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systems were available 15 years ago. 
HPC systems rely on fast (low-latency) 
and efficient interconnection net-
works capable of providing both high 
bandwidth and efficient messaging for 
fine-grained (for example, cache-line 
size) communication. This zealous 
attention to performance and low la-
tency migrated to financial enterprise 
systems where a fraction of a micro-
second can make a difference in the 
value of a transaction. 

In recent years, Ethernet networks 
have made significant inroads into 
bridging the performance and scal-
ability gap between capacity-oriented 
clusters built using COTS (commod-
ity-off-the-shelf) components and 
purpose-built custom system architec-
tures. This is evident from the growth 
of Ethernet as a cluster interconnect 
on the Top500 list of most powerful 
computers (top500.org). A decade 
ago high-performance networks were 
mostly custom and proprietary inter-
connects, and Ethernet was used by 
only 2% of the Top500 systems. Today, 
however, more than 42% of the most 
powerful computers are using Gigabit 
Ethernet, according to the November 
2011 list of Top500 computers. A close 
second place is InfiniBand, which 
is used by about 40% of the systems. 
These standards-based interconnects 
combined with economies of scale 
provide the genetic material of a mod-
ern data-center network.

A modern data center,13,17,24 as 
shown in Figure 1, is home to tens of 
thousands of hosts, each consisting of 
one or more processors, memory, net-
work interface, and local high-speed 
I/O (disk or flash). Compute resources 
are packaged into racks and allocated 
as clusters consisting of thousands of 
hosts that are tightly connected with 
a high-bandwidth network. While the 
network plays a central role in the over-
all system performance, it typically 
represents only 10%–15% of the clus-
ter cost. Be careful not to confuse cost 
with value—the network is to a cluster 
computer what the central nervous sys-
tem is to the human body.

the MaGIC of  the cloud is that it is always on and 
always available from anywhere. Users have come to 
expect that services are there when they need them. 
A data center (or warehouse-scale computer) is the 
nexus from which all the services flow. It is often 
housed in a nondescript warehouse-sized building 
bearing no indication of what lies inside. Amidst the 
whirring fans and refrigerator-sized computer racks is 
a tapestry of electrical cables and fiber optics weaving 
everything together—the data-center network. This 
article provides a “guided tour” through the principles 
and central ideas surrounding the network at the heart 
of a data center—the modern-day loom that weaves 
the digital fabric of the Internet.

Large-scale parallel computers are grounded in HPC 
(high-performance computing) where kilo-processor 
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Each cluster is homogeneous in 
both the processor type and speed. The 
thousands of hosts are orchestrated to 
exploit thread-level parallelism central 
to many Internet workloads as they di-
vide incoming requests into parallel 
subtasks and weave together results 
from many subtasks across thousands 
of cores. In general, in order for the re-
quest to complete, all parallel subtasks 
must complete. As a result, the maxi-
mum response time of any one subtask 
will dictate the overall response time.25 
Even in the presence of abundant 
thread-level parallelism, the commu-
nication overhead imposed by the net-
work and protocol stack can ultimately 
limit application performance as the 
effects of Amdahl’s Law2 creep in. 

The high-level system architecture 
and programming model shape both 
the programmer’s conceptual view 
and application usage. The latency and 
bandwidth “cost” of local (DRAM) and 
remote (network) memory references 

are often baked into the application 
as programming trade-offs are made 
to optimize code for the underlying 
system architecture. In this way, an ap-
plication organically grows within the 
confines of the system architecture. 

The cluster-application usage mod-
el, either dedicated or shared among 
multiple applications, has a significant 
impact on SLAs (service-level agree-
ments) and application performance. 
HPC applications typically use the sys-
tem in a dedicated fashion to avoid 
contention from multiple applications 
and reduce the resulting variation in 
application performance. On the other 
hand, Web applications often rely on 
services sourced from multiple clusters, 
where each cluster may have several ap-
plications simultaneously running to 
increase overall system utilization. As 
a result, a data-center cluster may use 
virtualization for both performance and 
fault isolation, and Web applications are 
programmed with this sharing in mind.

