifications
- theory of algorithms

memory

1.4 ANALYSIS OF ALGORITHMS

introduction

memory

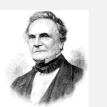
theory of algorithms

Algorithms order-of-growth classifications

Robert Sedgewick | Kevin Wayne
http://algs4.cs.princeton.edu

Running time

"As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise—By what course of calculation can these results be arrived at by the machine in the shortest time? " — Charles Babbage (1864)



how many times do you have to turn the crank?

Cast of characters

Programmer needs to develop a working solution.

Client wants to solve

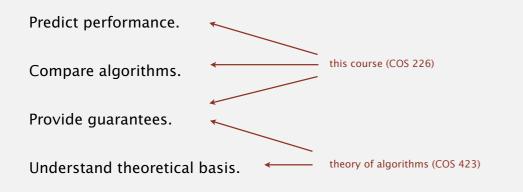
problem efficiently.

Student might play any or all of these roles someday.

Theoretician wants to understand.

Analytic Engine

Reasons to analyze algorithms



Primary practical reason: avoid performance bugs.

client gets poor performance because programmer did not understand performance characteristics

Some algorithmic successes

N-body simulation.

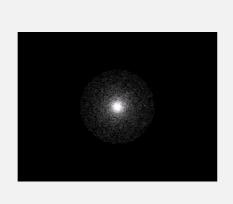
- Simulate gravitational interactions among N bodies.
- Brute force: N^2 steps.

time

• Barnes-Hut algorithm: $N \log N$ steps, enables new research.

PU '81

$\begin{array}{c} quadratic \\ 64T - \\ 32T - \\ 16T - \\ 8T - \\ linear ithmic \\ size \rightarrow 1K 2K 4K 8K \end{array}$

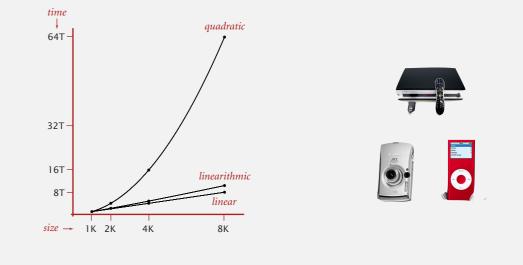


Some algorithmic successes

Discrete Fourier transform.

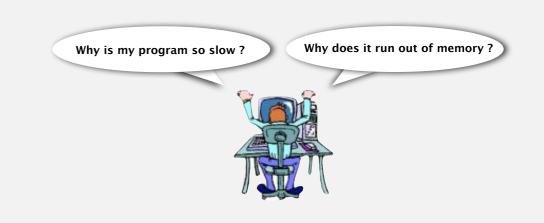
- Break down waveform of *N* samples into periodic components.
- Applications: DVD, JPEG, MRI, astrophysics,
- Brute force: N^2 steps.
- FFT algorithm: *N* log *N* steps, enables new technology.

Friedrich Gauss 1805



The challenge

Q. Will my program be able to solve a large practical input?



Insight. [Knuth 1970s] Use scientific method to understand performance.

Scientific method applied to analysis of algorithms

A framework for predicting performance and comparing algorithms.

Scientific method.

- Observe some feature of the natural world.
- Hypothesize a model that is consistent with the observations.
- Predict events using the hypothesis.
- Verify the predictions by making further observations.
- Validate by repeating until the hypothesis and observations agree.

Principles.

- Experiments must be reproducible.
- Hypotheses must be falsifiable.

Feature of the natural world. Computer itself.

Example: 3-SUM

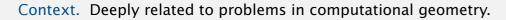
3-SUM. Given *N* distinct integers, how many triples sum to exactly zero?

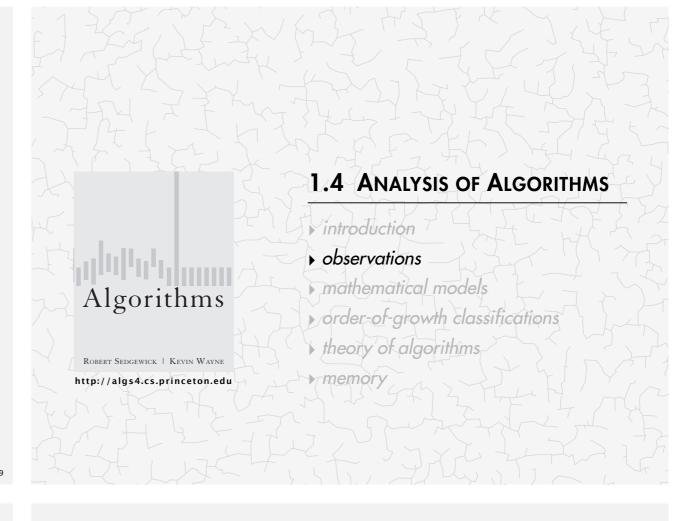
% more 8ints.txt		
30 -40 -20 -10 40 0 10 5		
% java ThreeSum 8ints.txt 4		
	Score	0

