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Abstract—This paper presents Ethane, a new network archi-
tecture for the enterprise. Ethane allows managers to define a
single network-wide fine-grain policy and then enforces it directly.
Ethane couples extremely simple flow-based Ethernet switches
with a centralized controller that manages the admittance and
routing of flows. While radical, this design is backwards-com-
patible with existing hosts and switches. We have implemented
Ethane in both hardware and software, supporting both wired
and wireless hosts. We also show that it is compatible with existing
high-fanout switches by porting it to popular commodity switching
chipsets. We have deployed and managed two operational Ethane
networks, one in the Stanford University Computer Science
Department supporting over 300 hosts, and another within a
small business of 30 hosts. Our deployment experiences have
significantly affected Ethane’s design.

Index Terms—Architecture, management, network, security.

I. INTRODUCTION

E NTERPRISE networks are often large, run a wide variety
of applications and protocols, and typically operate under

strict reliability and security constraints; thus, they represent a
challenging environment for network management. The stakes
are high, as business productivity can be severely hampered by
network misconfigurations or break-ins. Yet, the current solu-
tions are weak, making enterprise network management both
expensive and error-prone. Indeed, most networks today require
substantial manual configuration by trained operators [1]–[4]
to achieve even moderate security [5]. A Yankee Group report
found that 62% of network downtime in multivendor networks
comes from human error and that 80% of IT budgets is spent on
maintenance and operations [6].

There have been many attempts to make networks more
manageable and more secure. One approach introduces propri-
etary middleboxes that can exert their control effectively only
if placed at network choke-points. If traffic accidentally flows
(or is maliciously diverted) around the middlebox, the network
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is no longer managed nor secure [3]. Another approach is to
add functionality to existing networks—to provide tools for
diagnosis; to offer controls for VLANs, access-control lists, and
filters to isolate users; to instrument the routing and spanning
tree algorithms to support better connectivity management; and
then to collect packet traces to allow auditing. This can be done
by adding a new layer of protocols, scripts, and applications
[7], [8] that help automate configuration management in order
to reduce the risk of errors. However, these solutions hide the
complexity and do not reduce it. Also, they have to be con-
stantly maintained to support the rapidly changing and often
proprietary management interfaces exported by the managed
elements.

Rather than building a new layer of complexity on top of the
network, we explore the question: How could we change the en-
terprise network architecture to make it more manageable? Our
answer is embodied in the architecture we describe here, called
Ethane. Ethane is built around three fundamental principles that
we feel are important to any network management solution:

The network should be governed by policies declared over
high-level names. Networks are most easily managed in terms
of the entities we seek to control—such as users, hosts, and ac-
cess points—rather than in terms of low-level and often dynam-
ically allocated addresses. For example, it is convenient to de-
clare which services a user is allowed to use and to which ma-
chines they can connect.

Network routing should be policy-aware. Network policies
dictate the nature of connectivity between communicating enti-
ties and, therefore, naturally affect the paths that packets take.
This is in contrast to today’s networks in which forwarding and
filtering use different mechanisms rather than a single integrated
approach.

A policy might require packets to pass through an interme-
diate middlebox; for example, a guest user might be required to
communicate via a proxy, or the user of an unpatched operating
system might be required to communicate via an intrusion-de-
tection system. Policy may also specify service priorities for
different classes of traffic. Traffic can receive more appropriate
service if its path is controlled; directing real-time communica-
tions over lightly loaded paths, important communications over
redundant paths, and private communications over paths inside
a trusted boundary would all lead to better service.

The network should enforce a strong binding between a
packet and its origin. Today, it is notoriously difficult to reli-
ably determine the origin of a packet: Addresses are dynamic
and change frequently, and they are easily spoofed. The loose
binding between users and their traffic is a constant target for at-
tacks in enterprise networks. If the network is to be governed by
a policy declared over high-level names (e.g., users and hosts),
then packets should be identifiable, without doubt, as coming
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from a particular physical entity. This requires a strong binding
between a user, the machine they are using, and the addresses in
the packets they generate. This binding must be kept consistent
at all times, by tracking users and machines as they move.

To achieve these aims, we followed the lead of the 4D project
[9] and adopted a centralized control architecture. Centralized
solutions are normally an anathema for networking researchers,
but we feel it is the proper approach for enterprise management.
IP’s best-effort service model is both simple and unchanging,
well suited for distributed algorithms. Network management is
quite the opposite; its requirements are complex and variable,
making it quite hard to compute in a distributed manner.

There are many standard objections to centralized ap-
proaches, such as resilience and scalability. However, as we
discuss later in the paper, our results suggest that standard
replication techniques can provide excellent resilience, and
current CPU speeds make it possible to manage all control
functions on a sizable network (e.g., thousands of hosts) from
a single commodity PC.

Ethane bears substantial resemblance to SANE, our recently
proposed clean-slate approach to enterprise security [10].
SANE was, as are many clean-slate designs, difficult to deploy
and largely untested. While SANE contained many valuable
insights, Ethane extends this previous work in three main ways.

1) Security follows management: Enterprise security is, in
many ways, a subset of network management. Both re-
quire a network policy, the ability to control connectivity,
and the means to observe network traffic. Network man-
agement wants these features so as to control and isolate
resources, and then to diagnose and fix errors, whereas
network security seeks to control who is allowed to talk to
whom, and then to catch bad behavior before it propagates.
When designing Ethane, we decided that a broad approach
to network management would also work well for network
security.

2) Incremental deployability: SANE required a “forklift” re-
placement of an enterprise’s entire networking infrastruc-
ture and changes to all the end-hosts. While this might be
suitable in some cases, it is clearly a significant impedi-
ment to widespread adoption. Ethane is designed so that it
can be incrementally deployed within an enterprise: It does
not require any host modifications, and Ethane Switches
can be incrementally deployed alongside existing Ethernet
switches.

3) Significant deployment experience: Ethane has been
implemented in both software and hardware (using spe-
cial-purpose Gigabit Ethernet switches and commodity
switch-on-a-chip products) and deployed at Stanford
University’s Computer Science Department for over four
months and managed over 300 hosts. We also have ex-
perience deploying Ethane in a small business of over 30
hosts. This deployment experience has given us insight
into the operational issues such a design must confront
and resulted in significant changes and extensions to the
original design.

In this paper, we describe our experiences designing, imple-
menting, and deploying Ethane. We begin with a high-level
overview of the Ethane design in Section II, followed by

a detailed description in Section III. In Section IV, we de-
scribe a policy language FSL that we use to manage our
Ethane implementation. We then discuss our implementation
and deployment experience (Section V), followed by perfor-
mance analysis (Section VI). Finally, we present limitations
(Section VII), discuss related work (Section VIII), and then
conclude (Section IX).

II. OVERVIEW OF ETHANE DESIGN

Ethane controls the network by not allowing any communica-
tion between end-hosts without explicit permission. It imposes
this requirement through two main components. The first is a
central Controller containing the global network policy that de-
termines the fate of all packets. When a packet arrives at the
Controller—how it does so is described below—the Controller
decides whether the flow represented by that packet1 should be
allowed. The Controller knows the global network topology and
performs route computation for permitted flows. It grants access
by explicitly enabling flows within the network switches along
the chosen route. The Controller can be replicated for redun-
dancy and performance.