Web applications such as search, 
email, and document collaboration 
are scheduled resources and run with-
in a cluster.4,8 User-facing applications 
have soft real-time latency guaran-
tees or SLAs that the application must 
meet. In this model, an application has 
approximately tens of milliseconds 
to reply to the user’s request, which is 
subdivided and dispatched to worker 
threads within the cluster. The worker 
threads generate replies that are aggre-
gated and returned to the user. Unfor-
tunately, if a portion of the workflow 
does not execute in a timely manner, 
then it may exceed a specified timeout 
delay—as a result of network conges-
tion, for example—and consequently 
some portion of the coalesced results 
will be unavailable and thus ignored. 
This needlessly wastes both CPU cycles 
and network bandwidth, and may ad-
versely impact the computed result. 

To reduce the likelihood of conges-
tion, the network can be overprovi-

figure 1. An example data center and warehouse-scale computer.
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The transient load imbalance in-
duced by elephant flows can adversely 
affect any innocent-bystander flows 
that are patiently waiting for a heavily 
utilized link common to both routes. 
For example, an elephant flow from A 
to B might share a common link with 
a flow from C to D. Any long-lived con-
tention for the shared link increases 
the likelihood of discarding a packet 
from the C-to-D flow. Any packet dis-
cards will result in an unacknowl-
edged packet at the sender’s trans-
port layer and be retransmitted when 
the timeout period expires. Since the 
timeout period is generally one or two 
orders of magnitude more than the 
network’s round-trip time, this addi-
tional latency22 is a significant source 
of performance variation.3 

Today’s typical multitiered data-
center network23 has a significant 
amount of oversubscription, where the 
hosts attached to the rack switch (that 
is, first tier) have significantly more—
say an order of magnitude more—pro-
visioned bandwidth between one an-
other than they do with hosts in other 
racks. This rack affinity is necessary 
to reduce network cost and improve 
utilization. The traffic intensity emit-
ted by each host fluctuates over time, 
and the transient load imbalance that 
results from this varying load can cre-
ate contention and ultimately result 
in discarded packets for flow control. 
Traffic between clusters is typically 
less time critical and as a result can 
be staged and scheduled. Inter-cluster 
traffic is less orchestrated and consists 
of much larger payloads, whereas in-
tra-cluster traffic is often fine-grained 
with bursty behavior. At the next level, 
between data centers, bandwidth is of-
ten very expensive over vast distances 
with highly regulated traffic streams 
and patterns so that expensive links 
are highly utilized. When congestion 
occurs the most important traffic gets 
access to the links. Understanding the 
granularity and distribution of net-
work flows is essential to capacity plan-
ning and traffic engineering.

Data-Center network Architecture
The network topology describes pre-
cisely how switches and hosts are in-
terconnected. This is commonly rep-
resented as a graph in which vertices 
represent switches or hosts, and links 

sioned by providing ample bandwidth 
for even antagonistic traffic patterns. 
Overprovisioning within large-scale 
networks is prohibitively expensive. Al-
ternatively, implementing QoS (quality 
of service) policies to segregate traffic 
into distinct classes and provide per-
formance isolation and high-level traf-
fic engineering is a step toward ensur-
ing  application-level SLAs are satisfied. 
Most QoS implementations are imple-
mented by switch and NIC (network 
interface controller) hardware where 
traffic is segregated based on priority 
explicitly marked by routers and hosts 
or implicitly steered using port ranges. 
The goal is the same: a high-perfor-
mance network that provides predict-
able latency and bandwidth character-
istics across varying traffic patterns.

Data-Center Traffic
Traffic within a data-center network is 
often measured and characterized ac-
cording to flows, which are sequences 
of packets from a source to destination 
host. When referring to Internet proto-
cols, a flow is further refined to include 
a specific source and destination port 
number and transport type—UDP or 
TCP, for example. Traffic is asymmet-
ric with client-to-server requests being 
abundant but generally small. Server-
to-client responses, however, tend to 
be larger flows; of course, this, too, 

depends on the application. From the 
purview of the cluster, Internet traffic 
becomes highly aggregated, and as a 
result the mean of traffic flows says very 
little because aggregated traffic exhib-
its a high degree of variability and is 
non-Gaussian.16 

As a result, a network that is only 
10% utilized can see lots of packet dis-
cards when running a Web search. To 
understand individual flow character-
istics better, applications are instru-
mented to “sample” messages and de-
rive a distribution of traffic flows; this 
knowledge allows you to infer a taxono-
my of network traffic and classify indi-
vidual flows. The most common classi-
fication is bimodal, using the so-called 
“elephant” and “mice” classes.