	a[i]	a[j]	a[k]	sum
1	30	-40	10	0
2	30	-20	-10	0
3	-40	40	0	0
4	-10	0	10	0

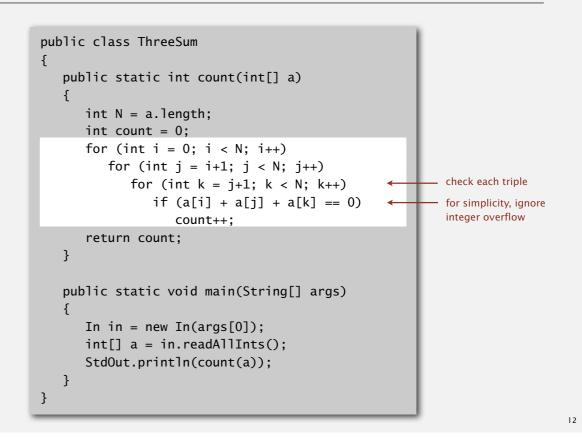
11

	2	30	-20	-10	
	3	-40	40	0	
	4	-10	0	10	
0					

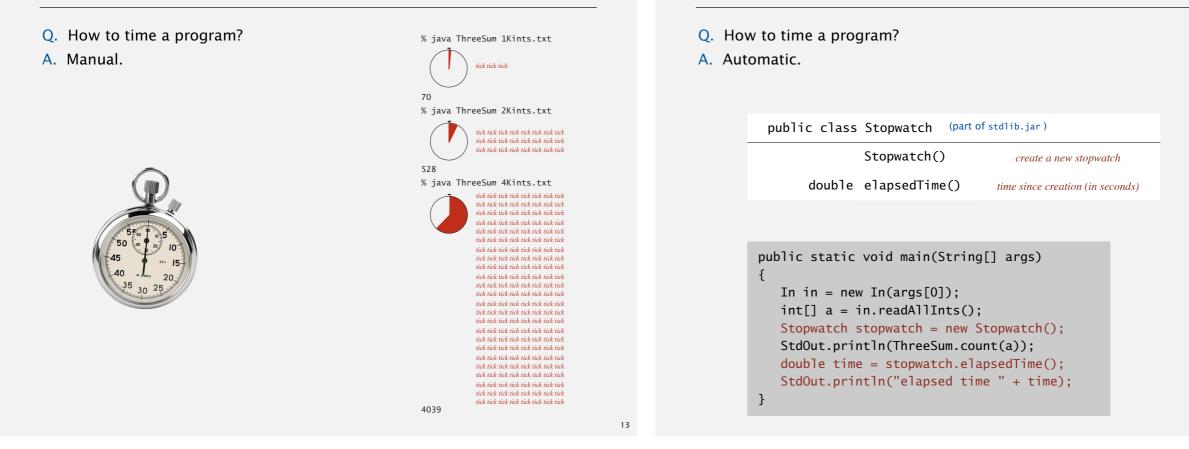




3-SUM: brute-force algorithm

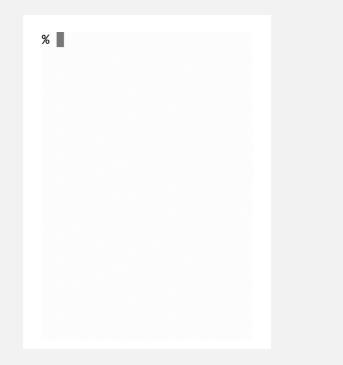


Measuring the running time



Empirical analysis

Run the program for various input sizes and measure running time.



Empirical analysis

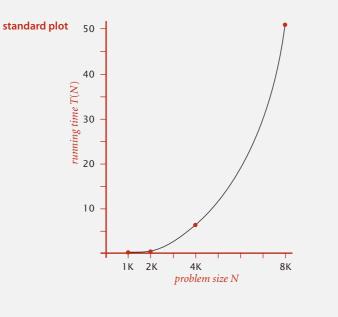
Measuring the running time

Run the program for various input sizes and measure running time.

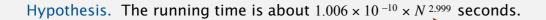
Ν	time (seconds) †
250	0.0
500	0.0
1,000	0.1
2,000	0.8
4,000	6.4
8,000	51.1
16,000	?

Data analysis

Standard plot. Plot running time T(N) vs. input size N.



Prediction and validation



"order of growth" of running time is about N³ [stay tuned]

Predictions.

- 51.0 seconds for N = 8,000.
- 408.1 seconds for N = 16,000.

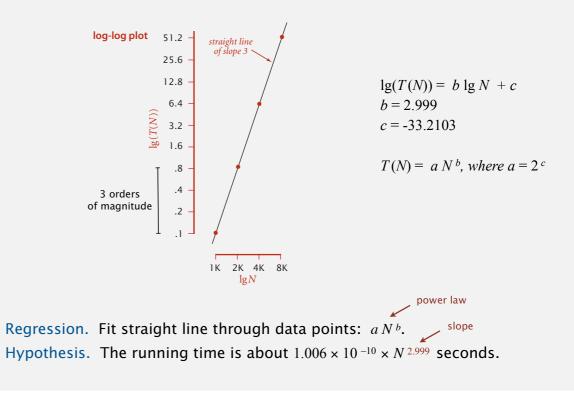
Observations.

Ν	time (seconds)		
8,000	51.1		
8,000	51.0		
8,000	51.1		
16,000	410.8		

validates hypothesis!

