Learning Deep Architectures for Al

Yoshua Bengio
Dept. IRO, Université de Montréal
C.P. 6128, Montreal, Qc, H3C 3J7, Canada
Yoshua.Bengio@umontreal.ca
http://www.iro.umontreal.ca/bengioy

Technical Report 1312

Abstract

Theoretical results strongly suggest that in order to |&aerkind of complicated functions that can repre-
sent high-level abstractions (e.g. in vision, languagé, @her Al-level tasks), one needsep architec-
tures Deep architectures are composed of multiple levels oflim@ar operations, such as in neural nets
with many hidden layers or in complicated propositionahfatae re-using many sub-formulae. Searching
the parameter space of deep architectures is a difficultnigation task, but learning algorithms such as
those for Deep Belief Networks have recently been proposéaickle this problem with notable success,
beating the state-of-the-art in certain areas. This paigeusses the motivations and principles regarding
learning algorithms for deep architectures, in partictiase exploiting as building blocks unsupervised
learning of single-layer models such as Restricted Boltamdachines, used to construct deeper models
such as Deep Belief Networks.

1 Introduction

Allowing computers to model our world well enough to exhilbliat we call intelligence has been the focus
of more than half a century of research. To achieve this, dlear that a large quantity of information
about our world should somehow be stored, explicitly or iaifly, in the computer. Because it seems
daunting to formalize manually all that information in arfothat computers can use to answer questions
and generalize to new contexts, many researchers haveadttoriearning algorithmsto capture a large
fraction of that information. Much progress has been madentterstand and improve learning algorithms,
but the challenge of artificial intelligence (Al) remainso e have algorithms that can understand scenes
and describe them in natural language? Not really, exceptrin limited settings. Do we have algorithms
that can infer enough semantic concepts to be able to inteitcmost humans using these concepts? No.
If we consider image understanding, one of the best spedifidte Al tasks, we realize that we do not yet
have learning algorithms that can discover the many visndlsemantic concepts that would seem to be
necessary to interpret most images. The situation is gifimfeother Al tasks.

We assume that the computational machinery necessary tessxpomplex behaviors (which one might
label “intelligent”) requires highly varying mathematidanctions, i.e. mathematical functions that are
highly non-linear in terms of raw sensory inputs. Considerdxample the task of interpreting an input
image such as the one in Figure 1. When humans try to solveiaydar task in Al (such as machine vision
or natural language processing), they often exploit thewiiion about how to decompose the problem
into sub-problems and multiple levels of representationpl@usible and common way to extract useful
information from a natural image involves transforming thev pixel representation into gradually more
abstract representations, e.g., starting from the presehedges, the detection of more complex but local
shapes, up to the identification of abstract categoriexagsd with sub-objects and objects which are parts

of the image, and putting all these together to capture é@manderstanding of the scene to answer questions
about it. We view the raw input to the learning system as a tigtensional entity, made of many observed
variables, which are related by unknown intricate staigdtrelationships. For example, using knowledge
of the 3D geometry of solid object and lighting, we can rekxt@ll variations in underlying physical and
geometric factors (such as position, orientation, lightiri an object) with changes in pixel intensities for
all the pixels in an image. In this case, our knowledge of thgsjral factors involved allows one to get a
picture of the mathematical form of these dependenciespétite shape of the set of images associated
with the same 3D obiject. If a machine captured the factotsetkigain the statistical variations in the data,
and how they interact to generate the kind of data we obsemeayould be able to say that the machine
understandshose aspects of the world covered by these factors of i@riat/nfortunately, in general and
for most factors of variation underlying natural images,deenot have an analytical understanding of these
factors of variation. We do not have enough formalized pkimowledge about the world to explain the
observed variety of images, even for such an apparentlylsiaigstraction aMAN, illustrated in Figure 1.

A high-level abstraction such &8AN has the property that it corresponds to a very large set ddilples
images, which might be very different from each other from ploint of view of simple Euclidean distance
in the space of pixel intensities. The set of images for witliet label could be appropriate forms a highly
convoluted region in pixel space that is not even necegsadbnnected region. THRdAN category can be
seen as a high-level abstraction with respect to the spaceagies. What we call abstraction here can be a
category (such as thdAN category) or deature, a function of sensory data, which can be discrete (e.g., the
input sentence is at the past tense) or continuous (e.gnghevideo shows an object moving at a particular
velocity). Many lower level and intermediate level conaefpthich we also call abstractions here) would be
useful to construct MAN -detector. Lower level abstractions are more directly te@articular percepts,
whereas higher level ones are what we call “more abstractélse their connection to actual percepts is
more remote, and through other, intermediate level aligirec

We do not know exactly how to build robuBtAN detectors or even intermediate abstractions that would
be appropriate. Furthermore, the number of visual and stenzategories (such 8dAN) that we would
like an “intelligent” machine to capture is large. The foaigleep architecture learning is to automatically
discover such abstractions, from the lowest level featiordee highest level concepts. Ideally, we would like
learning algorithms that enable this discovery with akelittuman effort as possible, i.e., without having to
manually define all necessary abstractions or having togeavhuge set of relevant hand-labeled examples.
If these algorithms could tap into the huge resource of tedtimages on the web, it would certainly help to
transfer much of human knowledge into machine-interpietism.

One of the important points we argue in the first part of thisguas that the functions learned should have a
structure composed of multiple levels, analogous to thdiplellevels of abstraction that humans naturally
envision when they describe an aspect of their world. Theragmnts rest both on intuition and on theoretical
results about the representational limitations of fundidefined with an insufficient number of levels. Since
most current work in machine learning is based on shalloWwiterctures, these results suggest investigating
learning algorithms for deep architectures, which is tHgesxt of the second part of this paper.

In much of machine vision systems, learning algorithms Haen limited to specific parts of such a pro-
cessing chain. The rest of of design remains labor-intensiich might limit the scale of such systems.
On the other hand, a hallmark of what we would consider iigietit includes a large enough vocabulary of
concepts. RecognizinglAN is not enough. We need algorithms that can tackle a very ksegef such
tasks and concepts. It seems daunting to manually definentéiay tasks, and learning becomes essential
in this context. It would seem foolish not to exploit the urgimg commonalities between these these tasks
and between the concepts they require. This has been the dboesearch omulti-task learning Caruana,
1993; Baxter, 1995; Intrator & Edelman, 1996; Baxter, 199&)chitectures with multiple levels natu-
rally provide such sharing and re-use of components: thddwel visual features (like edge detectors) and
intermediate-level visual features (like object parts) tre useful to deteAN are also useful for a large
group of other visual tasks. In addition, learning aboutrgdaset of interrelated concepts might provide a
key to the kind of broad generalizations that humans appdarta do, which we would not expect from

separately trained object detectors, with one detectovipeal category. If each high-level category is itself
represented through a particular configuration of absteattres, generalization to unseen categories could
follow naturally from new configurations of these featurEsen though only some configurations of these
features would be present in the training examples, if tlegyesent different aspects of the data, new ex-
amples could meaningfully be represented by new configuratf these features. This idea underlies the
concept ofdistributed representatiothat is at the core of many of the learning algorithms describ this
paper, and discussed in Section 4.

very high level representation:
MAN] |SITTING

A

... etc...

A

slightly higher level representation

raw input vector representation:

a=[23]19[20] = T[1s

£ 1

Figure 1: We would like the raw inputimage to be transfornmed gradually higher levels of representation,
representing more and more abstract functions of the raut,impg., edges, local shapes, object parts, etc.
In practice, we do not know in advance what the “right” repreation should be for all these levels of
abstractions, although linguistic concepts might helproagine what the higher levels might implicitly
represent.

This paper has two main parts which can be read almost indepdy. In the first part, Sections 2, 3
and 4 use mathematical arguments to motivate deep arcligscin which each level is associated with a
distributed representation of the input. The second parth@ remaining sections) covers current learning
algorithms for deep architectures, with a focus on DeepeBd&ietworks, and their component layer, the
Restricted Boltzmann Machine.

The next two sections of this paper review mathematicallt®soat suggest limitations of many existing
learning algorithms. Two aspects of these limitations ares@ered: insufficierdepth of architectureand
locality of estimators To understand the notion alepth of architecture, one must introduce the notion
of aset of computational elements An example of such a set is the set of computations perfotmexh

artificial neuron. A function can be expressed by the contjprsof elements from this set, using a graph
which formalizes this composition, with one node per corapiahal element. Depth of architecture refers
to the depth of that graph, i.e. the longest path from an immgte to an output node. When the set of
computational elements is the set of computations an @tifieuron can make (depending on its param-
eter values), depth corresponds to the number of layers eusahnetwork. Section 2 reviews theoretical
results showing that an architecture with insufficient tegatn require many more computational elements,
potentially exponentially more (with respect to input 3jzban architectures whose depth is matched to the
task. This is detrimental for learning. Indeed, if a funotiepresents a solution to the task with a very large
but shallow architecture (with many computational eleragrd lot of training examples might be needed
to tune each of these elements. We say that the expressiofunéigon iscompactwhen it has few com-
putational elements, i.e. less degrees of freedom that edorted by learning. So for a fixed number of
training examples, we would expect that compact represensaof the target function would yield better
generalization.

Connected to the depth question is the question of locafigstmators, discussed in Section 3. This is
another, more geometrically obvious, limitation of a lacigss of non-parametric learning algorithms: they
obtain good generalization for a new inpuby mostly exploiting training examples in the neighborhood
of . For example, thé& nearest neighbors of the test pointamong the training examples, vote for the
prediction atz. This locality issue is directly connected to the literaton thecurse of dimensionality, but

the results we cite show thathat matters for generalization is not dimensionality, instead the number
of “variations” of the function we wish to obtain after leamy. For example, if the function represented
by the model is piecewise-constant (e.g. decision trebs)) the question that matters is the number of
pieces required to approximate properly the target functithere are connections between the number of
variations and the input dimension: one can readily desigrilfes of target functions for which the number
of variations is exponential in the input dimension, suckhasparity function withd inputs.

Section 4 suggests how deep architectures could be exptloitextract multiple levels distributed rep-
resentations where the set of configurations of values at each level ottimputation graph can be very
large. This would allow us to compactly represent a comg@idéunction of the input.