Elephant flows have a large number 
of packets and are generally long lived; 
they exhibit “bursty” behavior with a 
large number of packets injected in 
the network over a short time. Traf-
fic within a flow is generally ordered, 
which means elephant flows can cre-
ate a set of “hotspot” links that can 
lead to tree saturation or discarded 
packets in networks that use lossy 
flow control. The performance impact 
from elephant flows can be significant. 
Despite the relatively low number of 
flows—say less than 1%—they can ac-
count for more than half the data vol-
ume on the network.

figure 2. A conventional tree-like data-center network topology.
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The high-level 
system architecture 
and programming 
model shape both 
the programmer’s 
conceptual view 
and application 
usage.

are the edges that connect them. The 
topology is central to both the perfor-
mance and cost of the network. The 
topology affects a number of design 
trade-offs, including performance, 
system packaging, path diversity, and 
redundancy, which, in turn, affect the 
network’s resilience to faults, average 
and maximum cable length, and, of 
course, cost.12 The Cisco Data Center In-
frastructure 3.0 Design Guide6 describes 
common practices based on a tree-like 
topology15 resembling early telephony 
networks proposed by Charles Clos,7 
with bandwidth aggregation at differ-
ent levels of the network.

A fat-tree or folded-Clos topology, 
similar to that shown in Figure 2, has 
an aggregate bandwidth that grows in 
proportion to the number of host ports 
in the system. A scalable network is 
one in which increasing the number 
of ports in the network should linearly 
increase the delivered bisection band-
width. Scalability and reliability are 
inseparable since growing to large sys-
tem size requires a robust network.

Network addressing. A host’s ad-
dress is how endpoints are identified 
in the network. Endpoints are distin-
guished from intermediate switch-
ing elements traversed en route since 
messages are created by and delivered 
to an endpoint. In the simplest terms, 
the address can be thought of as the 
numerical equivalent of a host name 
similar to that reported by the Unix 
hostname command. 

An address is unique and must be 
represented in a canonical form that 
can be used by the routing function to 
determine where to route a packet. The 
switch inspects the packet header cor-
responding to the layer in which rout-
ing is performed—for example, IP ad-
dress from layer 3 or Ethernet address 
from layer 2. Switching over Ethernet 
involves ARP (address resolution pro-
tocol) and RARP (reverse address reso-
lution protocol) that broadcast mes-
sages on the layer 2 network to update 
local caches mapping layer 2 to layer 
3 addresses and vice versa. Routing at 
layer 3 requires each switch to main-
tain a subnet mask and assign IP ad-
dresses statically or disseminate host 
addresses using DHCP (dynamic host 
configuration protocol), for example. 

The layer 2 routing tables are auto-
matically populated when a switch is 

plugged in and learns its identity and 
exchanges route information with its 
peers; however, the capacity of the 
packet-forwarding tables is limited to, 
say, 64K entries. Further, each layer 2 
switch will participate in an STP (span-
ning tree protocol) or use the TRILL 
(transparent interconnect of lots of 
links) link-state protocol to exchange 
routing information and avoid tran-
sient routing loops that may arise while 
the link state is exchanged among 
peers. Neither layer 2 nor layer 3 rout-
ing is perfectly suited to data-center 
networks, so to overcome these limi-
tations many new routing algorithms 
have been proposed (for example, Port-
Land1,18 and VL211).

Routing. The routing algorithm de-
termines the path a packet traverses 
through the network. A packet’s route, 
or path, through the network can be 
asserted when the message is cre-
ated, called source routing, or may be 
asserted hop by hop in a distributed 
manner as a packet visits intermediate 
switches. Source routing requires that 
every endpoint know the prescribed 
path to reach all other endpoints, and 
each source-routed packet carries the 
full information to determine the set of 
port/link traversals from source to des-
tination endpoint. As a result of this 
overhead and inflexible fault handling, 
source-routed packets are generally 
used only for topology discovery and 
network initialization, or during fault 
recovery when the state of a switch is 
unknown. A more flexible method of 
routing uses distributed lookup tables 
at each switch, as shown in Figure 3. 

