
Week 2, Flipped Exercises

Josh Hug

Andy Guna

1

Comparable interface

2

If we omit “compareTo()”, which file
will fail to compile?

A. BeanSorter.java
B. Bean.java
C. InsertionSort.java

public static void sort(Comparable[] a)

{

 int N = a.length;

 for (int i = 0; i < N; i++)

 for (int j = i; j > 0; j--)

 if (a[j].compareTo(a[j-1]) < 0)

 exch(a, j, j-1);

 else break;

}

public class Bean

implements Comparable<Bean>

{

 ...

 public int compareTo(Bean b)

 {

 ...

 return -1;

 ...

 return =1;

 ...

 return 0;

 }

}

public class BeanSorter

{

 public static void main(String[] args)

 {

 Bean[] beans = readBeans();

 Insertion.sort(beans);

 for (int i = 0; i < files.length; i++)

 StdOut.println(beans[i]);

 }

}

One can say that BeanSorter also
doesn’t compile since Bean doesn’t.

Comparable interface

3

If we omit “implements comparable”,
which file will fail to compile?

A. BeanSorter.java
B. Bean.java
C. InsertionSort.java

public static void sort(Comparable[] a)

{

 int N = a.length;

 for (int i = 0; i < N; i++)

 for (int j = i; j > 0; j--)

 if (a[j].compareTo(a[j-1]) < 0)

 exch(a, j, j-1);

 else break;

}

public class Bean

implements Comparable<Bean>

{

 ...

 public int compareTo(Bean b)

 {

 ...

 return -1;

 ...

 return =1;

 ...

 return 0;

 }

}

public class BeanSorter

{

 public static void main(String[] args)

 {

 Bean[] beans = readBeans();

 Insertion.sort(beans);

 for (int i = 0; i < files.length; i++)

 StdOut.println(beans[i]);

 }

}

Amortized Analysis

• Suppose that you have a class that supports insert() and
search() operations in amortized 4 lgN compares. Which of
the following are true?

• I. Starting from an empty data structure, any sequence of N
insert and search operations uses at most 4N lgN compares.

• II. Any sequence of N insert and search operations uses at
most 4N lgN compares.

• III. Starting from an empty data structure, the expected
number of compares to perform N insert and search
operations is 4N lgN, but there is a (small) probability that it
will take 5N lgN compares (or more).

4

A. I only. D. I, II, and III.

B. I and II only. E. None

C. I and III only.

Shellsort

• For Shellsort, if we use a 3x+1 increment sequence, roughly
how many elements are considered during the first h sort in an
array of size N?

5

A. 1 D. N
3/2

B. 3 E. N

C. N/3

Shellsort

• Suppose we have a sorted array of length N. How many
compares are required to complete a shellsort with a 3x+1
increment sequence? Give your answer as an order of growth.

• First few passes:

– Roughly N/3 insertion sorts of size 3 (N compares)

– …

6

A. N C. N
3/2

B. N log N D. N
2

Shellsort

• Suppose we have a sorted array of length N. How many
compares are required to complete a shellsort with a 3x+1
increment sequence? Give your answer as an order of growth.

• First few passes:

– Roughly N/3 insertion sorts of size 3 (N compares).

– Roughly N/9 insertion sorts of size 9 (N compares).

– …

– 1 insertion sort of size N (N compares)

• Total # compares:

– N * log3(N)

7