In the remainder, the paper describes and analyses some algtbrithms that have been proposed to train
deep architecturésMany of these algorithms are based on #hoassociator a simple unsupervised al-
gorithm for learning a one-layer model that computes aibistied representation for its input (Rumelhart,
Hinton, & Williams, 1986a; Bourlard & Kamp, 1988; Hinton & Aeel, 1994). We also discus®nvo-
lutional neural networks, the oldest successful example of deep architecture, ajzead for vision and
signal processing tasks (LeCun, Boser, Denker, Hendelrkaward, Hubbard, & Jackel, 1989; LeCun, Bot-
tou, Bengio, & Haffner, 1998b). Sections 9 and 10 are devistadamily of more recently proposed learning
algorithms that have been very successful to train deeptacthres: Deep Belief Networks (DBNs) (Hin-
ton, Osindero, & Teh, 2006) and Stacked Autoassociatonsg®eLamblin, Popovici, & Larochelle, 2007;
Ranzato, Poultney, Chopra, & LeCun, 2007). DBNs are basd®iestricted Boltzmann Machines (RBMs)
and the Contrastive Divergence algorithm (Hinton, 200&)piduced in Section 6. In Section 7 we describe
estimators of the log-likelihood gradient for RBMs. Thisadysis shows how reconstruction error (used
to train autoassociators), and Contrastive Divergenoed(ts train RBMs) approximate the log-likelihood
gradient. Section 8 generalizes as much as possible thenpaaiization of RBMs so as to keep its basic
factorizing property and the Contrastive Divergence eatimof the gradient. Finally, we consider the most
challenging question: how can we possibly deal with thedliffioptimization problem that training these
deep architectures entails? This part of the paper contagsily questions and suggestions for research
directions. In particular, we discuss the principle of @oumation methods, which first solves smoother ver-
sions of the desired cost function, to make a dent in the opaition of deep architectures, and we find that
existing algorithms for RBMs and DBNs already are approxextantinuation methods.

IMostly deep neural networks, to date, but we suggest lastreiisembles of trees could be learned and stacked sintiteldyers
in a neural network.

1.1 Desiderata for Learning Al

Summarizing some of the above issues, we state a numberwfeswents we perceive for learning algo-
rithms to solve Al.

¢ Ability to learn complex, highly-varying functions, i.evjith a number of variations much greater than
the number of training examples.

e Ability to learn with little human input the low-level, intmediate, and high-level abstractions that
would be useful to represent the kind of complex functioredeel for Al tasks.

¢ Ability to learn from a very large set of examples: compwattime for training should scale well
with the number of examples, i.e. close to linearly.

e Ability to learn from mostly unlabeled data, i.e. to work letsemi-supervised setting, where not all
the examples come with the “right” associated labels.

¢ Ability to exploit the synergies present across a large nematbtasks, i.e. multi-task learning. These
synergies exist because all the Al tasks provide differeaws on the same underlying reality.

¢ In the limit of a large number of tasks and when future taslksraot known ahead of time, strong
unsupervised learning(i.e. capturing the statistical structure in the observat)yis an important
element of the solution.

Other elements are equally important but are not directlynegted to the material in this paper. They
include the ability to learn to represent context of varylaggth and structure (Pollack, 1990), so as to
allow machines to operate in a stream of observations antupeoa stream of actions, the ability to make
decisions when actions influence the future observatiod$wsare rewards (Sutton & Barto, 1998), and the
ability to influence future observations so as to collectaretevant information about the world (i.e. a form
of active learning (Cohn, Ghahramani, & Jordan, 1995)).

2 Theoretical Limitations of Shallow Architectures

In this section, we present an argument in favor of deep trctoire models by way of theoretical results re-
vealing limitations of archictectures with insufficientadle. This part of the paper (this section and the next)
motivate the algorithms described in the later sectiond,am be skipped without making the remainder
difficult to follow. The main conclusion of this section isathfunctions that can be compactly represented
by a depthk architecture might require an exponential number of coruparial elements to be represented
by a depthkt — 1 architecture. Since the number of computational elememscan afford depends on the
number of training examples available to tune or select ttheconsequences are not just computational
but also statistical: poor generalization may be expecteghwising an insufficiently deep architecture for
representing some functions.

We consider the case of fixed-dimension inputs, where thegpatetion performed by the machine can be
represented by a directed acyclic graph where each noderperfa computation that is the application of
a function on its inputs, each of which is the output of anoti@de in the graph or one of the external
inputs to the graph. The whole graph can be viewed eiscait that computes a function applied to the
external inputs. When the set of functions allowed for thepotation nodes is limited tlogic gates such
as{ AND, OR, NOT}, this is a boolean circuit, dogic circuit.

Let us return to the notion of depth with more examples of is@ctures of different depths. Consider the
function f(z) = x *x sin(a * = 4+ b). It can be expressed as the composition of simple operasiotis as
addition, subtraction, multiplication, and tki operation, as illustrated in Figure 2. In the example, there
would be a different node for the multiplicatian« = and for the final multiplication by. Each node in
the graph is associated with an output value obtained byyapsome function on input values that are

output

element
set

on
on

On

inputs

Figure 2. Examples of functions represented by a graph ofpctations, where each node is taken in
some set of allowed computations. Left: the elements{arer,sin} U R. The architecture computes
xxsin(a*xx+b) and has depth 4. Right: the elements are artificial neurampatingf (z) = tanh(b+w'z);
each element in the set has a differ@intb) parameter. The architecture is a multi-layer neural netvabr
depth 3.

the outputs of other nodes of the graph. For example, in & loigiuit each node can compute a boolean
function taken from a small set of boolean functions. Thebras a whole has input nodes and output nodes
and computes a function from input to output. Tdepth of an architecture is the maximum length of a path
from any input of the graph to any output of the graph, i.e. iencase of * sin(a * = + b) in Figure 2.

¢ If we include affine operations and sigmoids in the set of cotafonal elements, linear regression
and logistic regression have depth 1, i.e., have a sing&.lev

e When we put a fixed kernel computatidf(u, v) in the set of allowed operations, along with affine
operations, kernel machines (Scholkopf, Burges, & Sni#&89a) with a fixed kernel can be consid-
ered to have two levels. The first level has one element cangii(zx, ;) for each prototype; (a
selected representative training example) and matchespghéevectorx with the prototypes:;. The
second level performs a linear combinati®r o; K (x, z;) to associate the matching prototypes
with the expected response.

e When we put artificial neurons (affine transformation follmhby a non-linearity) in our set of el-
ements, we obtain ordinary multi-layer neural networksrielhart et al., 1986a). With the most
common choice of one hidden layer, they also have depth tveohidden layer and the output layer).

e Decision trees can also be seen as having two levels, asdetin Section 3.3.

e Boosting (Freund & Schapire, 1996) usually adds one levigtbase learners: that level computes a
vote or linear combination of the outputs of the base leatner

e Stacking (Wolpert, 1992) is another meta-learning alganithat adds one level.

e Based on current knowledge of brain anatomy (Serre, Kreirdanh, Cadieu, Knoblich, & Poggio,
2007), it appears that the cortex can be seen as a deep eretdtes.g., consider the many so-called
layers in the visual system.

Although depth depends on the choice of the set of allowedpetations for each element, theoretical
results suggest that it is not the absolute number of lehealsrhatters, but the number of levels relative to
how many are required to represent efficiently the targettfan (with some choice of set of computational
elements). As we will describe, if a function can be compaapresented witlk levels using a particular

choice of computational element set, it might require a hugaber of computational elements to represent
it with £ — 1 or less levels (using that same computational element set).

The most formal arguments about the power of deep archiescttome from investigations into computa-
tional complexity of circuits. The basic conclusion thaggb results suggest is thalien a function can be
compactly represented by a deep architecture, it might r@eeery large architecture to be represented by
an insufficiently deep one

A two-layer circuit of logic gates can represent any bool&arction (Mendelson, 1997). Any boolean
function can be written as a sum of products (disjunctivearrarform: AND gates on the first layer with
optional negation of inputs, and OR gate on the second layea) product of sums (conjunctive normal
form: OR gates on the first layer with optional negation oflitgp and AND gate on the second layer). To
understand the limitations of shallow architectures, tre fimportant result to consider is that with depth-
two logical circuits, most boolean functions requireeponentiahumber of logic gates (Wegener, 1987)
to be represented (with respect to input size).

Furthermore, there are functions computable with a polyinbsize logic gates circuit of depththat require
exponential size when restricted to depth- 1 (Hastad, 1986). The proof of this theorem relies on earlier
results (Yao, 1985) showing thdtbit parity circuits of depth 2 have exponential siZ€he d-bit parity
function is defined as usual:

Lif Y20, b; is even

o d
parity : (b1,...,bq) € {0,1}¢ — { o dTE e

One might wonder whether these computational complexgylts for boolean circuits are relevant to ma-
chine learning. See Orponen (1994) for an early survey dafrtitecal results in computational complexity
relevant to learning algorithms. Interestingly, many of tiesults for boolean circuits can be generalized
to architectures whose computational elementsliasar threshold units (also known as artificial neu-
rons (McCulloch & Pitts, 1943)), which compute

f(@) = Lyratb>0 (1)

with parameterss andb. Thefan-in of a circuit is the maximum number of inputs of a particulamaént.
Circuits are often organized in layers, like multi-layeured networks, where elements in a layer only take
their input from elements in the previous layer(s), and ttst kayer is the neural network input. Thizeof

a circuit is the number of its computational elements (ediclg input elements, which do not perform any
computation).

One might argue that the limitations of logic gates circuitight not apply to the kind of architectures
found in machine learning algorithms. With that in mindsiimteresting to note that similar theorems were
proved for circuits of linear threshold units, which are tioenputational elements of some multi-layer neural
networks. Of particular interest is the following theoremhich applies tanonotone weighted threshold
circuits (i.e. multi-layer neural networks with linear thresholdtarand positive weights) when trying to
represent a function compactly representable with a deptfcuit:

Theorem 2.1. A monotone weighted threshold circuit of depth- 1 computing a functiorf, € Fj, y has
size at lease" for some constant > 0 and N > N, (Hastad & Goldmann, 1991).

The class of functiong}, v is defined as follows. It contains functions®f*~2 variables each defined by
a depthk circuit that is a tree. At the leaves of the tree there are gateel input variables, and the function
value is at the root. Theth level from the bottom consists of AND gates whiga even and OR gates when
i is odd. The fan-in at the top and bottom leveNsand at all other levels it i&/2.