The second component is a set of Ethane Switches. In con-
trast to the omniscient Controller, these Switches are simple and
dumb. Consisting of a simple flow table and a secure channel to
the Controller, Switches simply forward packets under the di-
rection of the Controller. When a packet arrives that is not in
the flow table, the Switch forwards that packet to the Controller
(in a manner we describe later), along with information about
which port the packet arrived on. When a packet arrives that is
in the flow table, it is forwarded according to the Controller’s
directive. Not every switch in an Ethane network needs to be an
Ethane Switch: Our design allows Switches to be added gradu-
ally, and the network becomes more manageable with each ad-
ditional Switch.

A. Names, Bindings, and Policy Language

When the Controller checks a packet against the global
policy, it is evaluating the packet against a set of simple rules,
such as “Guests can communicate using HTTP, but only via a
Web proxy” or “VoIP phones are not allowed to communicate
with laptops.” If we want the global policy to be specified in
terms of such physical entities, we need to reliably and securely
associate a packet with the user, group, or machine that sent
it. If the mappings between machine names and IP addresses
(DNS) or between IP addresses and MAC addresses (ARP
and DHCP) are handled elsewhere and are unauthenticated,
then we cannot possibly tell who sent the packet, even if the
user authenticates with the network. This is a notorious and
widespread weakness in current networks.

With (logical) centralization, it is simple to keep the names-
pace consistent as components join, leave, and move around
the network. Network state changes simply require updating
the bindings at the Controller. This is in contrast to today’s

1All policies considered in Ethane are based over flows, where the header
fields used to define a flow are based on the packet type (for example, TCP/UDP
flows include the Ethernet, IP, and transport headers). Thus, only a single policy
decision need be made for each such “flow.”
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network where there are no widely used protocols for keeping
this information consistent. Furthermore, distributing the
namespace among all switches would greatly increase the
trusted computing base and require high overheads to maintain
consistency on each bind event.

In Ethane, we also use a sequence of techniques to secure
the bindings between packet headers and the physical entities
that sent them. First, Ethane takes over all the binding of ad-
dresses. When machines use DHCP to request an IP address,
Ethane assigns it knowing to which switch port the machine is
connected, enabling Ethane to attribute an arriving packet to a
physical port.2 Second, the packet must come from a machine
that is registered on the network, thus attributing it to a particular
machine. Finally, users are required to authenticate themselves
with the network—for example, via HTTP redirects in a manner
similar to those used by commercial WiFi hotspots—binding
users to hosts. Therefore, whenever a packet arrives at the Con-
troller, it can securely associate the packet to the particular user
and host that sent it.3

There are several powerful consequences of the Controller
knowing both where users and machines are attached and all
bindings associated with them. First, the Controller can keep
track of where any entity is located: When it moves, the Con-
troller finds out as soon as packets start to arrive from a different
Switch port. The Controller can choose to allow the new flow,
or it might choose to deny the moved flow (e.g., to restrict mo-
bility for a VoIP phone due to E911 regulations). Another pow-
erful consequence is that the Controller can journal all bindings
and flow-entries in a log. Later, if needed, the Controller can re-
construct all network events; e.g., which machines tried to com-
municate or which user communicated with a service. This can
make it possible to diagnose a network fault or to perform au-
diting or forensics, long after the bindings have changed.

A challenging component of the Ethane design was to create
a policy language that operates over high-level names, is suf-
ficiently expressive, and is fast enough to support a large net-
work. Our solution was to design a new language called the
Flow-based Security Language (FSL) [11], which is based on a
restricted form of DATALOG. FSL policies are composed of sets
of rules describing which flows they pertain to (via a conjunc-
tion of predicates) and the action to perform on those flows (e.g.,
allow, deny, or route via a waypoint). As we will see, FSL’s
small set of easily understood rules can still express powerful
and flexible policies, and it is possible to implement with per-
formance suitable for very large networks.

B. Ethane in Use

Putting all these pieces together, we now consider the five
basic activities that define how an Ethane network works, using
Fig. 1 to illustrate:

a) Registration: All Switches, users, and hosts are registered
at the Controller with the credentials necessary to au-
thenticate them. The credentials depend on the authen-
tication mechanisms in use. For example, hosts may be

2As we discuss later, a primary advantage of knowing the ingress port of a
packet is that it allows the Controller to apply filters to the first-hop switch used
by unwanted traffic.

3We discuss the policy and security issues (and possible future solutions) with
multiuser machines later in Sections IV and VII.

Fig. 1. Example of communication on an Ethane network. Route setup is
shown by dotted lines; the path taken by the first packet of a flow is shown by
dashed lines.

authenticated by their MAC addresses, users via user-
name and password, and switches through secure certifi-
cates. All switches are also preconfigured with the creden-
tials needed to authenticate the Controller (e.g., the Con-
troller’s public key).

b) Bootstrapping: Switches bootstrap connectivity by cre-
ating a spanning tree rooted at the Controller. As the span-
ning tree is being created, each switch authenticates with
and creates a secure channel to the Controller. Once a
secure connection is established, the switches send link-
state information to the Controller, which aggregates this
information to reconstruct the network topology.

c) Authentication:
1) joins the network with . Because no flow

entries exist in switch 1 for the new host, it will ini-
tially forward all of ’s packets to the Controller
(marked with switch 1’s ingress port).

2) sends a DHCP request to the Controller. After
checking ’s MAC address,4 the Controller al-
locates an IP address for it, binding to

, to , and to a physical port
on switch 1.

3) opens a Web browser, whose traffic is directed
to the Controller, and authenticates through a Web-
form.5 Once authenticated, is bound to .

d) Flow Setup:
1) initiates a connection to (who we as-

sume has already authenticated in a manner similar to
). Switch 1 forwards the packet to the Controller

after determining that the packet does not match any
active entries in its flow table.

2) On receipt of the packet, the Controller decides
whether to allow or deny the flow, or require it to
traverse a set of waypoints.

3) If the flow is allowed, the Controller computes the
flow’s route, including any policy-specified way-
points on the path. The Controller adds a new entry
to the flow tables of all the Switches along the path.

e) Forwarding:
1) If the Controller allowed the path, it sends the packet

back to switch 1, which forwards it based on the new

4The network may use a stronger form of host authentication, such as 802.1X.
5Alternative authentication strategies may also be employed, e.g., 802.1X.
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Fig. 2. An example Ethane deployment.

flow entry. Subsequent packets from the flow are for-
warded directly by the Switch and are not sent to the
Controller.

2) The flow-entry is kept in the switch until it times out
(due to inactivity) or is revoked by the Controller.

III. ETHANE IN MORE DETAIL

A. Ethane Network

Fig. 2 shows a typical Ethane network. The end-hosts are un-
modified and connect via a wired Ethane Switch or an Ethane
wireless access point. (From now on, we will refer to both as
“Switches,” described next in Section III-B).6

When we add an Ethane Switch to the network, it has to find
the Controller (Section III-C), open a secure channel to it, and
help the Controller figure out the topology. We do this with a
modified minimum spanning tree algorithm (per Section III-G
and denoted by thick, solid lines in the figure). The outcome is
that the Controller knows the whole topology, while each Switch
only knows a part of it.