Data analysis

Log-log plot. Plot running time T(N) vs. input size N using log-log scale.



Doubling hypothesis

Doubling hypothesis. Quick way to estimate *b* in a power-law relationship.

Run program, doubling the size of the input.

N	time (seconds) †	ratio	lg ratio	$T(2N) \ a(2N)^b$
250	0.0		-	$\overline{T(N)} = \overline{aN^b}$
500	0.0	4.8	2.3	$= 2^b$
1,000	0.1	6.9	2.8	
2,000	0.8	7.7	2.9	
4,000	6.4	8.0	3.0 🔶	lg (6.4 / 0.8) = 3.0
8,000	51.1	8.0	3.0	
		seems	to converge to	a constant b \approx 3

Hypothesis. Running time is about $a N^{b}$ with b = lg ratio. Caveat. Cannot identify logarithmic factors with doubling hypothesis.

17

Doubling hypothesis

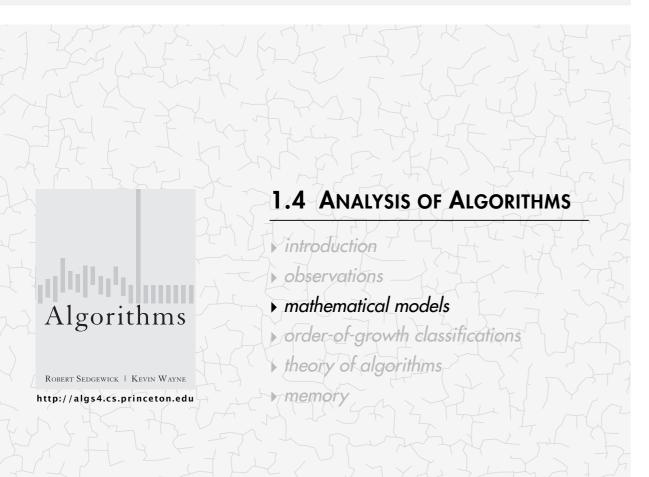
Doubling hypothesis. Quick way to estimate *b* in a power-law relationship.

- Q. How to estimate a (assuming we know b)?
- A. Run the program (for a sufficient large value of N) and solve for a.

Ν	time (seconds) †	
8,000	51.1	$51.1 = a \times 8000^3$
8,000	51.0	$\Rightarrow a = 0.998 \times 10^{-10}$
8,000	51.1	

Hypothesis. Running time is about $0.998 \times 10^{-10} \times N^3$ seconds.

almost identical hypothesis to one obtained via linear regression



Experimental algorithmics

System independent effects.

 Algorithm.
 Input data.
 determines exponent in power law

System dependent effects.

21

- Hardware: CPU, memory, cache, ...
- Software: compiler, interpreter, garbage collector, ...
- System: operating system, network, other apps, ...

Bad news. Difficult to get precise measurements.Good news. Much easier and cheaper than other sciences.

e.g., can run huge number of experiments

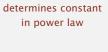
Mathematical models for running time

Total running time: sum of cost × frequency for all operations.

- Need to analyze program to determine set of operations.
- Cost depends on machine, compiler.
- Frequency depends on algorithm, input data.

THE CLASSIC WORK	THE CLASSIC WORK	THE CLASSIC WORK	THE CLASSIC WORK	
NEWLY UPDATED AND REVISED	NEWLY UPDATED AND REVISED	NEWLY UPDATED AND REVISED	EXTENDED AND REFINED	
The Art of	The Art of	The Art of	The Art of	125
Computer	Computer	Computer	Computer	
Programming	Programming	Programming	Programming	
VOLUME 1	VOLUME 2	VOLUME 3	VOLUME 4A	E Cont
Fundamental Algorithms	Seminumerical Algorithms	Sorting and Searching	Combinatorial Algorithms	
Third Edition	Third Edition	Second Edition	Part 1	
DONALD E. KNUTH	DONALD E. KNUTH	DONALD E. KNUTH	Donald E. Knuth	Donald Knuth 1974 Turing Award

In principle, accurate mathematical models are available.



Cost of basic operations

Challenge. How to estimate constants.

operation	example	nanoseconds †
integer add	a + b	2.1
integer multiply	a * b	2.4
integer divide	a / b	5.4
floating-point add	a + b	4.6
floating-point multiply	a * b	4.2
floating-point divide	a / b	13.5
sine	Math.sin(theta)	91.3
arctangent	Math.atan2(y, x)	129.0

† Running OS X on Macbook Pro 2.2GHz with 2GB RAM

Cost of basic operations

Observation. Most primitive operations take constant time.

