
Each team can solve as many problems as possible. We are using flip to collect

solutions. Just highlight the question (eg: Dynamic Median) and then write the

solution as a comment. Team members cannot edit each other’s comments in

FLIP (that would have been nice) and so agree on a solution as a team and

then enter into FLIP by one member of the team. We will rank the teams based

on the correct solutions.

1. Dynamic median. Design a data type that supports insert in logarithmic

time, find-the-median in constant time, and remove-the-median in

logarithmic time. You may use any ADTs we’ve discussed in class. This

problem is harder than any you’ll find on a 226 exam.

2. Generalized Queue. Design a data structure that supports the following API

for a generalized queue in logarithmic worst-case time. You may assume that

we have access to a PQ, ST, and SET that take worst-case logarithmic time for

all operations.

public class GQ<Item item> {

 public GQ();

 public Item get(int i);

 public void addFirst(Item item);

 public void addLast(Item item);

 public Item remove(int i);

}

3. Logarithmic Randomized Queue. For Assignment 2, you implemented a

randomized queue that supported enqueue and dequeue (delete and return

random) in amortized constant time (using space proportional to the number

of items on the queue).

Next week, we’ll discuss binary search trees that use clever tricks to maintain

logarithmic height even in the worst case. Use such a balanced search tree to

implement the two operations in logarithmic time per operation in the worst-case

(using space proportional to the number of items on the queue).

public class RandomizedQueue<Item> {
private RedBlackBST<Integer, Item> st = new RedBlackBST<Integer,
Item>();

 // add the item to the queue
 public void enqueue(Item item) {

 int N = st.size();

 // YOUR CODE HERE

 }

// delete and return a random item from the queue

public Item dequeue() {
 int N = st.size();
 if (N == 0) throw new RuntimeException("Randomized queue

underflow");
 // YOUR CODE HERE

 }
}

4. Heapification. What is the run-time required to perform a bottom-up sink-

based heapification? What is the run-time required for a top-down swim-

based heapification? Provide a mathematical justification for each.

5. Balanced binary trees. Given an array of integers, provide an algorithm for

building a balanced binary tree of those integers. Extra: Prove that it is

impossible to do this in linear time.

6. BST Sort. Suppose we use a version of partitioning that is stable, e.g. if we

start with the array [6 4 8 3 7 1 2 5], then partitioning on the leftmost item

yields [4 3 1 2 5 6 8 7]. Write out the list of compares performed

to fully sort this array. Write out the list of compares used to build a BST if

keys are inserted in the order [6 4 8 3 7 1 2 5]. What do you observe?

