
Dynamic median. Design a data type that supports insert in logarithmic time, find-

the-median in constant time, and remove-the-median in logarithmic time. You may

use any ADTs we’ve discussed in class. This problem is harder than any you’ll find

on a 226 exam.

Generalized Queue (Fall 2009 #7). Design a data structure that supports the

following API for a generalized queue in logarithmic worst-case time. You may

assume that we have access to a PQ, ST, and SET that take worst-case logarithmic

time for all operations.

public class GQ<Item item> {

 public GQ();

 public Item get(int i);

 public void addFirst(Item item);

 public void addLast(Item item);

 public Item remove(int i);

}

Logarithmic Randomized Queue (Spring 2008 Midterm #8). For Assignment 2,

you implemented a randomized queue that supported enqueue and dequeue (delete

and return random) in amortized constant time (using space proportional to the

number of items on the queue).

Next week, we’ll discuss binary search trees that use clever tricks to maintain

logarithmic height even in the worst. Use such a balanced search tree to implement

the two operations in logarithmic time per operation in the worst-case (using space

proportional to the number of items on the queue).

public class RandomizedQueue<Item> {
private RedBlackBST<Integer, Item> st = new RedBlackBST<Integer,
Item>();

 // add the item to the queue
 public void enqueue(Item item) {

 int N = st.size();

 // YOUR CODE HERE

 }

// delete and return a random item from the queue
public Item dequeue() {
 int N = st.size();

 if (N == 0) throw new RuntimeException("Randomized queue
underflow");
 // YOUR CODE HERE

 }

}

Heapification. What is the run-time required to perform a bottom-up sink-based

heapification? What is the run-time required for a top-down swim-based

heapification? Provide a mathematical justification for each.

Balanced binary trees. Given an array of integers, provide an algorithm for

building a balanced binary tree of those integers. Extra: Prove that it is impossible

to do this in linear time.