When we add (or boot) a host, it has to authenticate itself
with the Controller. From the Switch’s point of view, packets
from the new host are simply part of a new flow, and so packets
are automatically forwarded to the Controller over the secure
channel, along with the ID of the Switch port on which they
arrived. The Controller authenticates the host and allocates its
IP address (the Controller includes a DHCP server).

B. Switches

A wired Ethane Switch is like a simplified Ethernet switch.
It has several Ethernet interfaces that send and receive stan-
dard Ethernet packets. Internally, however, the switch is much
simpler, as there are several things that conventional Ethernet
switches do that an Ethane switch doesn’t need: An Ethane
Switch doesn’t need to learn addresses, support VLANs, check
for source-address spoofing, or keep flow-level statistics (e.g.,

6We will see later that an Ethane network can also include legacy Ethernet
switches and access points, so long as we include some Ethane Switches in the
network. The more switches we replace, the easier it is to manage and the more
secure the network.

start and end time of flows, although it will typically main-
tain per-flow packet and byte counters for each flow entry). If
the Ethane Switch is replacing a Layer-3 “switch” or router, it
doesn’t need to maintain forwarding tables, ACLs, or NAT. It
doesn’t need to run routing protocols such as OSPF, ISIS, and
RIP, nor does it need separate support for SPANs and port-repli-
cation (this is handled directly by the flow table under the direc-
tion of the Controller).

It is also worth noting that the flow table can be several
orders-of-magnitude smaller than the forwarding table in an
equivalent Ethernet switch. In an Ethernet switch, the table is
sized to minimize broadcast traffic: As switches flood during
learning, this can swamp links and makes the network less
secure.7 As a result, an Ethernet switch needs to remember all
the addresses it’s likely to encounter; even small wiring closet
switches typically contain a million entries. Ethane Switches,
on the other hand, can have much smaller flow tables: They
only need to keep track of flows in progress. For a wiring
closet, this is likely to be a few hundred entries at a time, small
enough to be held in a tiny fraction of a switching chip. Even
for a campus-level switch, where perhaps tens of thousands of
flows could be ongoing, it can still use on-chip memory that
saves cost and power.

We expect an Ethane Switch to be far simpler than its corre-
sponding Ethernet switch, without any loss of functionality. In
fact, we expect that a large box of power-hungry and expensive
equipment will be replaced by a handful of chips on a board.

Flow Table and Flow Entries: The Switch datapath is a
managed flow table. Flow entries contain a Header (to match
packets against), an Action (to tell the switch what to do with
the packet), and Per-Flow Data (which we describe below).

There are two common types of entry in the flow table:
per-flow entries describing application flows that should be
forwarded and per-host entries that describe misbehaving hosts
whose packets should be dropped. For TCP/UDP flows, the
Header field covers the TCP/UDP, IP, and Ethernet headers,
as well as physical port information. The associated Action
is to forward the packet to a particular interface, update a
packet-and-byte counter (in the Per-Flow Data), and set an
activity bit (so that inactive entries can be timed-out). For mis-
behaving hosts, the Header field contains an Ethernet source
address and the physical ingress port.8 The associated Action
is to drop the packet, update a packet-and-byte counter, and set
an activity bit (to tell when the host has stopped sending).

Only the Controller can add entries to the flow table. Entries
are removed because they timeout due to inactivity (local deci-
sion) or because they are revoked by the Controller. The Con-
troller might revoke a single, badly behaved flow, or it might re-
move a whole group of flows belonging to a misbehaving host,
a host that has just left the network, or a host whose privileges
have just changed.

The flow table is implemented using two exact-match tables:
one for application-flow entries and one for misbehaving-host
entries. Because flow entries are exact matches rather than

7In fact, network administrators often use manually configured and inflexible
VLANs to reduce flooding.

8If a host is spoofing, its first-hop port can be shut off directly (Section III-C).
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longest-prefix matches, it is easy to use hashing schemes in
conventional memories rather than expensive, power-hungry
TCAMs.

Other Actions are possible in addition to just forward and
drop. For example, a Switch might maintain multiple queues for
different classes of traffic, and the Controller can tell it to queue
packets from application flows in a particular queue by inserting
queue IDs into the flow table. This can be used for end-to-end L2
isolation for classes of users or hosts. A Switch could also per-
form address translation by replacing packet headers. This could
be used to obfuscate addresses in the network by “swapping” ad-
dresses at each Switch along the path—an eavesdropper would
not be able to tell which end-hosts are communicating—or to
implement address translation for NAT in order to conserve ad-
dresses. Finally, a Switch could control the rate of a flow.

Local Switch Manager: The Switch needs a small local man-
ager to establish and maintain the secure channel to the Con-
troller, to monitor link status, and to provide an interface for any
additional Switch-specific management and diagnostics. (We
implemented our manager in the Switch’s software layer.)

There are two ways a Switch can talk to the Controller. The
first one, which we have assumed so far, is that Switches are
part of the same physical network as the Controller. We ex-
pect this to be the most common case; e.g., in an enterprise net-
work on a single campus. In this case, the Switch finds the Con-
troller using our modified Minimum Spanning Tree protocol de-
scribed in Section III-G. The process results in a secure channel
stretching through these intermediate Switches all the way to
the Controller.

If the Switch is not within the same broadcast domain as the
Controller, the Switch can create an IP tunnel to it (after being
manually configured with its IP address). This approach can be
used to control Switches in arbitrary locations, e.g., the other
side of a conventional router or in a remote location. In one
application of Ethane, the Switch (most likely a wireless access
point) is placed in a home or small business and then managed
remotely by the Controller over this secure tunnel.

The local Switch manager relays link status to the Con-
troller so it can reconstruct the topology for route computation.
Switches maintain a list of neighboring switches by broad-
casting and receiving neighbor-discovery messages. Neighbor
lists are sent to the Controller after authentication, on any
detectable change in link status, and periodically every 15 s.

C. Controller

The Controller is the brain of the network and has many tasks;
Fig. 3 gives a block-diagram. The components do not have to
be colocated on the same machine (indeed, they are not in our
implementation).

Briefly, the components work as follows. The authentication
component is passed all traffic from unauthenticated or unbound
MAC addresses. It authenticates users and hosts using creden-
tials stored in the registration database. Once a host or user au-
thenticates, the Controller remembers to which switch port they
are connected.

The Controller holds the policy file, which is compiled into a
fast lookup table (see Section IV). When a new flow starts, it is
checked against the rules to see if it should be accepted, denied,

Fig. 3. High-level view of Controller components.

or routed through a waypoint. Next, the route computation uses
the network topology to pick the flow’s route. The topology is
maintained by the switch manager, which receives link updates
from the Switches.

In the remainder of this section, we describe each compo-
nent’s function in more detail. We leave description of the policy
language for the next section.

Registration: All entities that are to be named by the network
(i.e., hosts, protocols, Switches, users, and access points9) must
be registered. The set of registered entities makes up the policy
namespace and is used to statically check the policy (Section IV)
to ensure it is declared over valid principles.

The entities can be registered directly with the Controller,
or—as is more likely in practice and done in our own imple-
mentation—Ethane can interface with a global registry such as
LDAP or AD, which would then be queried by the Controller.

By forgoing Switch registration, it is also possible for Ethane
to provide the same “plug-and-play” configuration model for
Switches as Ethernet. Under this configuration, the Switches
distribute keys on boot-up (rather than require manual distribu-
tion) under the assumption that the network has not been com-
promised.