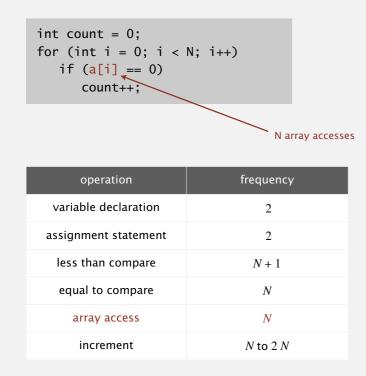
operation	example	nanoseconds †
variable declaration	int a	<i>c</i> ₁
assignment statement	a = b	С2
integer compare	a < b	С3
array element access	a[i]	<i>C</i> 4
array length	a.length	С5
1D array allocation	new int[N]	$c_6 N$
2D array allocation	<pre>new int[N][N]</pre>	c7 N ²

Caveat. Non-primitive operations often take more than constant time.

novice mistake: abusive string concatenation

Example: 1-SUM

Q. How many instructions as a function of input size N?

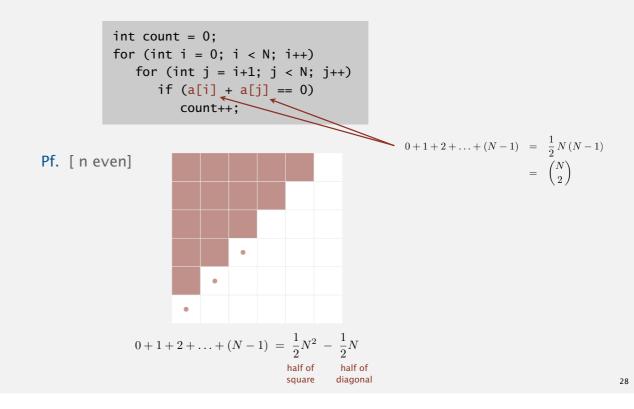


Example: 2-SUM

25

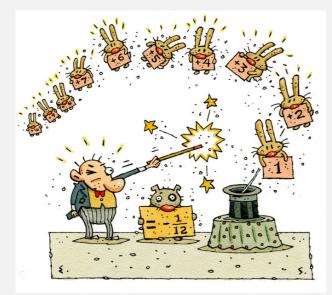
27

Q. How many instructions as a function of input size N?



String theory infinite sum

 $1+2+3+4+\ldots = -\frac{1}{12}$



http://www.nytimes.com/2014/02/04/science/in-the-end-it-all-adds-up-to.html

29

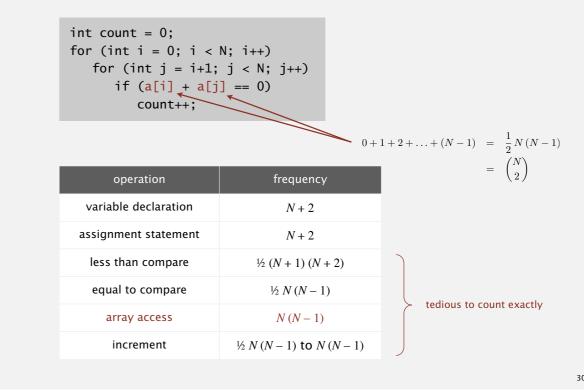
Simplifying the calculations

"It is convenient to have a measure of the amount of work involved in a computing process, even though it be a very crude one. We may count up the number of times that various elementary operations are applied in the whole process and then given them various weights. We might, for instance, count the number of additions, subtractions, multiplications, divisions, recording of numbers, and extractions of figures from tables. In the case of computing with matrices most of the work consists of multiplications and writing down numbers, and we shall therefore only attempt to count the number of multiplications and recordings. " — Alan Turing

ROUNDING-OFF ERRORS IN MATRIX PROCESSES By A. M. TURING (National Physical Laboratory, Teldington, Middlesex) [Received 4 November 1947] SUMMARY A number of methods of solving sets of linear equations and inverting matric are discussed. The theory of the rounding-off errors involved is investigated f

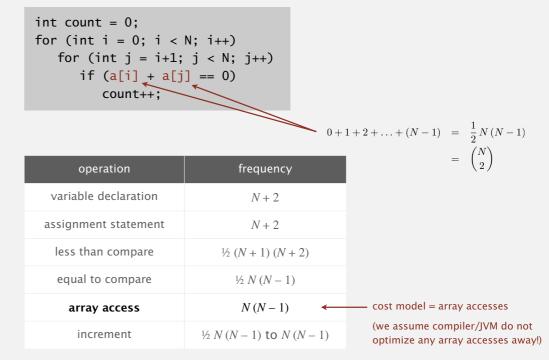
Example: 2-SUM

Q. How many instructions as a function of input size N?



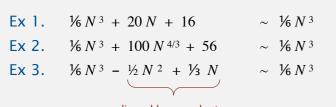
Simplification 1: cost model

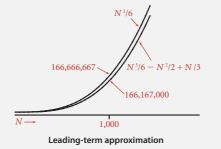
Cost model. Use some basic operation as a proxy for running time.



Simplification 2: tilde notation

- Estimate running time (or memory) as a function of input size *N*.
- Ignore lower order terms.
- when *N* is large, terms are negligible
- when N is small, we don't care





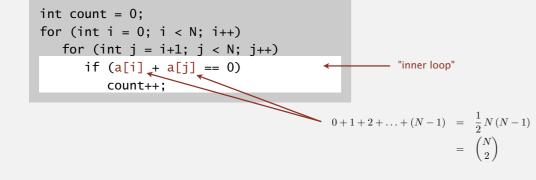
discard lower-order terms (e.g., N = 1000: 166.67 million vs. 166.17 million)

Technical definition. $f(N) \sim g(N)$ means $\lim_{N \to \infty} \frac{f(N)}{g(N)} = 1$