The above results do not prove that other classes of fure{guch as those we want to learn to perform
Al tasks) require deep architectures, nor that these detnraned limitations apply to other types of circuits.
However, these theoretical results beg the question: ardepth 1, 2 and 3 architectures (typically found
in most machine learning algorithms) too shallow to repméeséiciently more complicated functions? Re-
sults such as the above theorem also suggesttireg might be no universally right depthach function

(i.e. each task) might require a particular minimum deptin & given set of computational elements). We
should therefore strive to develop learning algorithmg tls# the data to determine the depth of the final
architecture.

Depth of architecture is connected to the notion of highdyying functions. We argue that, in general, deep
architectures can compactly represent highly-varyingfions which would otherwise require a very large
size to be represented with an inappropriate architectfe say that a function ikighly-varying when

a piecewise approximation (e.g., piecewise-constant@gepvise-linear) of that function would require a
large number of pieces. A deep architecture is a compogitionany operations, and it could in any case
be represented by a possibly very large depth-2 architeciline composition of computational units in a
small but deep circuit can actually be seen as an efficietdtfiaation of a large but shallow circuit. Reor-
ganizing the way in which computational units are composediave a drastic effect on the efficiency of
representation size. For example, whereas the polyndrila Z;”:l a;;x; can be represented efficiently
as a product of sums, with only(mn) computational elements, it would be very inefficiently regented
with a sum of product architecture, requiri@gn™) computational elements.

Further examples suggesting greater expressive poweregf aiehitectures and their potential for Al and
machine learning are also discussed in Bengio and Le Curi7j23nh earlier discussion of the expected
advantages of deeper architectures in a more cognitivpgetige is found in Utgoff and Stracuzzi (2002).
Having established some theoretical grounds justifyiegtded for learning deep architectures, we next turn
to a related question: deep architectures can represerlyhigrying functions compactly, with less com-
putational elements than there are variations in the repted function, but many state-of-the-art machine
learning algorithms do not have that characteristic.

To conclude, a number of computational complexity resuitsgly suggest that functions that can be com-
pactly represented with a deptharchitecture could require a very large number of elementsder to be
represented by a shallower architecture. Since each etavh#me architecture might have to be selected,
i.e., learned, using examples, these results mean that déptchitecture can be very important from the
point of view a statistical efficiency.

3 Local vs Non-Local Generalization: the Limits of Matching Local
Templates

This section focuses on the locality of estimators in margllstv architectures, which gives rise to poor
generalization when trying to learn highly-varying fumets. This is because highly-varying functions,
which can sometimes be represented efficiently with dedptaatures, cannot be represented efficiently if
the learning algorithm is a local estimator.

A local estimator partitions the input space in regions (possibly in a softeathan hard way) and requires
different parameters or degrees of freedom to account épdtissible shape of the target function in each of
the regions. When many regions are necessary because ttiefis highly varying, the number of required
parameters will also be large, and thus the number of exanmgleded to achieve good generalization.

As an extreme example of a shallow and local architectunesider a disjunctive normal form (depth 2)
logic-gate circuit with all possibl@™ gates at the first level. TH&* possibilities come from the choice, for
each gate, of negating or not each of thimputs before applying the AND computation. Each such pebdu
is called aminterm. One can see such as circuit simply as a very large pattertheratMore generally, if
only a subset of the input variables is used in a particulaDAjdte, then that gate will respond to a larger
set of input patterns. The gate is then a template matcheralponds to patterns in a connected region of
input space, e.g. the subspace that is the set of vectaush thats; = 1, xo = 0 butzs andz, can take
any value.

More generally, architectures based on matching local kstepcan be thought of as having two levels. The
first level is made of a set of templates which can be matchéletanput. A template unit will output a
value that indicates the degree of matching. The secontdewsbines these values, typically with a simple

linear combination (an OR-like operation), in order tomstie the desired output. The prototypical example
of architectures based on maching local templates i&ehsel machine (Scholkopf et al., 1999a)

f(x) =b+20ziK(x,x7;), 2

whereb anda; form the second levekernel function K (x, z;) matches the input to the training example
x;, and the sum runs over all or a subset of the input patterrigedfaining set. In the above equatigiiz)
could be the discriminant function of a classifier, or thepotibf regression predictor. A kerneliecal, when

K (z,z;) > pistrue forz in some connected region around The size of that region can usually be con-
trolled by a hyper-parameter. An example of local kernehes®aussian kernél (z, ;) = e~ lle—zill*/o®
whereo controls the size of the region aroungd We can see the Gaussian kernel as computing a soft con-
junction, because it can be written as a product of one-déineal conditionsX (u, v) = [, e~ (wimv)?/o”

If |u; — v;|/o is small for alli, then the pattern matches ahdu, v) is large. If|u; — v;|/o is large for a
singlei, then there is no match ard(u, v) is small.

Well-known example of kernel machines include Support debtachines (SVMs) (Boser, Guyon, & Vap-
nik, 1992; Cortes & Vapnik, 1995) and Gaussian processekigWs & Rasmussen, 1996)for classifica-
tion and regression, but also classical non-parametrioileg algorithms for classification, regression and
density estimation, such as thenearest neighbor algorithm, Nadaraya-Watson or Parzedoms density
and regression estimators, etc. In Section 3.2 we disoassfold learning algorithmsuch as Isomap and
LLE that can also be seen as local kernel machines, as wallated semi-supervised learning algorithms
also based on the construction ohaighborhood graph (with one node per example and arcs between
neighboring examples).

Kernel machines with a local kernel yield generalizatiorelploiting what could be called trenoothness
prior : the assumption that the target function is smooth or canddieapproximated with a smooth function.
For example, in supervised learning, if we have the traiexemplez;, y;), then it makes sense to construct
a predictorf (x) which will output something close tg whenz is close tar;. Note how this prior requires
defining a notion of proximity in input space. This is a usedtibr, but one of the claims made in Bengio,
Delalleau, and Le Roux (2006) and Bengio and Le Cun (200Hasguch a prior if often insufficient to
generalize when the target function is highly-varying ipuhspace (according to the notion of proximity
embedded in the prior or kernel). Consider that most kewmsdsl in practice can be seen as a dot productin
a feature spaceX (x, z;) = ¢(x) - ¢(x;), where generally(z) is a non-linear transformation of the input
x into a high-dimensiondeature space A good feature space would be one where the target fundion i
smooth when expressed in the feature space. One coulddhepefrrectly argue that if the target function is
highly varying in input space and in the kernel feature spidcaight simply be because we have not selected
the appropriate feature space. If our feature space dodmmetthat property, i.e. the approximatigr: y;
wheng(z) ~ ¢(x;) is only valid in a small region aroung{z;), then one will need many such regions to
cover the domain of interest. Unfortunately, at least asyntiaining examples will be needed as there are
regions necessary to cover the variations of interest itafgget function.

The limitations of a fixed generic kernel such as the Gaudsganel have motivated a lot of research in
designing kernelbased on prior knowledge about the task (Jaakkola & Hayd@8; Scholkopf, Mika,
Burges, Knirsch, Muller, Ratsch, & Smola, 1999b; Gart2003; Cortes, Haffner, & Mohri, 2004). How-
ever, if we lack sufficient prior knowledge for designing gpeopriate kernel, can we learn it? this ques-
tion also motivated much research (Lanckriet, Cristignartlett, EI Gahoui, & Jordan, 2002; Wang &
Luk Chan, 2002; Cristianini, Shawe-Taylor, Elisseeff, &ritmla, 2002), and deep architectures can be
viewed as a promising development in this direction. It hasrbshown that a Gaussian Process kernel
machine can be improved using a Deep Belief Network to ledsature space (Salakhutdinov & Hinton,
2008): predictions are improved by using the top-level @gpntation instead of the raw input representa-
tion, and they are further improved by tuning the deep ndivt@minimize the prediction error made by

2In the Gaussian Process case, as in kernel regregiohin eq. 2 is the conditional expectation of the target vagablto predict,
given the inpute

the Gaussian process, using gradients of the prediction leack-propagated into the neural network. The
feature space can be seen as a representation of the dathrépoesentations make examples which share
abstract characteristics close to each other. Learnirggittigns for deep architectures can be seen as ways
to learn a good feature space for kernel machines.

In the next subsection we review theoretical results onithédtions of kernel machines with a Gaussian
kernel in the case of supervised learning, which show thateluired number of examples grows linearly
with the number of bumps in the target function to be learnkdsubsection 3.2 we present results of a
similar flavor for semi-supervised non-parametric leagrahgorithms, and in subsection 3.3 for decision
trees. We conclude in subsection 3.4 with a discussion omsleeof smoothness as a prior, and how it
can be made more powerful by extending the notion of compl@fia function, in the extreme case using
Kolmogorov complexity.

3.1 Theoretical Limitations of Local Kernels

Here we consider formal results about limitations of locadriel machines. The notion that local kernels
are insufficient to capture highly-varying functions isrf@lized in a few particular cases in Bengio et al.
(2006), Bengio and Le Cun (2007). One result is the following

Theorem 3.1. Suppose that the learning problem is such that in order tdeaghwith a Gaussian kernel
machine (eq. 2) a given error level for samples from a distiin P, f must change sign at lea2t times
along some straight line (i.e., in the case of a classifieyfficently good decision surface must be crossed
at least2k times by that straight line). Then the kernel machine musels least bases (non-zera;’s),

and hence at leagt training examples.

Class -1

decision surface

Class 1

Figure 3: The dotted line crosses the decision surface I&stimccording to Theorem 3.1, and in line with
intuition, one needs 10 Gaussians to learn it with an affimelgpation of Gaussians, with each Gaussian
capturing one of the bumps in the function.

This theorem says that we need as many examples as thereratéoxa (“bumps”) in the function that
we wish to represent with a Gaussian kernel machine. Adridlted in Figure 3, a function may have a

10

large number of variations (e.g. a sinusoidal) and yet beesgmtable much more compactly because these
variations are interdependent. It is conceivable that ferdift learning algorithm could take advantage of
the global regularity (repeating pattern) to learn it wiwfparameters (thus requiring few examples). By
contrast, with an affine combination of Gaussians, theordnin3plies one would need at ledsf | = 10
Gaussians. With a local estimator, it is plausible that nexamples will be needed to take care of new
instances of the repeating pattern in the curve. For contpkks in high dimension, the complexity of the
decision surface could quickly make learning impractichbw using a local kernel method. It could also
be argued that if the curve has many variations and thesatizars are not related to each other through
an underlying regularity, then no learning algorithm widl chuch better than local estimators. However,
it might be worth it to look for more compact representatiohshese variations, because if one could be
found, it would be likely to lead to better generalizatiospecially for variations not seen in the training set.
Of course this could only happen if there were underlyingitadties to be captured in the target function,
but these are the functions that we want to learn for Al.