Authentication: All Switches, hosts, and users must authen-
ticate with the network. Ethane does not specify a particular
host authentication mechanism; a network could support mul-
tiple authentication methods (e.g., 802.1X or explicit user login)
and employ entity-specific authentication methods. In our im-
plementation, for example, hosts authenticate by presenting reg-
istered MAC addresses, while users authenticate through a Web
front-end to a Kerberos server. Switches authenticate using SSL
with server- and client-side certificates.

Tracking Bindings: One of Ethane’s most powerful features
is that it can easily track all the bindings between names, ad-
dresses, and physical ports on the network, even as Switches,
hosts, and users join, leave, and move around the network. It
is Ethane’s ability to track these dynamic bindings that makes
the policy language possible: It allows us to describe policies in

9We define an access point here as a {Switch, port} pair.
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terms of users and hosts, yet implement the policy using flow
tables in Switches.

A binding is never made without requiring authentication, so
as to prevent an attacker from assuming the identity of another
host or user. When the Controller detects that a user or host
leaves, all of its bindings are invalidated, and all of its flows are
revoked at the Switch to which it was connected. Unfortunately,
in some cases, we cannot get reliable join and leave events from
the network. Therefore, the Controller may resort to timeouts
or the detection of movement to another physical access point
before revoking access.

Namespace Interface: Because Ethane tracks all the bindings
between users, hosts, and addresses, it can make information
available to network managers, auditors, or anyone else who
seeks to understand who sent what packet and when.

In current networks, while it is possible to collect packet
traces, it is almost impossible to figure out later which user—or
even which host—sent or received the packets, as the addresses
are dynamic and there is no known relationship between users
and packet addresses.

An Ethane Controller can journal all the authentication and
binding information: the machine a user is logged in to, the
Switch port their machine is connected to, the MAC address of
their packets, and so on. Armed with a packet trace and such
a journal, it is possible to determine exactly which user sent a
packet, when it was sent, the path it took, and its destination.
Obviously, this information is very valuable for both fault di-
agnosis and identifying break-ins. On the other hand, the infor-
mation is sensitive, and controls need to be placed on who can
access it. We expect Ethane Controllers to provide an interface
that gives privileged users access to the information. In our own
system, we built a modified DNS server that accepts a query
with a timestamp and returns the complete bound namespace
associated with a specified user, host, or IP address (described
in Section V).

Permission Check and Access Granting: Upon receiving a
packet, the Controller checks the policy to see what actions
apply to it. The results of this check (if the flow is allowed)
are forwarded to the route-computation component that deter-
mines the path given the policy constraint. In our implementa-
tion, all paths are precomputed and maintained via a dynamic
all-pairs shortest-path algorithm [12]. Section IV describes our
policy model and implementation.

There are many occasions when a Controller wants to limit
the resources granted to a user, host, or flow. For example, it
might wish to limit a flow’s rate, limit the rate at which new
flows are setup, or limit the number of IP addresses allocated.
Such limits will depend on the design of the Controller and
Switch, and they will be at the discretion of the network man-
ager. In general, however, Ethane makes it easy to enforce such
limits either by installing a flow entry that limits the rate of the
offending packets or drops them entirely.

The Controller’s ability to directly manage resources is the
primary means of protecting the network (and Controller) from
resource exhaustion attacks. To protect itself from connection
flooding from unauthenticated hosts, a Controller can place a
limit on the number of authentication requests per host and per
switch port; hosts that exceed their allocation can be closed

down by adding an entry in the flow table that blocks their MAC
address. If such hosts spoof their address, the Controller can dis-
able their Switch port. A similar approach can be used to prevent
flooding from authenticated hosts.

Flow-state exhaustion attacks are also preventable through re-
source limits. Since each flow setup request is attributable to a
user, host, and access point, the Controller can enforce limits
on the number of outstanding flows per identifiable source. The
network may also support more advanced flow-allocation poli-
cies. For example, an integrated hardware/software Switch can
implement policies such as enforcing strict limits on the number
of flows forwarded in hardware per source and looser limits on
the number of flows in the slower (and more abundant) software
forwarding tables.

D. Handling Broadcast and Multicast

Enterprise networks typically carry a lot of multicast and
broadcast traffic. It is worth distinguishing broadcast traffic
(which is mostly discovery protocols, such as ARP) from
multicast traffic (which is often from useful applications, such
as video). In a flow-based network like Ethane, it is quite easy
for Switches to handle multicast: The Switch keeps a bitmap
for each flow to indicate which ports the packets are to be sent
to along the path. The Controller can calculate the broadcast or
multicast tree and assign the appropriate bits during path setup.

In principle, broadcast discovery protocols are also easy to
handle in the Controller. Typically, a host is trying to find a
server or an address; given that the Controller knows all, it can
reply to a request without creating a new flow and broadcasting
the traffic. This provides an easy solution for ARP traffic, which
is a significant fraction of all network traffic. In practice, how-
ever, ARP could generate a huge load for the Controller; one
design choice would be to provide a dedicated ARP server in
the network to which all Switches direct all ARP traffic. But
there is a dilemma when trying to support other discovery pro-
tocols: each one has its own protocol, and it would be onerous
for the Controller to understand all of them. Our own approach
has been to implement the common ones directly in the Con-
troller and to broadcast unknown request types with a rate-limit.
Clearly, this approach does not scale well, and we hope that if
Ethane becomes widespread in the future, discovery protocols
will largely go away. After all, they are just looking for binding
information that the network already knows; it should be pos-
sible to provide a direct way to query the network. We discuss
this problem further in Section VII.

E. Replicating the Controller: Fault-Tolerance and Scalability

Designing a network architecture around a central controller
raises concerns about availability and scalability. While our
measurements in Section VI suggest that thousands of ma-
chines can be managed by a single desktop computer, multiple
Controllers may be desirable to provide fault-tolerance or to
scale to very large networks.

Controller distribution in Ethane takes advantage of two prop-
erties of its workload: 1) per-flow permission checks can be han-
dled in a purely distributed fashion under the assumption that the
bindings and network topology is the same on all replicas; and
2) changes to the network state happen on very slow time scales
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relative to flow arrivals (three to four orders of magnitude dif-
ference in our experience). Thus, the replication strategy is to
load balance flows among the controller replicas10 and ensure
that the bindings and the network topology remain strongly con-
sistent using a standard consensus protocol such as Paxos [13].
Only flows that result in a change of the controller state (such as
a user or host authentication, or a link change) will incur over-
head for consistency management.

When replicated, each Controller operates as the root of a
spanning tree. Similar to the nondistributed case, Switches con-
nect to all Controllers along the constructed MSTs. Controllers
also use the MSTs to communicate with each other. If a Con-
troller fails or becomes disconnected from a switch, the switch
will no longer use the Controller’s MST when load balancing
flow permission checks. When a Controller joins the network, it
will advertise a new spanning tree root which, after switch au-
thentication, will be used to load balance flows.

The simplest form of replication requires that all Controllers
be colocated and therefore no two can be disconnected by a net-
work partition. However, this raises the possibility that a lo-
calized event (such as a power outage) could affect all Con-
trollers on the network. On the other hand, while more resilient
to failure, topologically distributing Controllers must be able to
handle network partitions in which each partition is managed
by a distinct set of Controllers. On network join, the Controllers
must resolve their state, which will likely have diverged during
the disconnection. Our current approach for dealing reconnec-
tion after a partition is for one of the disconnected Controller
sets to drop all of their local changes and synchronize with the
other. This may require some users or hosts to reauthenticate.