For example, consider a typical Eth-
ernet switch. When a packet arrives at 
a switch input port, it uses fields from 
the packet header to index into a look-
up table and determine the next hop, 
or egress port, from the current switch. 

A good topology will have abundant 
path diversity in which multiple pos-
sible egress ports may exist, with each 
one leading to a distinct path. Path di-
versity in the topology may yield ECMP 
(equal-cost multipath) routing; in that 
case the routing algorithm attempts to 
load-balance the traffic flowing across 
the links by spreading traffic uniformly. 
To accomplish this uniform spreading, 
the routing function in the switch will 
hash several fields of the packet header 
to produce a deterministic egress port. 
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can become unstable, as illustrated by 
the dotted line in the figure, when the 
offered load exceeds the saturation 
point, α. The saturation point is the of-
fered load beyond which the network is 
said to be congested. In response to this 
congestion, packets may be discarded 
to avoid overflowing an input buffer. 
This lossy flow control is commonplace 
in Ethernet networks. 

Discarding packets, while concep-
tually simple and easy to implement, 
puts an onus on transport-level mech-
anisms to detect and retransmit lost 
packets. Note, packets that are lost or 
corrupted during transmission are 
handled by the same transport-level 
reliable delivery protocol. When the of-
fered load is low (less than α), packet 
loss as a result of corruption is rare, 
so paying the relatively large penalty 
for transport-level retransmission is 
generally tolerable. Increased traffic 
(greater than α) and adversarial traf-
fic patterns will cause packet discards 
after the switch’s input queue is ex-
hausted. The resulting retransmission 
will only further exacerbate an already 
congested network, yielding an unsta-
ble network that performs poorly, as 
shown by the dotted line in Figure 4. 
Alternatively, with lossless flow control, 
when congestion arises packets may be 
blocked or held at the source until re-
sources are available.

A global congestion control mecha-
nism prevents the network from op-
erating in the post-saturation region. 
Most networks use end-to-end flow 
control, such as TCP,5 which uses a win-
dowing mechanism between pairs of 
source and sink in an attempt to match 
the source’s injection rate with the 
sink’s acceptance rate. TCP, however, 
is designed for reliable packet delivery, 
not necessarily timely packet delivery, 
and as a result, requires tuning (TCP 
congestion-control algorithms will au-
to-tune to find the right rate) to balance 
performance and avoid unnecessary 
packet duplication from eagerly re-
transmitting packets under heavy load.

Improving the network stack. Sever-
al decades ago the network designers of 
early workstations made trade-offs that 
led to a single TCP/IP/Ethernet network 
stack, whether communicating over a 
few meters or a few kilometers. As pro-
cessor speed and density improved, the 
cost of network communication grew 

In the event of a link or switch failure, 
the routing algorithm will take advan-
tage of path diversity in the network to 
find another path.

A path through the network is said 
to be minimal if no shorter (that is, 
fewer hops) path exists; of course, 
there may be multiple minimal paths. 
A fat-tree topology,15 for example, has 
multiple minimal paths between any 
two hosts, but a butterfly topology9 has 
only a single minimal path between 
any two hosts. Sometimes selecting a 
non-minimal path is advantageous—
for example, to avoid congestion or 
to route around a fault. The length of 
a non-minimal path can range from 
min+1 up to the length of a Hamilto-
nian path visiting each switch exactly 
once. In general, the routing algo-
rithm might consider non-minimal 
paths of a length that is one more than 
a minimal path, since considering all 
non-minimal paths would be prohibi-
tively expensive.

network Performance
Here, we discuss the etiquette for 
sharing the network resources—spe-
cifically, the physical links and buf-
fer spaces are resources that require 
flow control to share them efficiently. 
Flow control is carried out at different 
levels of the network stack: data-link, 
network, transport layer, and possibly 
within the application itself for ex-
plicit coordination of resources. Flow 
control that occurs at lower levels of 
the communication stack is transpar-
ent to applications. 