A different type of variability is illustrated by the parifunction, where a small change in any direction in
input space corresponds to a large change in the desiredtoudtpthat case one can show (Bengio et al.,
2006) that the number of examples necessary with a Gaussraelkmachine is exponential in the input
dimension:

Theorem 3.2. Let f(z) = b+ Zf; «a; K, (x;, z) be an affine combination of Gaussians with same width
o centered on points; € {—1,1}% If f solves the parity problem, then there are at le2ést! non-zero
coefficientsy;.

Note that one way in which the parity function is not repreatve of the kind of functions we are more
interested in Al is that the target function does not depamthe order of the inputs. Also, parity can be
represented with a shallow neural network withd) units (andO(d?) parameters). This solution exploits
the fact that projecting the input vecteto the scalas = >, x; preserves the information that is necessary
to compute parity: it is enough to consider in whichief 1 intervalss falls to determine the correct answer,
andd threshold units are sufficient to achieve this.

Hence the theoretical results discussed in this sectiomarely suggestive but do not prove that the learning
algorithms for the functions that we need to represent fost#duld not be local estimators.

3.2 Unsupervised and Semi-Supervised Algorithms Based oreifjhborhood-Graph

Local estimators are found not only in supervised learniggrdthms such as those discussed above, but also
in unsupervised and semi-supervised learning algorittonshich we now turn. Here again, we find that in
order to cover the many possible variations in the functmhe learned, one needs a number of examples
proportional to the number of variations to be covered.

Unsupervised learningalgorithms attempt to capture characteristics of the impstribution. For exam-
ple, manifold learning algorithms attempt to discover a lower-dimensional regiear which the density
concentrates. There is a connection between kernel machieh as SVMs and Gaussian processes and
a number of unsupervised and semi-supervised learningitlgs: many of these unsupervised and semi-
supervised algorithms can be expressed as kernel machities warticular kernel, one that is possibly
data-dependent (Bengio, Delalleau, Le Roux, Paiementevifh & Ouimet, 2004). The following unsuper-
vised learning algorithms, included in this analysis,rafieto capture the manifold structure of the data by
capturing its local changes in shape: Locally Linear EmioagiRoweis & Saul, 2000), Isomap (Tenen-
baum, de Silva, & Langford, 2000), kernel Principal CompaseAnalysis (Scholkopf, Smola, & Miller,
1998) (or kernel PCA) Laplacian Eigenmaps (Belkin & Niyog@03), Manifold Charting (Brand, 2003),
and spectral clustering algorithms (see Weiss (1999) ferv&ew). Several non-parametric semi-supervised
learning algorithms are based on similar concepts, inugltihe use of a kernel (Zhu, Ghahramani, & Laf-
ferty, 2003; Zhou, Bousquet, Navin Lal, Weston, & ScholkdiD04; Belkin, Matveeva, & Niyogi, 2004;
Delalleau, Bengio, & Le Roux, 2005).

11

Most of these unsupervised and semi-supervised algoritblypsn theneighborhood graph a graph with
one node per example and arcs between near neighbors. Téteogwee want to discuss here is whether the
above non-parametric algorithms are likely to suffer fréva same limitations already discussed for local
kernel machines for classification or regression in theipre/section. With these algorithms, one can get
geometric intuition of what they are doing, as well as hownbe local estimators can hinder them. This
is illustrated with the example in Figure 4 in the case of f@dilearning. The issue is related to the curse
of dimensionality: to cover all the variations with localigear patches, a lot of patches might be necessary,
and enough examples in each patch to characterize its stegbe tangent plane at the patch location.

4

raw input vector space

Figure 4: The set of images associated with the same objst &brms a manifold, i.e. a region of lower

dimension than the original space of images. By rotatiramdiating, or shrinking an image, e.g., of digit 4,

we get other images of the same class, i.e. on the same nthr8ioke the manifold is locally smooth, it can

in principle be approximated locally by linear patches helaging tangent to the manifold. Unfortunately, if

the manifold is highly curved, the patches are required terball, and exponentially many might be needed
with respect to manifold dimension.

Similar limitations have been proved for a large class ofissupervised learning algorithms also based on
the neighborhood graph (Zhu et al., 2003; Zhou et al., 20@kiBet al., 2004; Delalleau et al., 2005). These
algorithms partition the neighborhood graph in regionsaristant label. It can be shown that the number
of regions with constant label cannot be greater than thebeniwf labeled examples (Bengio et al., 2006).
Hence one needs at least as many labeled examples as theegiatiens of interest for the classification.
This can be prohibitive if the decision surface of interest b very large number of variations.

3.3 Decision Trees Do not Generalize to New Variations

Decision trees are among the best studied learning algusitiBecause they can focus on specific subsets
of input variables, at first blush they seem non-local. Hmvethey are also local estimators in the sense of
relying on a partition of the input space and using separatarpeters for each region (Bengio, Delalleau,
& Simard, 2007). As we argue here, this means that they afsergtom the limitation discussed for other
non-parametric learning algorithms in the previous sestithey need at least as many training examples as
there are variations of interest in the target function, fuwegf cannot generalize to new variations not covered
in the training set.

As illustrated in Figure 5, a decision tree recursively fiarts the input space and assigns an output value
for each of the input regions in that partition. Learningaaithms for decision trees (Breiman, Friedman,
Olshen, & Stone, 1984) are non-parametric and involve agumvex optimization to choose a tree structure
and parameters associated with nodes and leaves. Folymggeedy heuristics that build the tree incre-
mentally have been found to work well. Each node of the treeesponds to a region of the input space,

12

ﬂ\ x1<0.5 x1<1.25

4N

R5
R4

R1

125

R2

R3

x1

Figure 5: A decision tree recursively partitions the inaace. In a binary tree, the root node splits it in two.
Each node is associated with a region. An output value isézhfor each leaf node region.

and the root is associated with the whole input space. Wecoalitant-leaves decision treéthe common
type) one where the whole tree corresponds to a piece-wisgtanat function where the pieces are defined
by the internal decision nodes: each leaf is associated avighpiece, along with a constant to output in
the associated region. The decision nodes on the path frenotit to a leaf define one of the mutually
exclusive regions formed by the decision tree. Like in autlisjive normal form circuit or a Gaussian kernel
machine, the outputs of decision nodes are multiplied and Boconjunction: an example has to satisfy all
the conditions to belong to a leaf region. The decision nddes the first level of the architecture. The
predictions associated with the leaves, along with theiapeters, form the second level of the architecture.
Bengio et al. (2007) study fundamental limitations of diegigrees concerning their inability generalize

to variations not seen in the training seThe basic argument is that a decision tree needs a sepaahte |
node to properly model each such variation, and at least ra@irtg example for each leaf node. That
theoretical analysis is built along lines similar to ideapleited previously in the computational complexity
literature (Cucker & Grigoriev, 1999). These results asoah line with previous empirical results (Pérez
& Rendell, 1996; Vilalta, Blix, & Rendell, 1997) showing thilne generalization performance of decision
trees degrades when the number of variations in the targetifun increases.

The following results are taken from Bengio et al. (2007).

Proposition 3.3. Let F be the set of piece-wise constant functions. Consider atdunctionh : R? —

R. For a given representation error leve] let N be the minimum number of constant pieces required to
approximate, with a function iff, the target functiork with an error less thar. Then to train a constant-
leaves decision tree with error less thaone requires at leas¥ training examples.

The above proposition states that the number of exampletedegows linearly with the number of regions
needed to achieve a desired error level. The theorem beltessa more specific result in the case of a
family of function for which the number of needed regionsip@nential in the input size.

13

Partition 3 .
' Partition 2

Figure 6: Whereas a single tree can discriminate among a @unfibegions linear in the number of parame-
ters (leaves), an ensemble of trees can discriminate amouagnber of regions exponential in the number of
trees, i.e. exponential in the total number of parametétsdat as long as the number of trees is less or equal
to the number of inputs). Each distinguishable region is@ased with one of the leaves of each tree (here
there are 3 trees, each defining 2 regions, for a total of ©onsji This is equivalent to a multi-clustering,
here 3 clusterings each associated with 2 regions. A bindRBM is a multi-clustering with 2 linearly
separated regions per partition (each associated with whakein unit). A multi-clustering is therefore a
distributed representation of the input pattern.

Theorem 3.4. On the task of learning thé-bit parity function, a constant-leaves decision tree vetis-
aligned decision nodes will require at least(1 — 2¢) examples in order to achieve a generalization error
less than or equal te.

Ensembles of trees (like boosted trees (Freund & Schaf@6)]1 and forests (Ho, 1995; Breiman, 2001))
are more powerful than a single tree. They add a third levétecarchitecture which allows the model to
discriminate among a humber of regiossponential in the number of parametéBengio et al., 2007).
As illustrated in Figure 6, they implicitly form distributed representatiofa notion discussed further in
Section 4) with the output of all the trees in the forest. Efneb in an ensemble can be associated with a
discrete symbol identifying the leaf/region in which thein example falls for that tree. The description of
an input pattern with the identities of the leaf nodes forttlees is very rich: it can represent a very large
number of possible patterns, because the number of intemse®f the leaf regions associated with the
trees can be exponentialin Since a deptlt — 1 architecture might be very inefficient to represent a depth
k function, it might be interesting to explore learning aitfuns based upon decision trees in which the
architecture depth is even greater than in ensembles af tree

3.4 Smoothness versus Kolmogorov Complexity

To escape the curse of dimensionality, it is necessary te hanodel that can capture a large number of
variations that can occur in the data without having to emateeall of them. Instead, a compact representa-
tion that captures most of these variations has to be disedvwy the learning algorithm. Here “compact”
means that itould beencoded with a few bits.

