

1. True or False: The reverse postorder of a graph’s reverse is the same as the post-order of the

graph. How is this question relevant to Kosaraju’s algorithm?

2. Prove that every connected undirected graph has a vertex whose removal (including all adjacent

edges) will not disconnect the graph.

3. Given a connected undirected graph, design an algorithm to find a vertex whose removal will

not disconnect the graph.

4. Given a directed graph with V vertices and E edges, design an efficient algorithm to find a

directed cycle with the minimum number of edges (or report that the graph is acyclic).

Your algorithm should run in ����� time and ��� + �� space. Assume � ≤ � ≤ ��.

5. Given an directed graph and a starting vertex u, give an algorithm for finding all vertices such

that there is an odd-length path to those vertices from u. These paths may involve cycles. Your

algorithm should complete in ��� + �� time. If you’re stuck, you might also try to come up with

an algorithm that completes in ����� time.

6. In class we implemented DFS using the simple recursive routine shown below.

 private void dfs(Digraph G, int v) {

 marked[v] = true;

 for (int w : G.adj(v)) {

 if (!marked[w]) dfs(G, w);

 }

 }

By contrast, we implemented BFS using the iterative code shown below:

 while (!q.isEmpty()) {

 int v = q.dequeue();

 for (int w : G.adj(v)) {

 if (!marked[w]) {

 edgeTo[w] = v;

 distTo[w] = distTo[v] + 1;

 marked[w] = true;

 q.enqueue(w);

 }

 }

 }

Suppose we take the BFS code and replace the Queue with a Stack. Is the resulting search BFS?

DFS? Something else?

7. Extra challenging: An Eulerian cycle is a directed cycle that contains each edge exactly once.

Design an algorithm that finds an Eulerian cycle or reports that no such tour exists.