33

Example: 2-SUM

Q. Approximately how many array accesses as a function of input size *N*?



A. ~ N^2 array accesses.

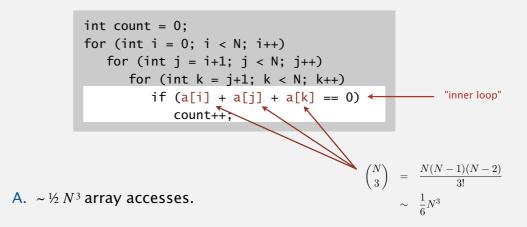
Simplification 2: tilde notation

- Estimate running time (or memory) as a function of input size N.
- Ignore lower order terms.
 - when N is large, terms are negligible
 - when N is small, we don't care

operation	frequency	tilde notation
variable declaration	<i>N</i> + 2	$\sim N$
assignment statement	<i>N</i> + 2	$\sim N$
less than compare	$\frac{1}{2}(N+1)(N+2)$	\sim ½ N^2
equal to compare	$\frac{1}{2}N(N-1)$	\sim ½ N^2
array access	N(N-1)	$\sim N^2$
increment	½ <i>N</i> (<i>N</i> −1) to <i>N</i> (<i>N</i> −1)	$\sim \frac{1}{2} N^2$ to $\sim N^2$

Example: 3-SUM

Q. Approximately how many array accesses as a function of input size *N*?



Bottom line. Use cost model and tilde notation to simplify counts.

Bottom line. Use cost model and tilde notation to simplify counts.

Diversion: estimating a discrete sum

- Q. How to estimate a discrete sum?
- A1. Take a discrete mathematics course.
- A2. Replace the sum with an integral, and use calculus!

Ex 1.
$$1+2+\ldots+N$$
. $\sum_{i=1}^{N} i \sim \int_{x=1}^{N} x \, dx \sim \frac{1}{2} N^2$

Ex 2.
$$1^k + 2^k + \dots + N^k$$
.
$$\sum_{i=1}^N i^k \sim \int_{x=1}^N x^k dx \sim \frac{1}{k+1} N^{k+1}$$

Ex 3.
$$1 + 1/2 + 1/3 + \dots + 1/N$$
. $\sum_{i=1}^{N} \frac{1}{i} \sim \int_{x=1}^{N} \frac{1}{x}$

Ex 4. 3-sum triple loop.
$$\sum_{i=1}^{N} \sum_{j=i}^{N} \sum_{k=j}^{N} 1 \sim \int_{x=1}^{N} \int_{y=x}^{N} \int_{z=y}^{N} dz \, dy \, dx \sim \frac{1}{6} N^{3}$$

 $\frac{1}{dx} = \ln N$

Estimating a discrete sum

- Q. How to estimate a discrete sum?
- A1. Take a discrete mathematics course.
- A2. Replace the sum with an integral, and use calculus!

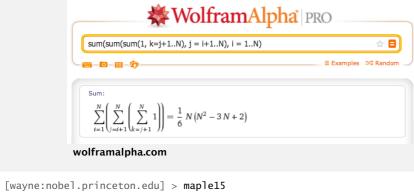
Ex 4.
$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$$

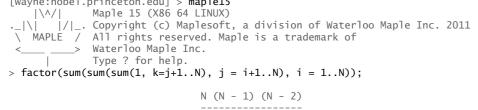
$$\sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^{i} = 2$$
$$\int_{x=0}^{\infty} \left(\frac{1}{2}\right)^{x} dx = \frac{1}{\ln 2} \approx 1.4427$$

Caveat. Integral trick doesn't always work!

Estimating a discrete sum

- Q. How to estimate a discrete sum?
- A3. Use Maple or Wolfram Alpha.





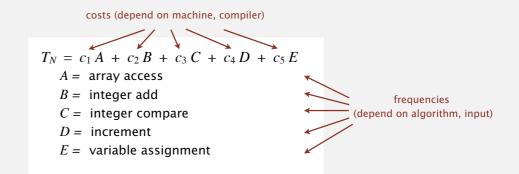
6

Mathematical models for running time

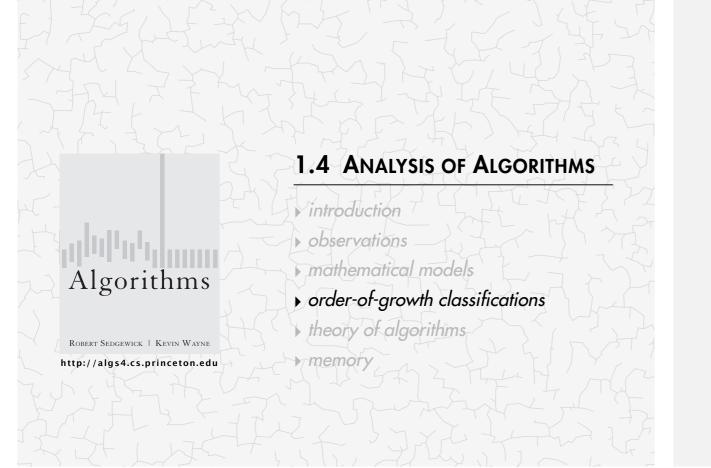
In principle, accurate mathematical models are available.