There is clearly plenty of scope in this area for further study:
Now that Ethane provides a platform with which to capture and
manage all bindings, we expect future improvements can make
the system more robust.

F. Link Failures

Link and Switch failures must not bring down the network as
well. Recall that Switches always send neighbor-discovery mes-
sages to keep track of link-state. When a link fails, the Switch
removes all flow table entries tied to the failed port and sends
its new link-state information to the Controller. This way, the
Controller also learns the new topology. When packets arrive
for a removed flow-entry at the Switch, the packets are sent
to the Controller—much like they are for new flows—and the
Controller computes and installs a new path based on the new
topology.

G. Bootstrapping

When the network starts, the Switches must connect to and
authenticate with the Controller.11 Ethane bootstraps in a similar
way to SANE [10]: On startup, the network creates a minimum
spanning tree with the Controller advertising itself as the root.
Each Switch has been configured with the Controller’s creden-
tials and the Controller with the Switches’ credentials.

10For example, by using consistent hashing over the source MAC address.
11This method does not apply to Switches that use an IP tunnel to connect to

the Controller—they simply send packets via the tunnel and then authenticate.

If a Switch finds a shorter path to the Controller, it attempts
two-way authentication with it before advertising that path as a
valid route. Therefore, the minimum spanning tree grows radi-
ally from the Controller, hop-by-hop as each Switch authenti-
cates.

Authentication is done using the preconfigured credentials
to ensure that a misbehaving node cannot masquerade as the
Controller or another Switch. If authentication is successful, the
Switch creates an encrypted connection with the Controller that
is used for all communication between the pair.

By design, the Controller knows the upstream Switch and
physical port to which each authenticating Switch is attached.
After a Switch authenticates and establishes a secure channel
to the Controller, it forwards all packets it receives for which it
does not have a flow entry to the Controller, annotated with the
ingress port. This includes the traffic of authenticating Switches.

Therefore, the Controller can pinpoint the attachment point
to the spanning tree of all nonauthenticated Switches and hosts.
Once a Switch authenticates, the Controller will establish a flow
in the network between itself and the Switch for the secure
channel.

IV. FSL POLICY LANGUAGE

The administrative interface to an Ethane network is the
policy language. While the Ethane architecture is conceptu-
ally independent of the language, in order to be practical, the
language must be designed with performance as a primary
objective. To this end, we have developed a DATALOG-based
language with negation called FSL. FSL supports distributed
authorship, incremental updates, and automatic conflict resolu-
tion of network policy files.12 We have implemented FSL and
use it in one of our deployed networks.

A. Overview

Conceptually, an FSL policy is a set of functions mapping uni-
directional flows to constraints that should be placed on those
flows. FSL was designed so that given an Ethane flow, the de-
sired constraints can be calculated efficiently.

In practice, an FSL policy is declared as a set of rules, each
consisting of a condition and a corresponding action. For ex-
ample, the rule to specify that user bob is allowed to communi-
cate with the Web server using HTTP is

'' ''

''

Conditions: A condition is a conjunction of zero or more
literals describing the set of flows an action should be applied
to. From the preceding example, if the user initiating the flow
is “bob” and the flow destination transport protocol is “HTTP”
and the flow destination is host “websrv,” then the flow is
allowed. In general, the predicate function (e.g., usrc) is the
domain to be constrained, and the arguments are entities in
that domain to which the rule applies. For example, the literal
usrc(“bob”) applies to all flows in which the source user is bob.

12Due to space constraints we only provide a brief introduction to FSL. A
more detailed description can be found at [11].
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Valid domains include {apsrc, apdst, hsrc, hdst, usrc, udst,
tpsrc, tpdst, protocol}, which respectively signify the source
and destination access point, host, user, and transport protocol
of a flow, followed by the flow’s protocol, where the argument
should be a defined constant describing a subset of a flow’s
Ethernet, network, and transport protocols. Flows can also
be described by the boolean predicates isConnRequest() and
isConnResponse() to encode the role of a unidirectional flow in
the larger connection setting. These can be used to restrict hosts
to either outbound or inbound only connections, providing
NAT-like security in the former case, and restricting servers
from making outbound connections in the latter.

In FSL, predicate arguments can be single names (e.g., “bob”)
or lists of names (e.g., [“bob,”“linda”]). Literals can also be
written as group inclusion expressions (e.g., in(“workstations”,
HSRC)). Names may be registered statically at the Controller or
can be resolved through a third-party authentication store such
as LDAP or AD.

Actions: The standard set of actions include allow, deny,
and waypoint. Waypoint declarations include a list of entities
to route the flow through, e.g., waypoint(“ids”,“Web-proxy”).

Our FSL implementation allows the action set to be extended
to arbitrary functions written in C++ or Python. This enables
the very natural interposition of new services on the processing
path. For example, we use this feature to define authentication
policies by implementing an action http_redirect, which is ap-
plied to all unauthenticated packets. The function redirects users
to a captive Web portal through which the user logs in.

B. Rule and Action Precedence

FSL rules are independent and do not contain an intrinsic
ordering; thus, a single flow may match multiple rules with
conflicting actions. Conflicts are resolved in two ways. The
author can resolve them statically by assigning priorities
using a cascading mechanism. This allows an administrator
to quickly relax a security policy by inserting a high prioirity
exception without having to understand the full policy file.
Conflicts arising at runtime (not always detectable at compile
time since literal values such as group membership can change
dynamically), are resolved by selecting the most secure action.
For example, deny is more secure than waypoint, which in turn
is more secure than allow.

Unfortunately, in today’s multiuser operating systems, it is
difficult from a network perspective to attribute traffic to a par-
ticular user. In Ethane, if multiple users are logged into the same
machine (and are not differentiable based on network identi-
fiers), the least restrictive action present among the perhaps dif-
ferently privileged users is applied to the machine’s flows. This
is an obvious relaxation of the security policy. To address this,
we are exploring integration with trusted end-host operating sys-
tems to provide user isolation and identification (for example, by
providing each user with a virtual machine with a unique MAC).

C. Policy Example

Fig. 4 lists a (prioritized) set of rules derived from the prac-
tices in one of our deployments. In this policy, all flows that
do not otherwise match a rule are denied (by the last rule), en-

Fig. 4. A sample policy file using FSL.

forcing a network security policy that can loosely be described
as “default off.” Unauthenticated users on laptops are sent to a
captive Web portal for authentication. Servers and printers are
not allowed to initiate connections. Laptops and mobile devices
are protected from inbound flows (similar to the protection pro-
vided by NAT), while workstations can communicate without
constraints.

D. Implementation

We have implemented FSL within Ethane. The compiler is
written in Python and generates low-level C++ lookup structures
traversed at runtime. Our implementation additionally permits
dynamic changes to both the policy as well as group definitions.

In benchmarks using generated traffic, our implementation
running our internal policy file supports permission checks for
over 90 000 flows/s. As we discuss in the following section,
this is more than adequate for the networks we’ve measured.
Furthermore, our implementation maintains a relatively modest
memory footprint even with large policy files: A 10 000 rule file
uses less than 57 MB.