The notion of local estimator is connected to the notion obsthness and smoothness priors introduced
at the beginning of Section 3. Smoothness as a measure ity a useful way to control general-
ization, but others are possible, and probably more ddsirdbor example, consider a target function is
highly-varying with a number of variations much larger titha number of training examples one can hope
to get. A deep architecture could potentially represenh sutunction with a small number of parameters
(comparable to the number of training examples one could fatne discovers such a compact represen-
tation of the target function, then a form of compression lesn achieved. This is likely to yield good

14

generalization (Solomonoff, 1964; Kolmogorov, 1965; Li &tahyi, 1997; Hutter, 2005) because of Oc-
cam’s Razor. Maybe the most extreme and general way to me#saircompression is with Kolmogorov
complexity. TheKolmogorov complexity is the length of the smallest string that represents thdisalun
some programming language. Using a different languageaxhdig a constant to the string length (for the
code that translates strings in one language to stringsathan). It is clear that many functions expressible
with a very short string can be highly varying, such as thesexample of Figure 3. Learning theory (Vap-
nik, 1995; Li & Vitanyi, 1997) shows that if a compact destigp can be found to summarize the training
set, good generalization is to be expected.

The main advantage of smoothness expressed through a keroelariance function (in Gaussian pro-
cesses) is that the optimization problem involved in therlizgy algorithm can be convex, i.e. devoid of lo-
cal minima and hence easy to solve. Kolmogorov complexihoiseven computable, but it can be bounded
from above. Upper bounds on Kolmogorov complexity can béntped. Our thesis is that deep archi-
tectures can represent many functions compactly, andtbatdpproximate optimization might yield very
good solutions even if the global optimum is not found: anltson that is more compact than previous
ones brings a gain in generalization. Minimum Descripti@mgith (Rissanen, 1990) and its variants such
as Minimum Message Length (Wallace & Boulton, 1968) alsothigeprinciple in the context of random
variables with many realizations: a good predictive moitetdrms of out-of-sample log-likelihood) is also
one that can assign a short code to each exampleyerageincluding not only the bits to describe each
example but also the bits necessary to describe the modHl its

What can be concluded from our analysis of limitations ofri@zg algorithms due to insufficient depth
and local estimation? In either case, insufficient depttocall estimator, we found that one might need to
represent the target function with a very large number odllm elements, and thus one would need a very
large number of examples. On the other hand, if a representaxists that can compactly represent the
target function, then good generalization could be obthinem a number of examples much smaller than
the number of variations of the target function. An impottidea that gives hope of compactly representing
a very large number of configurations is the idea of distebutepresentation, discussed next, and which
introduces the second part of this paper, about learnirgyitthgns for deep architectures.

4 Learning Distributed Representations

An old idea in machine learning and neural networks reseastiich could be of help in dealing with
the curse of dimensionality and the limitations of local getization is that offistributed representa-
tions (Hinton, 1986; Rumelhart, McClelland, & the PDP Researchuptr 1986b; Bengio, Ducharme, &
Vincent, 2001). A cartoofocal representationfor integersi € {1,2,..., N} is a vectorr(i) of N bits
with a single 1 andV — 1 zeros,r;(i) = 1,—;, called theone-hotrepresentation of. A distributed repre-
sentation for the same integer is a vectotagf, IV bits, which is a much more compact way to repregent
For the same number of possible configurations, a distritngeresentation can potentially be exponentially
more compact than a very local one. In practice, we use legabsentations which are continuous-valued
vectors where théth element varies according to some distance between phue &nd a prototype or re-
gion center, as with the Gaussian kernel discussed in ®e8tidn a distributed representation the input
pattern is represented by a set of features that are not tyuex@lusive, and might even be statistically
independent. For example, clustering algorithms do nddlaudistributed representation since the clusters
are essentially mutually exclusive, whereas Independenigonents Analysis (Bell & Sejnowski, 1995;
Pearlmutter & Parra, 1996) and Principal Components AimtysPCA (Hotelling, 1933) build a distributed
representation.

Consider a discrete distributed representatior) for an input patterne, wherer;(z) € {0,1,... M},

i € {1,...,N}. Eachr;(z) can be seen as a classificatiornofto M classes. Each;(z) partitions the
x-space inM regions, but the different partitions can be combined te gise to a potentially exponential
number of possible regions ir-space, corresponding to different configurations,;¢f). Note that some
configurations may be impossible because they are incobi@afior example, in language modeling, a local

15

representation of a word could directly encode its ideftjtan index in the vocabulary table, or equivalently
a one-hot code with as many entries as the vocabulary sizéhéother hand, a distributed representation
could represent the word by a number of syntactic features, (distribution over parts of speech it can
have), morphological features (which suffix or prefix dodsaite?), and semantic features (is it the name of
a kind of animal?). Like in clustering, we construct diserelasses, but the potential number of combined
classes is huge: we obtain what we calnalti-clustering. Whereas clustering forms a single partition
and generally involves a loss of information about the inpumulti-clustering provides setof separate
partitions of the input space. Identifying to which regidreach partition the input example belongs forms
a description of the input pattern which might be very ricbsgibly not losing any information. The tuple
of symbols specifying to which region of each partition thput belongs can be seen as a transformation of
the input into a new space, where the statistical structiitieeodata and the factors of variation in it could
be disentangled. This corresponds to the kind of partitfortrspace that an ensemble of trees can represent,
as discussed in the previous section.

In the realm of supervised learning, multi-layer neuraloeks (Rumelhart et al., 1986b, 1986a) and Boltz-
mann machines (Ackley, Hinton, & Sejnowski, 1985) have be¢ttoduced with the goal of learning dis-
tributed internal representations in the hidden layerdikgrin the linguistic example above, the objective
is to let learning algorithms discover the features that pose the distributed representation. In a multi-
layer neural network with more than one hidden layer, theeesaveral representations, one at each layer.
Learning multiple levels of distributed representatiamsives a challenging optimization problem, which
is central in the remainder of this paper.

5 Learning Deep Architectures: a Difficult Optimization Problem

After having motivated the need for deep architectures déinatnon-local estimators, we now turn to the
difficult problem of training them. Experimental evidencgygests that training deep architectures involves
optimization problems that are more difficult than thoseolagd in training shallow architectures (Bengio
et al., 2007). Much of that evidence comes from researcheamitig multi-layer neural networks, suggesting
that training gets stuck in local minima or plateaus, withrseoresults than with neural networks with one
or two hidden layers.

A typical set of equations for multi-layer neural networgghe following. As illustrated in Figure 7, layer

£ computes an output vectey using the output,_; of the previous layer, starting with the inpa,

Zy = tanh(bg + Wngfl) 3)

with parameters, (the biases) antd/, (the weights). Theanh can be replaced bygm(z) = 1/(14e7%) =
%(tanh(x) +1). The top layer output, is used for making a prediction and is combined with a sugetvi
targety into a loss functior.(zy,, y), typically convex. The output layer might have a non-liriyadifferent
from tanh, e.g., the softmax

ebritWrizr 1

ZLi = Ej ebr;+Wrjzr 1)

whereW;,; is thei-th row of Wy, zz; is positive and) . z1; = 1. The softmax outputr; can be used as
estimator ofP(Y = i|z), with the interpretation that” = i is thei-th class associated with input pattern
z. In this case one often uses the negative conditional kagiioodL (=1, y) = —log 21, as a loss, whose
expected value ovér, y) pairs is to be minimized.

Deep architectures have not been studied much in the maeairmeng literature, because of the difficulty in
optimizing them (Bengio et al., 2007). Notable exceptiordudeconvolutional neural networks (LeCun
etal., 1989; LeCun etal., 1998b; Simard & Platt, 2003; Remetal., 2007), and Sigmoidal Belief Networks
using variational approximations (Dayan, Hinton, Neal, &2el, 1995; Hinton, Dayan, Frey, & Neal, 1995;
Saul, Jaakkola, & Jordan, 1996; Titov & Henderson, 2007 yaare recently Deep Belief Networks (Hinton
et al., 2006; Bengio et al., 2007). Many unreported negatbgervations as well as the experimental results

16

© v

OO00OOO0) hw

OOOPOOth
N

COOOO0C0D) hi

A

QO000) «

Figure 7: Multi-layer neural network, typically used in gupised learning to make a prediction or classifica-
tion, through a series of layers each of which combines ameadiperation and a non-linearity. Computations
are performed in a feedforward way from the inputhrough the hidden layefrs;, to the network outpuj,
which gets compared with a labgto obtain the losd.(¢, y) to be minimized.

in Bengio et al. (2007) suggest that gradient-based trgiafrdeep supervised multi-layer neural networks
gets stuck in local minima or plateaus. These appear togmorel to poor solutions that perform worse than
the solutions obtained for networks with 1 or 2 hidden layéfke experiments reported in Bengio et al.
(2007) also help to disantangle the effect of poor optinidratvith the effect of overfitting. They reveal
that in a gradient-trained deep supervised neural netwdttk andom parameter initialization, the lower
layers (closer to inputs) are poorly optimized. Indeed, wevkthat a two-layer network can be well trained
in general, and that from the point of view of the top two laygr a deep network, they form a shallow
network whose input is the output of the lower layers. If the layers have enough capacity (enough hidden
units) this can be sufficient to bring training error very Jdat this yields worse generalization than shallow
neural networks. On the other hand, with better initialaatof the lower hidden layers, both training
and generalization error can be very low. In a well-trainedmneural network, the hidden layers form a
“good” representation of the data, which helps to make gaediptions. When the lower layers are poorly
initialized, these deterministic and continuous represt@ns generally keep most of the information about
the input, but these representations might hurt rather tiedmthe top layers to perform classification. It is
simple to obtain very smaltaining error by simply increasing the capacity of the top layer(s). Famagle,
optimizing the last layer of a deep neural network is usualipnvex optimization problem. Optimizing the
last two layers, although not convex, is known to be mucheedban optimizing a deep network. Hence,
what matters for good generalization, and is more diffiésithe optimization of the lower layers (excluding
the last one or two). These are the layers that can give riagtmd representation of the input, in the sense
that better generalization can be achieved from theseseptations. We believe that good representations
capture the factors of variation in the input space and denthngle them.

Although replacing the top two layers of a deep neural netvimyra convex machine such as a Gaussian
process or an SVM can yield some improvements (Bengio & Le €087), especially on the training error,

it won’t help much in terms of generalization if the lower ¢éag have not been sufficiently optimized.

