Dijkstra's Algorithm Demo

Robert Sedgewick I Kevin Wayne
http://algs4.cs.princeton.edu

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

choose source vertex 0

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

relax all edges pointing from 0

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

relax all edges pointing from 0

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

choose vertex 1

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

relax all edges pointing from 1

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

relax all edges pointing from 1

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

v	distTo[]	edgeTo[]
0	0.0	-
1	5.0	$0 \rightarrow 1$
2	17.0	$1 \rightarrow 2$
3	20.0	$1 \rightarrow 3$
4	9.0	$0 \rightarrow 4$
5		
6		
7	8.0	$0 \rightarrow 7$

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

[^0]
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

relax all edges pointing from 7

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

relax all edges pointing from 7

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

v	distTo[]	edgeTo[]
0	0.0	-
1	5.0	$0 \rightarrow 1$
2	15.0	$7 \rightarrow 2$
3	20.0	$1 \rightarrow 3$
4	9.0	$0 \rightarrow 4$
5	14.0	$7 \rightarrow 5$
6		
7	8.0	$0 \rightarrow 7$

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

select vertex 4

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

relax all edges pointing from 4

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

relax all edges pointing from 4

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

v	distTo[]	edgeTo[]
0	0.0	-
1	5.0	$0 \rightarrow 1$
2	15.0	$7 \rightarrow 2$
3	20.0	$1 \rightarrow 3$
4	9.0	$0 \rightarrow 4$
5	13.0	$4 \rightarrow 5$
6	29.0	$4 \rightarrow 6$
7	8.0	$0 \rightarrow 7$

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

select vertex 5

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

relax all edges pointing from 5

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

relax all edges pointing from 5

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

select vertex 2

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

relax all edges pointing from 2

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

relax all edges pointing from 2

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

select vertex 3

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

relax all edges pointing from 3

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

relax all edges pointing from 3

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

select vertex 6

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

relax all edges pointing from 6

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

shortest-paths tree from vertex s

[^0]: choose vertex 7