V. PROTOTYPE AND DEPLOYMENT

We have built and deployed two functional Ethane networks.
Our initial deployment was at Stanford University, in which
Ethane connected over 300 registered hosts and several hundred
users. That deployment included 19 Switches, both wired and
wireless. Our second deployment was in a small business net-
work managing over 30 hosts. Both deployments are in opera-
tional networks entrusting Ethane to handle production traffic.

In the following section, we describe our Ethane prototypes
and some aspects of their deployment, drawing some lessons
and conclusions based on our experience.

A. Switches

We have built four different Ethane Switches from the ground
up: an 802.11g wireless access point (based on a commercial ac-
cess point), a wired 4-port Gigabit Ethernet Switch that forwards
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packets at line-speed (based on the NetFPGA programmable
switch platform [14] and written in Verilog), a wired 16-port
Ethane Switch running on a network appliance, and a wired
4-port Ethernet Switch in Linux on a desktop PC (in software,
both as a development environment and to allow rapid proto-
typing).

In addition, we have ported Ethane to run on commodity
switch platforms. When porting to switching hardware architec-
tures, we are constrained by the existing hardware design. For
example, in our experience, ACL rule engines in many chips can
be used for flow lookup, however the number of rules (or flows
in our case) supported is low. In one of our ports, the switch
only allows 4096 rules for 48 ports of gigabit Ethernet. In such
cases, we also implement a full software solution on the man-
agement processors to handle overflow, however the disparity
in processing power makes this an inadequate approach for pro-
duction use. Fortunately, there are now chips available that can
leverage external memory to support tens of thousands of flows.

We now discuss each prototype Switch implementation in
more detail.

— Ethane Wireless Access Point. Our access point runs on
a Linksys WRTSL54GS wireless router (266 MHz MIPS,
32 MB RAM) running OpenWRT [15]. The datapath and
flow table are based on 5K lines of C++ (1.5K are for the
flow table). The local switch manager is written in software
and talks to the Controller using the native Linux TCP
stack. When running from within the kernel, the Ethane
forwarding path runs at 23 Mb/s—the same speed as Linux
IP forwarding and L2 bridging.

— Ethane 4-port Gigabit Ethernet Switch: Hardware So-
lution. The Switch is implemented on NetFPGA v2.0 with
four Gigabit Ethernet ports, a Xilinx Virtex-II FPGA, and
4 MB of SRAM for packet buffers and the flow table.
The hardware forwarding path consists of 7K lines of Ver-
ilog; flow entries are 40 bytes long. Our hardware can for-
ward minimum-size packets in full-duplex at a line rate of
1 Gb/s.

— Ethane 4-Port Gigabit Ethernet Switch: Software
Solution. We also built a Switch from a regular desktop
PC (1.6 GHz Celeron CPU and 512 MB of DRAM) and a
4-port Gigabit Ethernet card. The forwarding path and the
flow table are implemented to mirror (and therefore help
debug) our implementation in hardware. Our software
Switch in kernel mode can forward MTU size packets at
1 Gb/s.13

— Ethane 14-Port Ethernet Switch. We were able to run
our Linux kernel module unmodified on a 14-port Portwell
Kilin-6030. This network appliance is based on the 16-core
Cavium Octeon CN3860 processor. The advantage of this
platform is that standard DRAM memory is used for flow
lookup and, thus, can support an arbitrary number of flows.
It is obviously faster than our PC-based solution, but we
have not been able to measure its full capacity.

13However, as the packet size drops, the switch can’t keep pace with hashing
and interrupt overheads. At 100 bytes, the switch can only achieve a throughput
of 16 Mb/s. Clearly, for now, the switch needs to be implemented in hardware
for high-performance networks.

— Ethane 48-Port Ethernet Switch. We ported Ethane to
a commercial 48-port switch running a pair of Broadcom
BCM56514 chips. To do so, we modified the firmware
to run the Ethane Linux kernel module on the on-board
1-GHz management CPU. Instead of adding flows in
software, the module first attempts to insert rules into
the switching chips’ ACL engines. When all 4096 rules
are exhausted, Ethane will default to using software flow
entries. As long as rules match in hardware, the switch is
able to support all 48 ports in full-duplex at a line rate of
1 Gb/s.

We plan to continue to investigate other platforms and op-
timizations. A very promising avenue is the Broadcom 566xx
series of chips, which support hundreds of thousands of entries.
We are also looking into making better use of the existing flow
entry space by employing intelligent replacement policies such
as LRU.

B. Controller

We implemented the Controller on a standard Linux PC
(1.6 GHz Celeron CPU and 512 MB of DRAM). The Con-
troller is based on 45K lines of C++ (with an additional 4K lines
generated by the policy compiler) and 4.5K lines of Python for
the management interface.

1) Registration: Switches and hosts are registered using a Web
interface to the Controller and the registry is maintained
in a standard database. For Switches, the authentication
method is determined during registration. Users are reg-
istered using our university’s standard directory service.

2) Authentication: In our system, users authenticate using
our university authentication system, which uses Kerberos
and a university-wide registry of usernames and pass-
words. Users authenticate via a Web interface—when they
first connect to a browser they are redirected to a login
Web page. In principle, any authentication scheme could
be used, and most enterprises already have an existing
authentication infrastructure. Ethane Switches also, op-
tionally, authenticate hosts based on their MAC address,
which is registered with the Controller.

3) Bind Journal and Namespace Interface: Our Controller
logs bindings whenever they are added or removed or when
we decide to checkpoint the current bind-state; each entry
in the log is timestamped. We use BerkeleyDB for the log
[16], keyed by timestamp.
The log is easily queried to determine the bind-state at any
time in the past. We enhanced our DNS server to support
queries of the form key.domain.type-time, where “type”
can be “host,” “user,” “MAC,” or “port.” The optional
time parameter allows historical queries, defaulting to the
present time.

4) Route Computation: Routes are precomputed using an all
pairs shortest path algorithm [12]. Topology recalculation
on link failure is handled by dynamically updating the
computation with the modified link-state updates. Even on
large topologies, the cost of updating the routes on failure
is minimal. For example, the average cost of an update on
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a 3000-node topology is 10 ms. In the following section,
we present an analysis of flow-setup times under normal
operation and during link failure.

C. University Deployment

We describe the larger of our two deployments as an ex-
ample of an Ethane network in practice. We deployed Ethane
in our department’s 100-Mb/s Ethernet network. We installed
11 wired and 8 wireless Ethane Switches. There were approxi-
mately 300 hosts, with an average of 120 hosts active in a 5-min
window. We created a network policy to closely match—and in
most cases exceed—the connectivity control already in place.
We pieced together the existing policy by looking at the use
of VLANs, end-host firewall configurations, NATs, and router
ACLs. We found that often the existing configuration files con-
tained rules no longer relevant to the current state of the network,
in which case they were not included in the Ethane policy.

Briefly, within our policy, nonservers (workstations, laptops,
and phones) are protected from outbound connections from
servers, while workstations can communicate uninhibited.
Hosts that connect to an Ethane Switch port must register a
MAC address, but require no user authentication. Wireless
nodes protected by WPA and a password do not require user
authentication, but if the host MAC address is not registered (in
our network, this means they are a guest), they can only access a
small number of services (HTTP, HTTPS, DNS, SMTP, IMAP,
POP, and SSH). Our open wireless access points require users
to authenticate through the university-wide system. The VoIP
phones are restricted from communicating with nonphones and
are statically bound to a single access point to prevent mobility
(for E911 location compliance). Our policy file is 132 lines
long.