The above clues suggest that the gradient propagated batkivdo the lower layer is not sufficient to
move the parameters into regions corresponding to goodiaatu Basically the optimization gets stuck
in a poor local minimum or plateau (i.e. small gradient). ceimgradient-based training of the top layers
works reasonably well, it appears that the gradient becdesssinformative about the required changes
in the parameters as we move towards the lower layers. Thiylet imle some connection between this

17

difficulty in exploiting the gradient and the difficulty indining recurrent neural networks through long
sequences, analyzed in (Hochreiter, 1991; Bengio, Singafetasconi, 1994; Lin, Horne, Tino, & Giles,
1995). In recurrent neural networks, the difficulty can lzzéd to a vanishing (or sometimes explosion)
of the gradient propagated through many non-linearitieserg& is an additional difficulty in the case of
recurrent neural networks, due to a mismatch between siontand long-term components of the gradient.

5.1 Convolutional Neural Networks

Although deep neural networks were generally found toodtiffito train well, there is one notable excep-
tion: convolutional neural networks. Convolutional neerevinspired by the visual system’s structure, and
in particular by the models of it proposed by Hubel and Wi€s862). The first computational models based
on these local connectivities between neurons and on blacally organized transformations of the image
are found in Fukushima’s Neocognitron (Fukushima, 198@)h& recognized, when neurons with the same
parameters are applied on patches of the previous layeffetadit locations, a form of translational invari-
ance is obtained. Later, LeCun followed-up on this idea amideéd such networks using the error gradient,
obtaining and maintaining state-of-the-art performarice€un et al., 1989; LeCun et al., 1998b) on several
vision tasks. Modern understanding of the physiology ofvilsaal system is consistent with the processing
style found convolutional networks (Serre et al., 2007)east for the quick recognition of objects, i.e.,
without the benefit of attention and top-down feedback cotioes. To this day, vision systems based on
convolutional neural networks are among the best perfagmirstems. This has been shown clearly for
handwritten character recognition (LeCun et al., 1998hjctvhas served as a machine learning benchmark
for many years.

Concerning our discussion of training deep architecthiesgtcample of convolutional neural networks (Le-
Cunetal., 1989; LeCun et al., 1998b; Simard & Platt, 20031243¢0 et al., 2007) is interesting because they
typically have five, six or seven layers, a number of layer&ctvimakes fully-connected neural networks
almost impossible to optimize properly when initializethdamly. What is particular in their architecture
that might explain their good generalization performamcasion tasks?

LeCun’s convolutional neural networks are organized iretayof two types: convolutional layers and sub-
sampling layers. Each layer hasapographic structure, i.e., each neuron is associated with a fixed two-
dimensional position that corresponds to a location intipeiiimage, along with a receptive field (the region
of the input image that influences the response of the neuing@ach location of each layer, there are a
number of different neurons, each with its set of weightspamted with neurons in a rectangular patch in
the previous layer. The same set of weights, but with a diffemput rectangular patch, is associated with
neurons at different locations.

One untested hypothesis is that the small fan-in of thesensiffew inputs per neuron) allows gradients to
propagate through so many layers without diffusing so msdio #ecome useless. That would be consistent
with the idea that gradients propagated through many patiduglly become too diffuse, i.e., the credit
or blame for the output error is distributed too widely andhith Another hypothesis (which does not
necessarily exclude the first) is that the hierarchicalllooanectivity structure is a very strong prior that is
particularly appropriate for vision tasks, and sets thapesters of the whole network in a favorable region
(with all non-connections corresponding to zero weightyrfrwhich gradient-based optimization works
well. The fact is that even wittandom weightén the first layers, a convolutional neural networks perferm
well (Ranzato, Huang, Boureau, & LeCun, 2007), i.e., bdtian a trained fully connected neural network
but worse than a fully optimized convolutional neural nativo

3Maybe too many years? It is good that the field is moving towarbre ambitious benchmarks, such as those introduced
in Larochelle, Erhan, Courville, Bergstra, and Bengio (200

18

5.2 Autoassociators

Some of the deep architectures discussed below (Deep B&isfand stacked autoassociators) exploit as
component or monitoring device a particular type of neustivork: the autoassociator, also called auto-
encoder, or Diabolo network (Rumelhart et al., 1986a; Bardri& Kamp, 1988; Hinton & Zemel, 1994;
Schwenk & Milgram, 1995; Japkowicz, Hanson, & Gluck, 2000here are also connections between the
autoassociator and RBMs discussed in Section 7. Becaus@etran autoassociator seems easier than
training a deep network, they have been used as building®lactrain deep networks, where each level is
associated with an autoassociator that can be trainedatelyar
An autoassociator is trained to encode the input in somesepitation so that the input can be reconstructed
from that representation. Hence the target output is thatiitgelf. If there is one linear hidden layer and the
mean squared error criterion is used to train the netwodq thek hidden units learn to project the input
in the span of the firsk principal components of the data (Bourlard & Kamp, 1988)th# hidden layer
is non-linear, the autoassociator behaves very diffeydéram PCA, with the ability to capture multi-modal
aspects of the input distribution (Japkowicz et al., 200D)e formulation that we prefer generalizes the
mean squared error criterion to the minimization of the tiegdog-likelihood of the reconstruction, given
the encoding:(x):

RE = —log P(x|c(x)). (5)

For example, if the inputs; are either binary or considered to be binomial probabdjtitnen the loss
function would be

—log P(zc(z)) = — va log fi(c(x)) + (1 — =) log(1 — fi(c(x))) (6)

where f(c(z)) is the output of the network, and in this case should be a veftoumbers in(0, 1), e.g.,
obtained with a sigmoid. The hope is th#t) is a distributed representation that captures the mainfact
of variation in the data.

One serious issue with this approach is that if there is nerotlnstraint, then an autoassociator with
n-dimensional input and an encoding of dimension greaterqoakton could potentially just learn the
identity function, for which many encodings would be uselésg., just copying the input). Surprisingly,
experiments reported in (Bengio et al., 2007) suggest thatdactice, when trained with stochastic gradient
descent, autoassociators with more hidden units thansngatd useful representations (in the sense of
classification error measured on a network taking this sepr&tion in input). A simple explanation is based
on the observation that stochastic gradient descent with s@pping is similar to a2 regularization of
the parameters (Collobert & Bengio, 2004). To achieve perconstruction of continuous inputs, a one-
hidden layer autoassociator with non-linear hidden ureeds very small weights in the first layer (to bring
the non-linearity of the hidden units in their linear regjraad very large weights in the second layer. With
binary inputs, very large and very small weights are alsalade¢o completely minimize the reconstruction
error. Since the implicit or explicit regularization makieglifficult to reach large-weight solutions, the
optimization algorithm find encodings which only work welirfexamples similar to those in the training
set, which is what we want. It means that the representagiexploiting statistical regularities present in
the training set, rather than learning to approximate tkeatity through a function and its inverse.

Instead or in addition to constraining the encoding by expbr implicit regularization, one strategy is
to add noise in the encoding. This is essentially what RBMsagdowe will see later. Another strategy,
which was found very successful (Olshausen & Field, 199%; Balcan, & Lewicki, 2006; Ranzato et al.,
2007; Ranzato & LeCun, 2007; Ranzato, Boureau, & LeCun, R@98ased on a sparsity constraint on the
code. Interestingly, these approaches give rise to weigttovs that match well qualitatively the observed
receptive fields of neurons in V1, a major area of the mamnslalisystem. The question of sparsity is
discussed further in Section 13.2.

19

5.3 Unsupervised Learning as an Optimization Strategy

Another principle that has been found to help optimizingmeetworks is based on the use of unsupervised
learning to initialize each layer in the network. If gradiewith respect to a criterion defined at the output
layer become less useful as they are propagated backwdmigdolayers, it is reasonable to believe that an
unsupervised learning criterion defined at the level of glsitayer could be used to move its parameters in
a favorable direction. It would be reasonable to expectsittine single-layer learning algorithm discovered
a representation that captures statistical regularitighelayer’s input. PCA and most variants of ICA
seem inappropriate because they generally do not make isethgeso-calledvercomplete casgwhere the
number of outputs of the layer is is greater than the numbammits of the layer. This suggests looking in
the direction of extensions of ICA to deal with the overcoetplcase (Lewicki & Sejnowski, 1998; Hinton,
Welling, Teh, & Osindero, 2001; Teh, Welling, Osindero, &nittin, 2003), as well as algorithms related
to PCA and ICA, such as autoassociators and RestrictedrBatia Machines, which can be applied in the
overcomplete case. Indeed, experiments performed wiethae-layer unsupervised learning algorithms
in the context of a multi-layer system confirm this idea (ldmet al., 2006; Bengio et al., 2007; Ranzato
etal., 2007).

In addition to the motivation that unsupervised learninglddelp reduce the dependency on the unreliable
update direction given by the gradient with respect to a siiged criterion, there is another motivation for
using unsupervised learning at each level of a deep arthiteclt could be a way to naturally decompose
the problem into sub-problems associated with differevelieof abstraction. We know that unsupervised
learning algorithms can extract salient information ahbibiet input distribution. This information can be
captured in a distributed representation, i.e., a set dfifea which encode the salient factors of variation
in the input. A one-layer unsupervised learning algorithould extract such salient features, but because
of the limited capacity of that layer, the features extrdaia the first level of the architecture can be seen
aslow-level features|t is conceivable that learning a second layer based onatime grinciple but taking

as input the features learned with the first layer could ektsghtly higher-level features In this way,
one could imagine that higher-level abstractions thatattarize the input could emerge. Note how in this
process all learning could remain local to each layer, foeeeside-stepping the issue of gradient diffusion
that might be hurting gradient-based learning of deep hewgtavorks, when we try to optimize a single
global criterion. This motivates the next section, wheregavenalize the concepts behind RBMs.

6 Energy-Based Models and Boltzmann Machines

Because Deep Belief Networks (DBNs) are based on Restrigséidmann Machines (RBMs), which are
particularenergy-based models/e introduce here the main mathematical concepts helpfuhtlerstand
them, includingContrastive DivergencéCD).

