
Huffman Warmup (skip if you’re feeling comfortable with Huffman coding). How many bits 

are in the Huffman encoding of the following message?  

 

 
The frequencies for this message are given for the table below: 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Huffman Best/Worst Case. Assuming the input is a sequence of 8-bit characters, give a best 

case input for Huffman coding. What is the compression ratio? What is the compression ratio 

for a worst case input? 

 

 

  



Tougher Huffman Analysis. Consider the following Huffman trie of a message over the 5-

character alphabet {A, B, C, D, E}.  

 

 
 

For each statement below, determine which of the three conditions applies: true for all 

messages, false for all messages, or its veracity depends on the message. 

 

1. The frequency of A is strictly less (i.e. not equal) than the frequency of B. 

 

 

2. The frequency of C is greater than or equal to the frequency of A. 

 

 

3. The frequency of D is strictly greater than the frequency of A. 

 

 

4. The frequency of D is greater than or equal to that of A, B, and C combined. 

 

 

5. The frequency of E is strictly less than that of A, B, and C combined. 

 

  



LZW Encoding Warmup (skip if you feel comfortable with LZW basics). Use LZW to compress 

the string ABAAABABA. Assume 8 bit codewords and that the first new codeword starts at 81. A 

corresponds to 41, and B corresponds to 42. 

 

 

 

 

 

 

 

LZW Decoding Warmup (skip if you feel comfortable with LZW basics). Use LZW to 

decompress 42 41 42 83 82 82 80. Assume 8 bit codewords and that the first new 

codeword starts at 81. 

 

 

 

 

 

 

 

 

LZW. What is the best-case compression ratio for N characters using 12-bit codewords? Recall 

that no new codewords are added to the table if it already has 2�� = 4096 entries.  

 

 

 

 

 

 

What is the compression ratio in the worst case? 

 

 

 

 

 

Extra: Given an input bistream of length L and a policy where the most-recently-used-codeword 

is replaced, what is the best case order of growth of the compression ratio as a function of L? 

 

 

 

 

  



Tries. The problem with tries is that they are very memory hungry. Suppose we wanted to 

address this by replacing the next[] array with an LLRB. What would be the worst-case order 

of growth for a search hit, assuming a query of length L, an alphabet of size R, and that there 

are N string keys in the Trie. 

 

 

 

 

 

 

 

 

 

 

 

Prefix-Free Codes. In data compression, a set of binary strings is prefix free if not string is a 

prefix of another. For example {01,10,0010,1111} is prefix free, but {01,10,0010,10100} is not 

because 10 is a prefix of 10100. Design an efficient algorithm to determine if a set of binary 

strings is prefix-free. The running time of your algorithm should be proportional the number of 

bits in all of the binary stings. 

 

 

 

 

 

 

 

 

 

 

 

  



Extra problem: Autocomplete Enhanced. On assignment 3, we designed an autocomplete data 

structure that used binary search to return the list of words starting with a given prefix. For an 

array of length N and a number of matches M, our algorithm took M + log N time to return all 

matching strings. Suppose we want to return only the top Q matches. Design a Q + log N data 

structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Extra problem #2: Kolmogorov Complexity. Given a string S, the Java-Kolmogorov complexity 

	
(�) is defined by the number of bytes in the shortest Java program that prints S to the 

screen. Let |�| be the length of the string. 

 

a. Prove that 	
(�) ≤ |�| + � for some constant c. 

 

b. Give an example of an S such that 	
(�) is much less than|�|. 

 

c. Suppose we use LZW compression on S and get an output stream B. Explain how B and 

	
(�) are related. 

 

d. Explain why 	
(�) is greater than S for almost all strings. 

 

e. Let the Python-Kolmogorov complexity 	�(�) be defined as the number of bytes in the 

shortest Java program that prints S to the screen. Prove that for all S 	
(�) ≤ 	�(�) + � 

for some constant c. Why is this result interesting? 