VI. PERFORMANCE AND SCALABILITY

Deploying Ethane has taught us a lot about the operation of a
centrally managed network, and it enabled us to evaluate many
aspects of its performance and scalability, especially with re-
spect to the numbers of users, end-hosts, and Switches. We start
by looking at how Ethane performs in our network, and then,
using our measurements and data from others, we try to extrap-
olate the performance for larger networks.

In this section, we first measure the Controller’s performance
as a function of the flow-request rate, and we then try to estimate
how many flow-requests we can expect in a network of a given
size. This allows us to answer our primary question: How many
Controllers are needed for a network of a given size? We then
examine the behavior of an Ethane network under Controller
and link failures. Finally, to help decide the practicality and cost
of Switches for larger networks, we consider the question: How
big does the flow table need to be in the Switch?

A. Controller Scalability

Recall that our Ethane prototype is currently used by approxi-
mately 300 hosts, with an average of 120 hosts active in a 5-min
window. From these hosts, we see 30–40 new flow requests per
second (Fig. 5) with a peak of 750 flow requests per second.14

14Samples were taken every 30 s.

Fig. 5. Frequency of flow-setup requests per second to Controller over a 10-h
period (top) and 4-day period (bottom).

Fig. 6. Flow-setup times as a function of Controller load. Packet sizes were 64,
128, and 256 B, evenly distributed.

Fig. 7. Flow-request rate for Stanford network.

Fig. 6 shows how our Controller performs under load: for up
to 11 000 flows per second—greater than the peak laod we ob-
served—flows were set up in less than 1.5 ms in the worst case,
and the CPU showed negligible load.

Our results suggest that a single Controller could comfortably
handle 10 000 new flow requests per second. We fully expect
this number to increase if we concentrated on optimizing the
design. With this in mind, it is worth asking to how many end-
hosts this load corresponds.

We consider a dataset from a 7000-host network at Stanford,
which includes all internal and outgoing flows (not including
broadcast). We find that the network during the data collection
period has a maximum of under 9000 new flow-requests per
second (Fig. 7).

Perhaps surprisingly, our results suggest that a single Con-
troller could comfortably manage a network with over 5000
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TABLE I
COMPLETION TIME FOR HTTP GETS OF 275 FILES DURING WHICH

THE PRIMARY CONTROLLER FAILS ZERO OR MORE TIMES.
RESULTS ARE AVERAGED OVER 5 RUNS

hosts without requiring replication. Indeed, flow setup latencies
for continued load of up to 6000/s are less than 0.6 ms, equiva-
lent to the average latency of a DNS request within the Stanford
network. Flow setup latencies for load under 2000 requests per
second are 0.4 ms; this is roughly equivalent to the average RTT
between hosts in different subnets on our campus network.

Of course, in practice, the rule set would be larger and the
number of physical entities greater. On the other hand, the ease
with which the Controller handles this number of flows suggests
there is room for improvement. This is not to suggest that a
network should rely on a single Controller; we expect a large
network to deploy several Controllers for fault-tolerance, using
the schemes outlined in Section III-E, one of which we examine
next.

B. Performance During Failures

Because our Controller implements cold-standby failure re-
covery (see Section III-E), a Controller failure will lead to in-
terruption of service for active flows and a delay while they
are reestablished. To understand how long it takes to reinstall
the flows, we measured the completion time of 275 consecutive
HTTP requests, retrieving 63 MB in total. While the requests
were ongoing, we crashed the Controller and restarted it mul-
tiple times. Table I shows that there is clearly a penalty for each
failure, corresponding to a roughly 10% increase in overall com-
pletion time. This can be largely eliminated, of course, in a net-
work that uses warm-standby or fully-replicated Controllers to
more quickly recover from failure (see Section III-E).

Link failures in Ethane require that all active flows recon-
tact the Controller in order to reestablish the path. If the link is
heavily used, the Controller will receive a storm of requests, and
its performance will degrade. We created a topology with redun-
dant paths—so the network can withstand a link-failure—and
measured the latencies experienced by packets. Failures were
simulated by physically unplugging a link; our results are shown
in Fig. 9. In all cases, the path reconverges in under 40 ms, but
a packet could be delayed up to a second while the Controller
handles the flurry of requests.

Our network policy allows for multiple disjoint paths to be
setup by the Controller when the flow is created. This way, con-
vergence can occur much faster during failure, particularly if
the Switches detect a failure and failover to using the backup
flow-entry. We have not implemented this in our prototype, but
plan to do so in the future.

C. Flow Table Sizing

Finally, we explore how large the flow table needs to be in the
Switch. Ideally, the Switch can hold all of the currently active
flows. Fig. 8 shows how many active flows we saw in our Ethane
deployment; it never exceeded 500. With a table of 8192 entries
and a two-function hash-table, we never encountered a collision.

Fig. 8. Active flows through two of our deployed switches.

Fig. 9. Round-trip latencies experienced by packets through a diamond
topology during link failure.

In practice, the number of ongoing flows depends on where
the Switch is in the network. Switches closer to the edge will
see a number of flows proportional to the number of hosts they
connect to (i.e., their fanout). In the University network, our de-
ployed Switches had a fanout of four and saw no more than 500
flows; we might expect a Switch with a fanout of, say, 64 to see
at most a few thousand active flows. (It should be noted that this
is a very conservative estimate; in our second deployment, the
number of ongoing flows averaged 4 per active host.) A Switch
at the center of a network will likely see more active flows, and
so we assume it will see all active flows.

From these numbers, we conclude that a Switch—for a
university-sized network—should have a flow table capable of
holding 8–16 K entries. If we assume that each entry is 64 B,
such a table requires about 1 MB of storage, or as much as 4 MB
if we use a two-way hashing scheme [17]. A typical commercial
enterprise Ethernet switch today holds hundreds of thousands
of Ethernet addresses (6 MB, but larger if hashing is used), and
millions of IP prefixes (4 MB of TCAM), 1–2 million counters
(8 MB of fast SRAM), and several thousand ACLs (more
TCAM). Thus, the memory requirements of an Ethane Switch
are quite modest in comparison to today’s Ethernet switches.
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VII. ETHANE’S SHORTCOMINGS

When trying to deploy a radically new architecture into
legacy networks—without changing the end-host—we en-
counter some stumbling blocks and limitations. These are the
main issues that arose.

— Broadcast and Service Discovery. Broadcast discovery
protocols (ARP, OSPF neighbor discovery, etc.) wreak
havoc on enterprise networks by generating huge amounts
of overhead traffic [18], [19]; on our network, these con-
stituted over 90% of the flows. One of the largest reasons
for VLANs is to control the storms of broadcast traffic on
enterprise networks. Hosts frequently broadcast messages
to the network to try and find an address, neighbor, or ser-
vice. Unless Ethane can interpret the protocol and respond
on its behalf, it needs to broadcast the request to all po-
tential responders; this involves creating large numbers of
flow entries, and it leads to lots of traffic which—if mali-
cious—has access to every end-host. Broadcast discovery
protocols could be eliminated if there was a standard way
to register a service where it can easily be found. SANE
proposed such a scheme [10], and, in the long term, we
believe this is the right approach.