6.1 Energy-Based Models and Products of Experts

Energy-basedmodels associate a scalar energy to each configuration ofatiiebles of interest (LeCun

& Huang, 2005; LeCun, Chopra, Hadsell, Ranzato, & Huang62&&anzato, Boureau, Chopra, & LeCun,
2007). Learning corresponds to modifying that energy fimmcdo that its shape has desirable properties. For
example, we would like plausible or desirable configuraitmhave low energy. Energy-based probabilistic
models define a probability distribution through an energyction, as follows:

67Energy(a:)

P(z) = Z (7)
The normalizing facto¥ is called thepartition function by analogy with physical systems,
7 — Z efEnergy(a:) (8)

20

with a sum running over the input space, or an appropriaggiat whene is continuous.
In the products of expertsformulation (Hinton, 1999, 2002), the energy function isuansof terms, each
one associated with an “experf;:

Energy(z Z filx ©)

P(z) x= P;(x) x He_fi(‘”) (10)

Each expertP;(z) can thus be seen as a detector of |mplau5|ble configuratioms or equivalently, as
enforcing constraints om. This is clearer if we consider the special case whi(e) can only take two
values, one (small) corresponding to the case where théraomss satisfied, and one (large) corresponding
to the case where it is not. Hinton (1999) explains the acged of gproduct of expertdy opposition to
amixture of experts where the product of probabilities is replaced by a weiglsted of probabilities. To
simplify, assume that each expert corresponds to a contsthait can either be satisfied or not. In a mixture
model, the constraint associated with an expert is an itidicaf belonging to a region which excludes
the other regions. One advantage of the product of expentsulation is therefore that the set @f(x)
forms a distributed representation: instead of trying tdifi@n the space with one region per expert as in
mixture models, they partition the space according to a&llgbssible configurations (where each expert can
have its constraint violated or not). Hinton (1999) prombse algorithm for estimating the gradient of
log P(x) in eq. 10 with respect to parameters associated with eagriexsing a variant (Hinton, 2002) of
the Contrastive Divergence algorithm described below.

6.1.1 Introducing Hidden Variables

In many cases of interest, we do not observe the examipiy, or we want to introduce some non-observed

variables to increase the expressive power of the model. €soconsider an observed part (still denotd

and ahiddenparth

efEnergy(w,h)
7

and because only is observed, we care about the marginal

P(x,h) = (11)

e—Energy(m,h)

P(z) =) — (12)

In such cases, to map this formulation to one similar to eqvé jintroduce the notation (inspired from
physics) offree energy, defined as follows:

efFreeEnergy(:r)

Zw e—FreeEnergy(z)’

P(z) = (13)

with Z = 3" e~ FreeEnerey(z) j g
FreeEnergy(z) = — log Z e~ Energy(z,h) (14)
h
The data log-likelihood gradient then has a particulartgiiesting form. Let us introducgto represent
parameters of the model. Starting from eq. 13, we obtain

dlog P(x) _ OFreeEnergy(x Z _FreeEnergy(7) OFreeEnergy ()
00 06 7 00

_ 8FreeEnergy Z Pl 8FreeEnergy()

" (15)

21

Hence the average log-likelihood gradient is

Olog P(x OFrecEnergy(z OFrecEnergy(x
Eﬁ){ %9()} :_Eﬁ{ i 8y()} +EP{ n gy ()] (16)

where P denotes the training set empirical distribution afigd denotes expected value under the model's
distribution P. Therefore, if we could sample frof and compute the free energy tractably, we would have
a Monte-Carlo way to obtain a stochastic estimator of thdilegihood gradient.

If the energy can be written as a sum of terms associated aith leidden unit (or to none)

Energy(z, h))+ Z% (z, hy) a7

a condition satisfied in the case of the RBM, then the freegajnend numerator of the likelihood can be
computed tractably (even though it involves a sum with aroegptial number of terms):

P(x) = % —FreeEnergy(z) _ %Z —Energy(zx,h)
= ZZZ Zeﬂ(“ S mil@shi) - ZZZ Zeﬁ(r)He—m(rh)
hi ho hi ho
_ eB(x) Ze_'yl(r ,h1) Ze—'m(r ha) Z e~ Vk(@h)
hg
eB(x) '

_ Hze—w h) (18)

In the above,) , is a sum over all the values that can take. Note that all sums can be replaced by
integrals ifk is continuous, and the same principles apply. In many cafsiseavest, the sum or integral
(over a single hidden unit’s values) is easy to compute. Timearator of the likelihood (i.e. the free energy)
can be computed exactly in the case whenergy(x, h) = —3(x) + >, vi(z, h;), and we have

FreeEnergy(z) Z log Z e i) (19)

6.1.2 Conditional Energy-Based Models

Whereas computing the partition function is difficult in geal, if our ultimate goal is to make a decision
concerning a variable given a variablez, instead of considering all configuratiofs y), it is enough to
consider the configurations gffor each givenc. A common case is one whegecan only take values in a
small discrete set, i.e.

e—Energy(z,y)

P(ylx) = T, o Enera) 20

In this case the gradient of the conditional log-likelihamith respect to parameters of the energy function
can be computed efficiently. This approach has been exglwita series of probabilistic language models
based on neural networks (Bengio et al., 2001; Schwenk & &ayu2002; Bengio, Ducharme, Vincent, &
Jauvin, 2003; Xu, Emami, & Jelinek, 2003; Schwenk, 2004 &tk & Gauvain, 2005). That formulation
(or generally when it is easy to sum or maximize over the seabfes of the terms of partition function)
has been explored at length (LeCun & Huang, 2005; LeCun g2@0D6; Ranzato et al., 2007, 2007). An
important and interesting element in the latter work is thahows that such energy-based models can be
optimized not just with respect to log-likelihood but witkspect to more general criteria whose gradient has
the property of making the energy of “correct” responseselse while making the energy of competing
responses increase. This criterion does not necessaréyige to a probabilistic model, but it gives rise to
a function that can be used to chogsgivenz, which is often the ultimate goal in applications.

22

6.2 Boltzmann Machines

The Boltzmann machine is a particular type of energy-basedietn and RBMs are special forms of Boltz-
mann machines in whict?(h|z) and P(z|h) are both tractable because they factorize. In a Boltzmann
machine (Hinton, Sejnowski, & Ackley, 1984; Ackley et al98b; Hinton & Sejnowski, 1986), the energy
function is a second-order polynomial:

Energy(z,h) = —b'z — h — WWax — 2'Ux — h'Vh. (21)

There are two types of parameters, which we collectivelyotieby?: the biase$; andc; (each associated
with a single element of the vectoror of the vectorh), and the weight$V;;, U;; andV;; (each associated
with a pair of units). Matriced/ andV are assumed to be symmetric, and in most models with zeros in
the diagonal. Non-zeros in the diagonal can be used to obther variants, e.g., with Gaussian instead of
binomial units (Welling, Rosen-Zvi, & Hinton, 2005).

Because of the quadratic interaction terms:jrthe trick to analytically compute the free energy (eq. 18)
cannot be applied here. However, an MCMC (Monte Carlo Ma®bein (Andrieu, de Freitas, Doucet, &
Jordan, 2003)) sampling procedure can be applied in ordebtin a stochastic estimator of the gradient.
The gradient of the log-likelihood can be written as follpstarting from eq. 12:

810gP(.’L’) B 810g Zh e—Energy(m,h) B alog Za:,h e—Energy(rI:,h)
00 B 00 00
1 —Energy(z,h) 8E1’1€I‘gy(]}, h)
= o EeeE 2 © T
Zh e gy () - 06

efEnergy(w,h) aEnergY(xa h)

1
+ Zw,h e—Energy(z,h) Z 00

8Energy x,h) OEnergy(z, h
= —me +ZP #. (22)

Note that%g(”’h) is easy to compute. Hence if we have a procedure to sample f@rx) and one
to sample fromP(x, h), we can obtain an unbiased stochastic estimator of theltetiHood gradient. Hin-
ton et al. (1984), Ackley et al. (1985), Hinton and Sejnowd&86) introduced the following terminology:
in the positive phase x is clampedto the observed input vector, and we samplgiven z; in the neg-
ative phaseboth z andh are sampled, ideally from the model itself. Only approxiensampling can be
achieved tractably, e.g., using an iterative proceduredbiastructs an MCMC. The MCMC sampling ap-
proach introduced in Hinton et al. (1984), Ackley et al. (33&Hinton and Sejnowski (1986) is based on
Gibbs sampling (Geman & Geman, 1984; Andrieu et al., 2003). Gibbs samplfrigejoint of N random
variablesX; ... X is done through a sequencefsampling sub-steps of the form

Xi~ P(Xi|X i =1_y) (23)

whereX _; contains theV — 1 other random variables i, excludingX;. After theselV samples have been
obtained, a step of the chain is completed, yielding a saofplé whose distribution converges & X) as
the number of steps goesdo.

Lety = (x,h) denote all the units in the Boltzmann machine, gnd the set of values associated with
all units except theé-th one. The Boltzmann machine energy function can be r@mrtby putting all the
parameters in a vectdrand a symmetric matriA,

Energy(y) = —d'y — y' Ay, (24)
with d_; the vectord without the elemend;, A_; the matrixA without the:-th row and column, andl;

the vector that is théth row (or column) of4, without thei-th element. The idea is to exploit the fact that

23

P(yily—;) can be computed and sampled from easily in a Boltzmann macRkor example, if; € {0, 1},

exp(d; +d_y—i + Aly—i +y ;A_iy—i)

Plys = 1ly-i) exp(di +d_;y—i + Aly_i +y' ;A_y_;) +exp(d_y—i +y_;A_iy—i
B exp(d; + Aly_;) 1
~exp(di+ Ajy_i) +1 1 +exp(—di — Aéyﬂ‘)
= sigm(d; + Ajy_;) (25)

which is the usual equation for computing a neuron’s outpteims of other neurons_;, in artificial neural
networks.

Two MCMC chains (one for the positive phase and one for thatiegphase) are needed for each example
x, the computation of the gradient can be very expensive, rairig time very long. This is essentially
why the Boltzmann machine was replaced in the late 80’s bp#u&-propagation algorithm for multi-layer
neural network as the dominant learning approach. Howeseent work has shown that short chains can
sometimes be used successfully, and this is the princigioafrastive Divergence, discussed below to train
RBMs.