Flow control. Network-level flow 
control dictates how the input buf-
fers at each switch or NIC are man-
aged: store-and-forward, virtual cut-
through,14 or wormhole,19 for example. 
To understand the performance impli-
cations of flow control better, you must 
first understand the total delay, T, a 
packet incurs:

T = H(tr + Ltp) + ts

H is the number of hops the packet 
takes through the network; tr is the 
fall-through latency of the switch, 
measured from the time the first flit 
(flow-control unit) arrives to when the 
first flit exits; and tp is the propagation 
delay through average cable length 
L. For short links—say, fewer than 10 

meters—electrical signaling is cost-ef-
fective. Longer links, however, require 
fiber optics to communicate over the 
longer distances. Signal propagation 
in electrical signaling (5 nanoseconds 
per meter) is faster than it is in fiber (6 
nanoseconds per meter).

Propagation delay through elec-
trical cables occurs at sublumenal 
speeds because of a frequency-de-
pendent component at the surface of 
the conductor, or “skin effect,” in the 
cable. This limits the signal velocity 
to about three-quarters the speed of 
light in a vacuum. Signal propagation 
in optical fibers is even slower because 
of dielectric waveguides used to al-
ter the refractive index profile so that 
higher-velocity components of the sig-
nal (such as shorter wavelengths) will 
travel longer distances and arrive at 
the same time as lower-velocity com-
ponents, limiting the signal velocity to 
about two-thirds the speed of light in 
a vacuum. Optical signaling must also 
account for the time necessary to per-
form electrical-to-optical signal con-
version, and vice versa.

The average cable length, L, is large-
ly determined by the topology and the 
physical placement of system racks 
within the data center. The packet’s se-
rialization latency, ts, is the time nec-
essary to squeeze the packet onto a nar-
row serial channel and is determined 
by the bit rate of the channel. For ex-
ample, a 1,500-byte Ethernet packet 
(frame) requires more than 12µs (ig-
noring any interframe gap time) to be 
squeezed onto a 1Gb/s link. With store-
and-forward flow control, as its name 
suggests, a packet is buffered at each 
hop before the switch does anything 
with it: 

Tsf = H(tr + Ltp + ts)

As a result, the serialization delay, 
ts, is incurred at each hop, instead of 
just at the destination endpoint as is 
the case with virtual cut-through and 
wormhole flow control. This can po-
tentially add on the order of 100µs to 
the round-trip network delay in a data-
center network. 

A stable network monotonically 
delivers messages as shown by a char-
acteristic throughput-load curve in 
Figure 4. In the absence of end-to-end 
flow control, however, the network 
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relative to processor cycles, exposing 
the network stack as a critical latency 
bottleneck.22 This is, in part, the result 
of a user-kernel context switch in the 
TCP/IP/Ethernet stack—and possibly 
additional work to copy the message 
from the application buffer into the 
kernel buffer and back again at the re-
ceiver. A two-pronged hardware/soft-
ware approach tackled this latency pen-
alty: OS bypass, and zero copy, both of 
which are aimed at eliminating the us-
er-kernel switch for every message and 
avoiding a redundant memory copy by 
allowing the network transport to grab 
the message payload directly from the 
user application buffers.

To ameliorate the performance 
impact of a user/kernel switch, OS by-
pass can be used to deposit a message 
directly into a user-application buffer. 
The application participates in the 
messaging protocol by spin-waiting 
on a doorbell memory location. Upon 
arrival, the NIC deposits the message 
contents in the user-application buf-
fer, and then “rings” the doorbell to 
indicate message arrival by writing the 
offset into the buffer where the new 
message can be found. When the user 
thread detects the updated value, the 
incoming message is processed entire-
ly from user space.