In practice,

- Formulas can be complicated.
- · Advanced mathematics might be required.
- Exact models best left for experts.



Bottom line. We use approximate models in this course: $T(N) \sim c N^3$.



Common order-of-growth classifications

Definition. If $f(N) \sim c g(N)$ for some constant c > 0, then the order of growth of f(N) is g(N).

- Ignores leading coefficient.
- Ignores lower-order terms.
- Ex. The order of growth of the running time of this code is N^{3} .

int count = 0; for (int i = 0; i < N; i++) for (int j = i+1; j < N; j++) for (int k = j+1; k < N; k++) if (a[i] + a[j] + a[k] == 0) count++;

Typical usage. With running times.

where leading coefficient depends on machine, compiler, JVM, ...

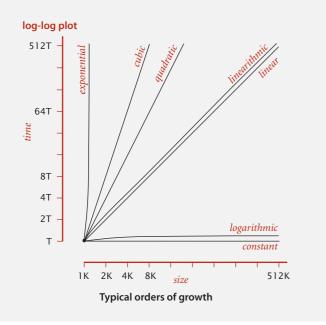
42

Common order-of-growth classifications

Good news. The set of functions

1, $\log N$, N, $N \log N$, N^2 , N^3 , and 2^N

suffices to describe the order of growth of most common algorithms.



Common order-of-growth classifications

order of growth	name	typical code framework	description	example	<i>T</i> (2 <i>N</i>) / T(<i>N</i>)
1	constant	a = b + c;	statement	add two numbers	1
log N	logarithmic	<pre>while (N > 1) { N = N / 2; }</pre>	divide in half	binary search	~ 1
Ν	linear	for (int i = 0; i < N; i++) { }	Іоор	find the maximum	2
$N \log N$	linearithmic	[see mergesort lecture]	divide and conquer	mergesort	~ 2
N ²	quadratic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) { }</pre>	double loop	check all pairs	4
N ³	cubic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) for (int k = 0; k < N; k++) { }</pre>	triple loop	check all triples	8
2^N	exponential	[see combinatorial search lecture]	exhaustive search	check all subsets	T(N)

Binary search demo

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

- Too small, go left.
- Too big, go right.
- Equal, found.
- D

successful search for 33

6	13	14	25	33	43	51	53	64	72	84	93	95	96	97
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1														1
lo														hi

Binary search: Java implementation

Trivial to implement?

- First binary search published in 1946.
- First bug-free one in 1962.
- Bug in Java's Arrays.binarySearch() discovered in 2006.

```
public static int binarySearch(int[] a, int key)
{
    int lo = 0, hi = a.length-1;
    while (lo <= hi)
    {
        int mid = lo + (hi - lo) / 2;
        if (key < a[mid]) hi = mid - 1;
        else if (key > a[mid]) lo = mid + 1;
        else return mid;
    }
    return -1;
}
```

Invariant. If key appears in the array a[], then $a[10] \le key \le a[hi]$.

```
46
```

Binary search: mathematical analysis

Proposition. Binary search uses at most $1 + \lg N$ key compares to search in a sorted array of size *N*.

Def. T(N) = # key compares to binary search a sorted subarray of size $\le N$.

```
Binary search recurrence. T(N) \le T(N/2) + 1 for N > 1, with T(1) = 1.
```

```
T = T
left or right half (floored division) = 2-way compare (instead of 3-way)
Pf sketch. [assume N is a power of 2]
T(N) \leq T(N/2) + 1 = [given]
\leq T(N/4) + 1 + 1 = [apply recurrence to first term]
\leq T(N/8) + 1 + 1 + 1 = [apply recurrence to first term]
\vdots
\leq T(N/N) + 1 + 1 + ... + 1 = [stop applying, T(1) = 1]
= 1 + \lg N
```

An N² log N algorithm for 3-SUM

Algorithm.

- Step 1: Sort the *N* (distinct) numbers.
- Step 2: For each pair of numbers a[i] and a[j], binary search for -(a[i] + a[j]).

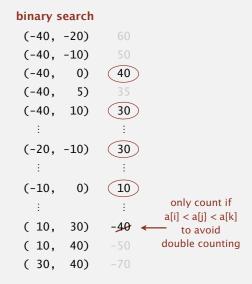
30 -40 -20 -10 40 0 10 5 **sort** -40 -20 -10 0 5 10 30 40

input

Analysis. Order of growth is $N^2 \log N$.

- Step 1: N² with insertion sort.
- Step 2: $N^2 \log N$ with binary search.

Remark. Can achieve N^2 by modifying binary search step.



Comparing programs

Hypothesis. The sorting-based $N^2 \log N$ algorithm for 3-SUM is significantly faster in practice than the brute-force N^3 algorithm.

N	time (seconds)	N	time (seconds)
1,000	0.1	1,000	0.14
2,000	0.8	2,000	0.18
4,000	6.4	4,000	0.34
8,000	51.1	8,000	0.96
Thr	eeSum.java	16,000	3.67
		32,000	14.88
		64,000	59.16

ThreeSumDeluxe.java

this course

Guiding principle. Typically, better order of growth \Rightarrow faster in practice.

Types of analyses

Best case. Lower bound on cost.

- Determined by "easiest" input.
- Provides a goal for all inputs.