— Application-layer Routing. A limitation of Ethane is that
it has to trust end-hosts not to relay traffic in violation of
the network policy. Ethane controls connectivity using the
Ethernet and IP addresses of the end-points, but Ethane’s
policy can be compromised by communications at a higher
layer. For example, if A is allowed to talk to B but not C,
and if B can talk to C, then B can relay messages from A
to C. This could happen at any layer above the IP layer,
e.g., a P2P application that creates an overlay at the appli-
cation layer, or multihomed clients that connect to multiple
networks. This is a hard problem to solve and most likely
requires a change to the operating system and any virtual
machines running on the host.

— Knowing What the User Is Doing. Ethane’s policy as-
sumes that the transport port numbers indicate what the
user is doing: port 80 means HTTP, port 25 is SMTP, and
so on. Colluding malicious users or applications can fool
Ethane by agreeing to use nonstandard port numbers. It
is common for “good” applications to tunnel applications
over ports (such as port 80) that are likely to be open in
firewalls. To some extent, there will always be such prob-
lems for a mechanism like Ethane, which focuses on con-
nectivity without involvement from the end-host. In the
short-term, we can, and do, insert application proxies along
the path (using Ethane’s waypoint mechanism).

— Spoofing Ethernet Addresses. Ethane Switches rely on
the binding between a user and Ethernet addresses to iden-
tify flows. If a user spoofs a MAC address, it might be pos-
sible to fool Ethane into delivering packets to an end-host.
This is easily prevented in an Ethane-only network where
each Switch port is connected to one host: The Switch can
drop packets with the wrong MAC address. If two or more
end-hosts connect to the same Switch port, it is possible for
one to masquerade as another. A simple solution is to phys-
ically prevent this; a more practical solution in larger net-

works is to use 802.1X in conjunction with link-level en-
cryption mechanisms, such as 802.1AE, to more securely
authenticate packets and addresses.

VIII. RELATED WORK

Ethane embraces the 4D [9] philosophy of simplifying the
data plane and centralizing the control plane to enforce network-
wide goals [20]. Ethane diverges from 4D in that it supports a
fine-grained policy-management system. We believe that policy
decisions can and should be based on flows. We also believe that
by moving all flow decisions to the Controller, we can add many
new functions and features to the network by simply updating
the Controller in a single location. Our work also shows that it
is possible—we believe for the first time—to securely bind the
entities in the network to their addresses and then to manage the
whole namespace with a single policy.

Ipsilon Networks proposed caching IP routing decisions as
flows in order to provide a switched, multiservice fast path to tra-
ditional IP routers [21]. Ethane also uses flows as a forwarding
primitive. However, Ethane extends forwarding to include func-
tionality useful for enforcing security, such as address swapping
and enforcing outgoing initiated flows only.

In distributed firewalls [22], policy is declared centrally in a
topology independent manner and enforced at each end-host. In
addition to the auditing and management support, Ethane dif-
fers from this work in two major ways. First, in Ethane, end-
hosts cannot be trusted to enforce filtering. This mistrust can
be extended to the switches; if one switch fails to enforce a
policy, subsequent switches along the path will enforce it. With
per-switch enforcement of each flow, Ethane provides maximal
defense in depth. Second, much of the power of Ethane is to
provide network level guarantees, such as policy imposed way-
points. This is not possible to do through end-host level filtering
alone.

FSL evolved from Pol-Eth, the original Ethane policy lan-
guage [23]. FSL extends Pol-Eth by supporting dynamic group
membership, negation, automated conflict resolution, and dis-
tributed authorship. It differs from Pol-Eth in that actions only
apply to unidirectional flows.

VLANs are widely used in enterprise networks for segmen-
tation, isolation, and enforcement of coarse-grain policies; they
are commonly used to quarantine unauthenticated hosts or hosts
without health “certificates” [24], [25]. VLANs are notoriously
difficult to use, requiring much hand-holding and manual
configuration; we believe Ethane can replace VLANs entirely,
giving much simpler control over isolation, connectivity, and
diagnostics.

There are a number of identity-based networking (IBN)
custom switches available (e.g., [26]) or secure AAA servers
(e.g., [27]). These allow high-level policy to be declared, but
are generally point solutions with little or no control over
the network data-path (except as a choke-point). Several of
them rely on the end-host for enforcement, which makes them
vulnerable to compromise.

IX. CONCLUSION

One of the most interesting consequences of building a proto-
type is that the lessons you learn are always different—and usu-
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ally far more—than were expected. With Ethane, this is most
definitely the case: We learned lessons about the good and bad
properties of Ethane and fought a number of fires during our de-
ployment.

The largest conclusion that we draw is that (once deployed)
we found it much easier to manage the Ethane network than
we expected. On numerous occasions, we needed to add new
Switches and new users, support new protocols, and prevent cer-
tain connectivity. On each occasion, we found it natural and fast
to add new policy rules in a single location. There is great peace
of mind to knowing that the policy is implemented at the place
of entry and determines the route that packets take (rather than
being distributed as a set of filters without knowing the paths
that packets follow). By journaling all registrations and bind-
ings, we were able to identify numerous network problems, er-
rant machines, and malicious flows—and associate them with
an end-host or user. This bodes well for network managers who
want to hold users accountable for their traffic or perform net-
work audits.

We have also found it straightforward to add new features to
the network: either by extending the policy language, adding
new routing algorithms (such as supporting redundant disjoint
paths), or introducing new application proxies as waypoints.
Overall, we believe that Ethane’s most significant advantage
comes from the ease of innovation and evolution. By keeping
the Switches dumb and simple, and by allowing new features to
be added in software on the central Controller, rapid improve-
ments are possible. This is particularly true if the protocol be-
tween the Switch and Controller is open and standardized, so as
to allow competing Controller software to be developed.

We are confident that the Controller can scale to support
quite large networks: Our results suggest that a single Con-
troller could manage thousands of machines, which bodes well
for whoever has to manage the Controllers. In practice, we
expect Controllers to be replicated in topologically-diverse
locations on the network, yet Ethane does not restrict how the
network manager does this. Over time, we expect innovation
in how fault-tolerance is performed, perhaps with emerging
standard protocols for Controllers to communicate and remain
consistent.

We are convinced that the Switches are best when they are
dumb and contain little or no management software. We have
experience building switches and routers—for Ethane and else-
where—and these are the simplest switches we’ve seen. Fur-
thermore, the Switches are just as simple at the center of the
network as they are at the edge. Because the Switch consists
mostly of a flow table, it is easy to build in a variety of ways:
in software for embedded devices, in network processors, for
rapid deployment, and in custom ASICs for high volume and
low cost. Our results suggest that an Ethane Switch will be sig-
nificantly simpler, smaller, and lower power than current Eth-
ernet switches and routers.

We also anticipate some innovation in Switches. For ex-
ample, while our Switches maintain a single FIFO queue, one
can imagine a “less dumb” Switch with multiple queues, where
the Controller decides to which queue a flow belongs. This
leads to many possibilities: per-class or per-flow queuing in
support of priorities, traffic isolation, and rate control. Our

results suggest that even if the Switch does per-flow queuing
(which may or may not make sense), the Switch need only
maintain a few thousand queues. This is frequently done in
low-end switches today, and it is well within reach of current
technology.
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