Zero-copy message-passing proto-
cols avoid this additional memory copy 
from user to kernel space, and vice ver-
sa at the recipient. An interrupt signals 
the arrival of a message, and an inter-
rupt handler services the new message 
and returns control to the user applica-
tion. The interrupt latency—the time 
from when the interrupt is raised until 
control is handed to the interrupt han-
dler—can be significant, especially if 
interrupt coalescing is used to amor-
tize the latency penalty across multiple 
interrupts. Unfortunately, while in-
terrupt coalescing improves message 
efficiency (that is, increased effective 
bandwidth), it does so at the cost of 
both increased message latency and la-
tency variance.

scalable, Manageable, And flexible
In general, cloud computing requires 
two types of services: user-facing com-
putation (for example, serving Web 
pages) and inward computation (for 
example, indexing, search, and map/
reduce). Outward-facing functionality 

can sometimes be done at the “border” 
of the Internet where commonly re-
quested pages are cached and serviced 
by edge servers, while inward computa-
tion is generally carried out by a cluster 
in a data center with tightly coupled, 
orchestrated communication. User 
demand is diurnal for a geographic 
region; thus, multiple data centers 
are positioned around the globe to 
accommodate the varying demand. 
When possible, demand may be spread 
across nearby data centers to load-bal-
ance the traffic. 

The sheer enormity of this comput-
ing infrastructure makes nimble de-
ployment very challenging. Each clus-
ter is built up rack by rack and tested 
as units (rack, top-of-rack switch, 
among others), as well as in its entirety 
with production-level workloads and 
traffic intensity.

The cluster ecosystem undergoes 
organic growth over its life span, pro-
pelled by the rapid evolution of soft-

ware—both applications and, to a less-
er extent, the operating system. The 
fluid-like software demands of Web 
applications often consume the cluster 
resources that contain them, making 
flexibility a top priority in such a fluid 
system. For example, adding 10% ad-
ditional storage capacity should mean 
adding no more than 10% more serv-
ers to the cluster. This linear growth 
function is critical to the scalability of 
the system—adding fractionally more 
servers results in a commensurate 
growth in the overall cluster capac-
ity. Another aspect of this flexibility is 
the granularity of resource additions, 
which is often tied to the cluster pack-
aging constraints. For example, adding 
another rack to a cluster, with, say, 100 
new servers, is more manageable than 
adding a whole row, with tens of racks, 
on the data-center floor.

Even a modest-sized cluster will 
have several kilometers of fiber-optic 
cable acting as a vast highway inter-

figure 3. example packet routing through a switch chip.
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The data-center 
network serves 
as a “central 
nervous system” 
for information 
exchange between 
cooperating tasks.

Bad things happen to good soft-
ware. Web applications must be de-
signed to be fault aware and, to the ex-
tent possible, resilient in the presence 
of a variety of failure scenarios.10 The 
network is responsible for the major-
ity of the unavailability budget for a 
modern cluster. Whether it is a rogue 
gamma ray causing a soft error in 
memory or an inattentive worker acci-
dentally unearthing a fiber-optic line, 
the operating system and underlying 
hardware substrate work in concert to 
foster a robust ecosystem for Web ap-
plications. 

The data-center network serves as 
a “central nervous system” for infor-
mation exchange between cooperat-
ing tasks. The network’s functionality 
is commonly divided into control and 
data planes. The control plane pro-
vides an ancillary network juxtaposed 
with the data network and tasked with 
“command and control” for the pri-
mary data plane. The control plane is 
an autonomic system for configura-
tion, fault detection and repair, and 
monitoring of the data plane. The 
control plane is typically implement-
ed as an embedded system within 
each switch component and is tasked 
with fault detection, notification, and 
repair when possible. 

For example, when a network link 
fails or has an uncharacteristically 
high number of transmission errors, 
the control plane will reroute the net-
work to avoid the faulty link. This 
entails recomputing the routes ac-
cording to the routing algorithm and 
emplacing new entries in the rout-
ing tables of the affected switches. 
Of course, the effects of this patch-
work are not instantaneous. Once 
the routing algorithm computes new 
routes, taking into consideration the 
newfound faulty links, it must dis-
seminate the routes to the affected 
switches. The time needed for this in-
formation exchange is referred to as 
convergence time, and a primary goal 
of the routing protocol is to ensure it 
is optimally confined to a small epoch.