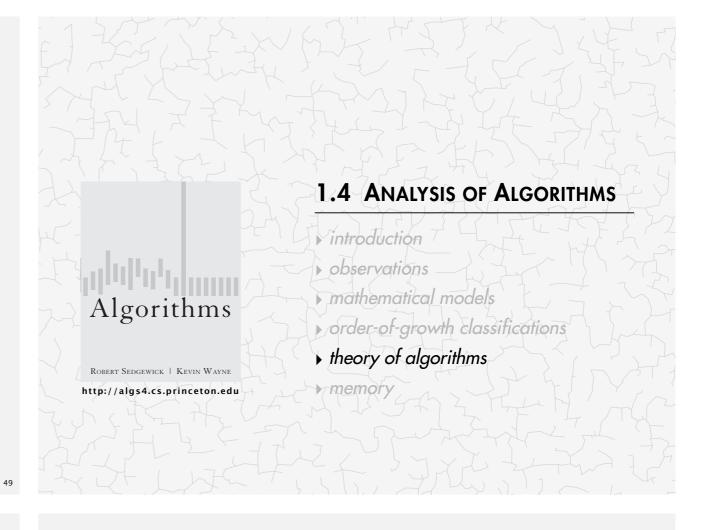
Worst case. Upper bound on cost.

- Determined by "most difficult" input.
- Provides a guarantee for all inputs.

Average case. Expected cost for random input.

- Need a model for "random" input.
- Provides a way to predict performance.

Ex 1. Arra	ay accesses for brute-force 3-SUM.	Ex 2. Cor	npares for binary search.
Best:	~ $\frac{1}{2} N^3$	Best:	~ 1
Average:	~ ½ N ³	Average:	~ lg N
Worst:	~ ¹ / ₂ N ³	Worst:	$\sim \lg N$



Theory of algorithms

Goals.

- Establish "difficulty" of a problem.
- Develop "optimal" algorithms.

Approach.

- Suppress details in analysis: analyze "to within a constant factor."
- Eliminate variability in input model: focus on the worst case.

Upper bound. Performance guarantee of algorithm for any input.Lower bound. Proof that no algorithm can do better.Optimal algorithm. Lower bound = upper bound (to within a constant factor).

Commonly-used notations in the theory of algorithms

notation	provides	example	shorthand for	used to
Big Theta	asymptotic order of growth	$\Theta(N^2)$	$\frac{\frac{1}{2} N^2}{10 N^2}$ 5 N ² + 22 N log N + 3N :	classify algorithms
Big Oh	$\Theta(N^2)$ and smaller	O(N ²)	$10 N^{2}$ $100 N$ $22 N \log N + 3 N$ \vdots	develop upper bounds
Big Omega	$\Theta(N^2)$ and larger	$\Omega(N^2)$	$\frac{\frac{1}{2} N^2}{N^5}$ N ³ + 22 N log N + 3 N :	develop lower bounds

Theory of algorithms: example 2

Goals.

- Establish "difficulty" of a problem and develop "optimal" algorithms.
- Ex. 3-SUM.

Upper bound. A specific algorithm.

- Ex. Brute-force algorithm for 3-SUM.
- Running time of the optimal algorithm for 3-SUM is $O(N^3)$.

Theory of algorithms: example 1

Goals.

- Establish "difficulty" of a problem and develop "optimal" algorithms.
- Ex. 1-SUM = "Is there a 0 in the array?"

Upper bound. A specific algorithm.

- Ex. Brute-force algorithm for 1-SUM: Look at every array entry.
- Running time of the optimal algorithm for 1-SUM is O(N).

Lower bound. Proof that no algorithm can do better.

- Ex. Have to examine all N entries (any unexamined one might be 0).
- Running time of the optimal algorithm for 1-SUM is $\Omega(N)$.

Optimal algorithm.

- Lower bound equals upper bound (to within a constant factor).
- Ex. Brute-force algorithm for 1-SUM is optimal: its running time is $\Theta(N)$.

Goals.

- Establish "difficulty" of a problem and develop "optimal" algorithms.
- Ex. 3-SUM.

Upper bound. A specific algorithm.

Theory of algorithms: example 2

- Ex. Improved algorithm for 3-SUM.
- Running time of the optimal algorithm for 3-SUM is $O(N^2 \log N)$.

Lower bound. Proof that no algorithm can do better.

- Ex. Have to examine all N entries to solve 3-SUM.
- Running time of the optimal algorithm for solving 3-SUM is $\Omega(N)$.

Open problems.

- Optimal algorithm for 3-SUM?
- Subquadratic algorithm for 3-SUM?
- Quadratic lower bound for 3-SUM?

Algorithm design approach

Start.

- Develop an algorithm.
- Prove a lower bound.

Gap?

- Lower the upper bound (discover a new algorithm).
- Raise the lower bound (more difficult).

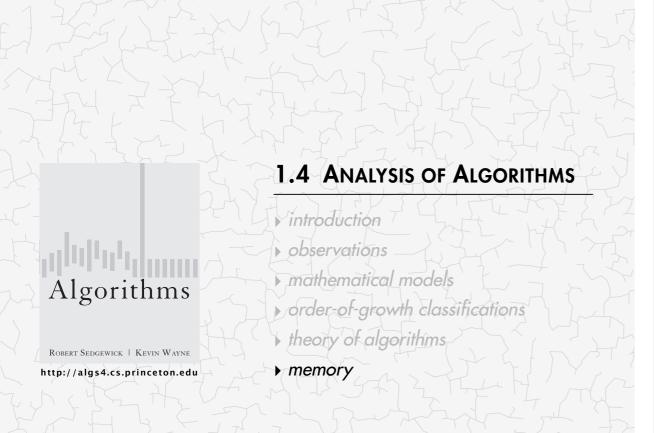
Golden Age of Algorithm Design.

- 1970s-.
- Steadily decreasing upper bounds for many important problems.
- Many known optimal algorithms.

Caveats.

- Overly pessimistic to focus on worst case?
- Need better than "to within a constant factor" to predict performance.

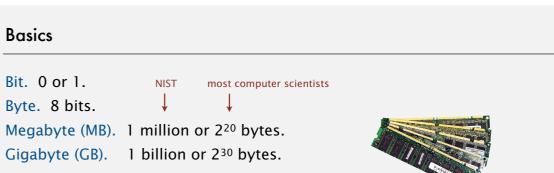
57



Commonly-used notations in the theory of algorithms

notation	provides	example	shorthand for	used to
Tilde	leading term	$\sim 10 N^2$	$10 N^{2}$ $10 N^{2} + 22 N \log N$ $10 N^{2} + 2 N + 37$	provide approximate model
Big Theta	asymptotic order of growth	$\Theta(N^2)$	$\frac{\frac{1}{2} N^2}{10 N^2}$ 5 N ² + 22 N log N + 3N	classify algorithms
Big Oh	$\Theta(N^2)$ and smaller	O(<i>N</i> ²)	10 N ² 100 N 22 N log N + 3 N	develop upper bounds
Big Omega	$\Theta(N^2)$ and larger	$\Omega(N^2)$	^{1/2} N ² N ⁵ N ³ + 22 N log N + 3 N	develop lower bounds

Common mistake. Interpreting big-Oh as an approximate model. This course. Focus on approximate models: use Tilde-notation



64-bit machine. We assume a 64-bit machine with 8-byte pointers.

- Can address more memory.
- Pointers use more space.

some JVMs "compress" ordinary object pointers to 4 bytes to avoid this cost

Typical memory usage for primitive types and arrays

type	bytes
boolean	1
byte	1
char	2
int	4
float	4
long	8
double	8
primitiv	ve types

type	bytes
char[]	2N + 24
int[]	4N + 24
double[]	8 <i>N</i> + 24
one-dime	ensional arrays
type	bytes
type char[][]	bytes ~ 2 M N

two-dimensional arrays

~ 8 M N

double[][]

61

Typical memory usage summary

Total memory usage for a data type value:

- Primitive type: 4 bytes for int, 8 bytes for double, ...
- Object reference: 8 bytes.
- Array: 24 bytes + memory for each array entry.
- Object: 16 bytes + memory for each instance variable.
- Padding: round up to multiple of 8 bytes.

+ 8 extra bytes per inner class object (for reference to enclosing class)

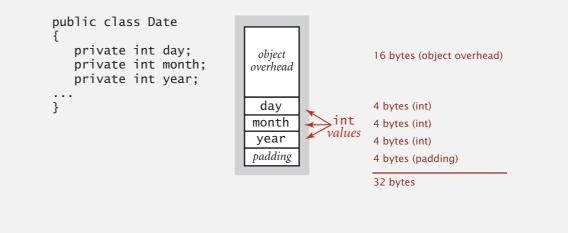
Shallow memory usage: Don't count referenced objects.

Deep memory usage: If array entry or instance variable is a reference, count memory (recursively) for referenced object.

Typical memory usage for objects in Java

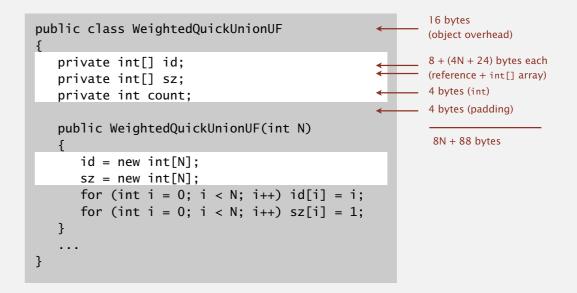
Object overhead. 16 bytes. Reference. 8 bytes. Padding. Each object uses a multiple of 8 bytes.

Ex 1. A Date object uses 32 bytes of memory.



Example

Q. How much memory does WeightedQuickUnionUF use as a function of N? Use tilde notation to simplify your answer.



A. $8N + 88 \sim 8N$ bytes.

Turning the crank: summary

Empirical analysis.

- Execute program to perform experiments.
- Assume power law and formulate a hypothesis for running time.
- Model enables us to make predictions.

Mathematical analysis.

- Analyze algorithm to count frequency of operations.
- Use tilde notation to simplify analysis.
- Model enables us to explain behavior.

Scientific method.

- Mathematical model is independent of a particular system; applies to machines not yet built.
- Empirical analysis is necessary to validate mathematical models and to make predictions.