Fault recovery is a very complicated 
subject and confounds all but the sim-
plest of data-center networks. Among 
the complicating factors are marginal 
links that cause “flapping” by transi-
tioning between active and inactive 
(that is, up and down), repeatedly creat-

connecting racks of servers organized 
as multiple rows on the data-center 
floor. The data-center network topol-
ogy and resulting cable complexity 
is “baked in” and remains a rigid fix-
ture of the cluster. Managing cable 
complexity is nontrivial, which is im-
mediately evident from the intricately 
woven tapestry of fiber-optic cabling 
laced throughout the data center. It 
is not uncommon to run additional 
fiber for redundancy, in the event of a 
cable failure in a “bundle” of fiber or 
for planned bandwidth growth. Fiber 
cables are carefully measured to allow 
some slack and to satisfy the cable’s 
bend radius, and they are meticulously 
labeled to make troubleshooting less 
of a needle-in-a-haystack exercise.

Reliable and Available
Abstraction is the Archimedes lever 
that lifts many disciplines within com-
puter science and is used extensively 
in both computer system design and 
software engineering. Like an array 
of nested Russian dolls, the network-
programming model provides abstrac-
tion between successive layers of the 
networking stack, enabling platform-
independent access to both data and 
system management. One such ex-
ample of this type of abstraction is 
the protocol buffer,21 which provides a 
structured message-passing interface 
for Web applications written in C++, 
Java, or Python. 

Perhaps the most common abstrac-
tion used in networking is the notion 
of a communication channel as a virtual 
resource connecting two hosts. The 
TCP communication model provides 
this abstraction to the programmer in 
the form of a file descriptor, for exam-
ple, where reads and writes performed 
on the socket result in the correspond-
ing network transactions, which are 
hidden from the user application. In 
much the same way, the InfiniBand QP 
(queue-pair) verb model provides an 
abstraction for the underlying send/
receive hardware queues in the NIC. 
Besides providing a more intuitive pro-
gramming interface, abstraction also 
serves as a protective sheath around 
software when faults arise, depositing 
layers of software sediment to insu-
late it from critical faults (for example, 
memory corruption or, worse, host 
power-supply failure).
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ing a deluge of error notifications and 
resulting route recomputation based 
on fluctuating and inconsistent link 
status. Some link-layer protocols allow 
the link speed to be adjusted down-
ward in hopes of improving the link 
quality. Of course, lowering the link 
speed results in a reduced bandwidth 
link, which in turn may limit the overall 
bandwidth of the network or at the very 
least will create load imbalance as a re-
sult of increased contention across the 
slow link. Because of these complicat-
ing factors, it is often better to logically 
excise the faulty link from the routing 
algorithm until the physical link can be 
replaced and validated.

Conclusion
The data-center network is gener-
ally regarded as a critical design ele-
ment in the system architecture and 
the skeletal structure upon which 
processor, memory, and I/O devices 
are dynamically shared. The evolu-
tion from 1G to 10G Ethernet and the 
emerging 40G Ethernet has exposed 
performance bottlenecks in the com-
munication stack that require bet-
ter hardware-software coordination 
for efficient communication. Other 
approaches by Solarflare, Myricom, 
and InfiniBand, among others, have 
sought to reshape the conventional 
sockets programming model with 
more efficient abstractions. Internet 
sockets, however, remain the domi-
nant programming interface for data-
center networks.

Network performance and reliabil-
ity are key design goals, but they are 
tempered by cost and serviceability 
constraints. Deploying a large cluster 
computer is done incrementally and 
is often limited by the power capac-
ity of the building, with power being 
distributed across the cluster network 
so that a power failure impacts only a 
small fraction—say, less than 10%—of 
the hosts in the cluster. When hard-
ware fails, as is to be expected, the 
operating system running on the host 
coordinates with a higher-level hyper-
visor or cluster operating system to 
allow failures to be replaced in situ 
without draining traffic in the clus-
ter. Scalable Web applications are de-
signed to expect occasional hardware 
failures, and the resulting software is 
by necessity resilient.
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A good user experience relies on pre-
dictable performance, with the data-
center network delivering predictable 
latency and bandwidth characteristics 
across varying traffic patterns. With 
single-thread performance plateauing, 
microprocessors are providing more 
cores to keep pace with the relentless 
march of Moore’s Law. As a result, ap-
plications are looking for increasing 
thread-level parallelism and scaling 
to a large core count with a commen-
surate increase in communication 
among cores. This trend is motivating 
communication-centric cluster comput-
ing with tens of thousands of cores in 
unison, reminiscent of a flock darting 
seamlessly amidst the clouds.  
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