6.3 Restricted Boltzmann Machines

The RestrictedBoltzmann Machine (RBM) is the building block Deep BelieftiWerks (DBN) because it
shares parametrization with individual layers of a DBN, badause efficient learning algorithms were found
to train it. Inan RBM,U = 0 andV = 0 in eq. 21, i.e., the only interaction terms are between adridahit
and a visible unit, but not between units of the same layers fidrm of model was first introduced under
the name ofHarmonium (Smolensky, 1986), and learning algorithms (beyond thes doe Boltzmann
Machines) were discussed in Freund and Haussler (1994)ireally demonstrated and efficient learning
algorithms and variants were proposed more recently (Hir2602; Welling et al., 2005; Carreira-Perpifian
& Hinton, 2005). As a consequence of the lack of input-inpud &idden-hidden interactions, the energy
function is bilinear,

Energy(z,h) = —b'z —h — W'Wz (26)

and the factorization of the free energy of the input, introed with eq. 17 and 19 can be applied with
B(xz) = bz and~;(z, h;) = h;W;z, whereW; is the row vector corresponding to tlieh row of W.
Therefore the free energy of the input (i.e. its unnormaliog-probability) can be computed efficiently:

FreeEnergy(z) = —b'z — Z log Z ehiWiz, 27

Using the same factorization trick (in eq. 18) due to the affirm of Energy(x, k) with respect toh, we
readily obtain a tractable expression for the conditiomabgbility P(h|x):

exp(b'z + c'h + W' Wa)
Shexp(t'a + Ch+ W)

[[; exp(cihi + hiWiz)
Hi Zﬁ,i eXP(Ciili + ileVm:)
— exp(hi(c; + Wix))
-1 S, exp(hi(ci + Wix))

i

= Hp(hip-).

P(hlz) =

24

In the commonly studied case whérge {0, 1}, we obtain the usual neuron equation for a neuron’s output

given its input:
eci +W;x

P(h; =1|z) = = sigm(¢; + Wx). (28)

1 + 6Ci+WiI
Sincezx andh play a symmetric role in the energy function, a similar dation allows to efficiently compute
and sample(z|h):

P(z|h) = Hp(xim) (29)

and in the binary case
P(x; = 1|h) = sigm(b; + W/} - h) (30)

whereW ; is thej-th column of V.

In Hinton et al. (2006) binomial input units are used to erepitel gray levels as if they were the probability
of a binary event. In the case of handwritten character im#gie approximation works well, but in other
cases it does not. Experiments showing the advantage af Ghassian input units rather than binomial
units when the inputs are continuous-valued are describBemgio et al. (2007). See Welling et al. (2005)
for a general formulation whereandh (given the other) can be in any of the exponential familyriistions
(discrete and continuous).

Although RBMs might not be able to represent efficiently sadisributions that could be represented
compactly with an unrestricted Boltzmann machine, RBMsregmmesent any discrete distribution (Freund
& Haussler, 1994; Le Roux & Bengio, 2008), if enough hiddeitaiare used. In addition, it can be shown
that unless the RBM already perfectly models the trainirggritiution, adding a hidden unit (and properly
choosing its weights and bias) can always improve the logifiood (Le Roux & Bengio, 2008).

An RBM can also be seen as forming a multi-clustering (seei®@ed), as illustrated in Figure 6. Each
hidden unit creates a 2-region partition of the input spadth(a linear separation). The binary setting of
the hidden units identifies one region in input space amdrthearegions associated with configurations of
the hidden units. Note that not all configurations of the kiddnits correspond to a non-empty region in
input space. This representation is similar to what an ebgeof 2-leaf trees would create.

The sum over an exponential number of configurations canbeseen as a particularly interesting form of
mixture, with an exponential number of components (witlpees to the number of parameters):

P(z) = Y P(a|n)P(h) (31)
h

where P(z|h) is the model associated with the component indexed by cawafign ». For example, if
P(zx|h) is chosen to be Gaussian (see Welling et al. (2005), Bengib €007)), this is a Gaussian mixture
with 2™ components wheh hasn bits. Of course, thes®™ components cannot be tuned independently
because they depend on shared parameters (the RBM parsm#g¥ercan see that the Gaussian mean for
each component (in the Gaussian case) is obtained as a dioedninationb + 1W'h, i.e., each hidden unit
bit contributes (or not) a vectd¥; in the mean.

6.3.1 Gibbs Sampling in RBMs

Sampling from an RBM is useful for several reasons. Firstlof & useful in learning algorithms, to obtain
an estimator of the log-likelihood gradient. Second, isjpa of examples generated from the model is
useful to get an idea of what the model has captured or noticeghbout the data distribution. Since DBNs
are obtained by stacking RBMs, sampling from an RBM enaldes sample from a DBN.

Gibbs sampling in full-blown Boltzmann Machines is slow &ase one needs to sample both for the positive
phase £ clamped to the observed input vector) and for the negatiaselg andh are sampled from the
model) and because there are as many sub-steps in the Gidghsastthere are units in the network. On the
other hand, the factorization enjoyed by RBMs brings twodfiés: first we do not need to sample in the

25

positive phase because the free energy (and thereforeaigegt) is computed analytically; second, the set
of variables in(x, h) can be sampled in two sub-steps in each step of the Gibbs.chagt we samplé
givenz, and then a new givenh. In general product of experts models, an alternative tdo&#ampling is
hybrid Monte-Carlo, an MCMC method involving a number ofdfrenergy gradient computation sub-steps
for each step of the Markov chain. The RBM structure is themesh special case of product of experts model:
thei-th termlog), eizhi in eq. 27 corresponds to an expert, i.e., there is one expettigden neuron
and one for the input biases. With that special structurerg fficient Gibbs sampling can be performed.
For k Gibbs steps:

g ~ P
hg ~ P
ry ~ P
hy ~ P

T P($|hk_1). (32)

Algorithm 1

RBMupdat e(x1,¢, W, b, c)

This is the RBM update procedure for binomial units. It casilaadapted to other types of units.
x1 is a sample from the training distribution for the RBM

e is a learning rate for the stochastic gradient descent irtr@stive Divergence

W is the RBM weight matrix, of dimension (number of hidden anitumber of inputs)

b is the RBM biases vector for hidden units

¢ is the RBM biases vector for input units

for all hidden units do
e computeQ (hy; = 1|z1) (for binomial unitssigm(b; + >_,; Wijz1;5))
e sampleh;; from Q(hy;|z;)
end for
for all visible unitsj do
e computeP (z2; = 1|hy) (for binomial unitssigm(c; + >, Wi;hi;))
o samplezy; from P(zo; = 1|h;)
end for
for all hidden units do
e computeR)(hy; = 1[z2) (for binomial units sigm(b; + 3_; Wijxa;))
end for
oW — W+ e(hyz] — Q(hy, = 1|za)ahy)
eb—b+eh; —Q(h = 1|z2))
ec—c+e(r —x2)

6.4 Contrastive Divergence

Contrastive Divergence is an approximation of the loghiia@od gradient that has been found to be a suc-
cessful update rule for training RBMs (Carreira-Perpi&ahlinton, 2005). A pseudo-code is shown in
Algorithm 1, with the particular equations for the condité distributions for the case of binary input and
hidden units.

To obtain this algorithm, théirst approximation we are going to make is replace the average over all
posible inputs (in the second term of eq. 16) by a single san§ihce we update the parameters often (e.g.,

26

with stochastic or mini-batch gradient updates after ona faw training examples), there is already some
averaging going on across updates (which we know to work (ikelCun, Bottou, Orr, & Muller, 1998a)),
and the extra variance introduced by taking one or a few MClIGes instead of doing the complete sum
might be partially canceled in the process of online gradigraates, over consecutive parameter updates.
In any case, we introduce additional variance with this apianation of the gradient.

Running a long MCMC chain is still very expensive. The ideakedtep Contrastive Divergence (CD-
k) (Hinton, 1999, 2002) is simple, and involves@cond approximation which introduces some bias in
the gradient: run the MCMC chain for onkystepsstarting from the observed exampleThe CD+ update
after seeing exampleis therefore

_ OFreeEnergy(z) n OFreeEnergy (%)
a0 a0

wherez is a sample from our Markov chain aftersteps. We know that when— oo, the bias goes away.
We also know that when the model distribution is very clostaeempirical distribution, i.eP ~ P, then
when we start the chain from(a sample fromP) the MCMC has already converged, and we need only one
step to obtain an unbiased sample fréhalthough it would still be correlated with).

The surprising empirical result is that evkn= 1 (CD-1) often gives good results. An extensive numeri-
cal comparison of training with CI2-versus exact log-likelihood gradient has been present&ahineira-
Perpifian and Hinton (2005). In these experiments, takilagger than 1 gives more precise results, although
very good approximations of the solution can obtained eviém iv= 1. Theoretical results (Bengio & De-
lalleau, 2007) discussed below in Section 7 help to undedsteny small values of. can work: CD#%
corresponds to keeping the fifgsterms of a series that converges to the log-likelihood graidi

One way to interpret Contrastive Divergence is that it isragpnating the log-likelihood gradiehdcally
around the training point;. The stochastic reconstructian; (for CD-k) has a distribution (givemn;)
which is in some sense centered aroundand becomes less centered around it dscreases, until it
becomes the model distribution. The GDdpdate will decrease the free energy of the training point
(which would increase its likelihood if all the other freeeegies were kept constant), and increase the
free energy ofry41, which is in the neighborhood af;. Note thatzy; is in the neighborhood af;,

but at the same time more likely to be in regions of high prdiigtunder the model (especially fot
larger). As argued in (LeCun et al., 2006), what is mostlydeekfrom the training algorithm for an energy-
based model is that it makes the energy (free energy, heraatginalize hidden variables) of observed
inputs smaller, shoveling “energy” elsewhere, and mosbirtgmtly in their neighborhood. The Contrastive
Divergence algorithm is fueled by thentrastbetween the statistics collected when the input is a real
training example and when the input is a model sample. Abéunidrgued in the next section, one can think
of the unsupervised learning problem as discovering a ibecssirface that can roughly separate the regions
of high probability (where there are many observed trairgrgmples) from the rest. Therefore we want
to penalize the model when it generates examples on the vaidegof that divide, and to a good way to
identify where that divide should be moved is to compareingj examples with samples from the model.

Al = (33)

6.5 Model Samples Are Negative Examples

In this section we argue that training an energy-based naadebe achieved by solving a series of classifi-
cation problems in which one tries to discriminate traingx@mples from samples generated by the model.
In the Boltzmann machine learning algorithms, as well asdnt@stive Divergence, an important element
is the ability tosample from the modetaybe approximately. An elegant way to understand theevafu
these samples in improving the log-likelihood was intreetliy Welling, Zemel, and Hinton (2003), using
a connection with boosting. We start by explaining the id€arimally and then formalize it, justifying
algorithms based on training the generative model with ssifi@ation criteriorseparating model samples
from training examplesThe maximum likelihood criterion wants the likelihood te high on the training
examples and low elsewhere. If we already have a model andanetwincrease its likelihood, the contrast

27

between where the model puts high probability (represelyeshmples) and where are the training exam-
ples indicates how to change the model. If we were able tocqpiately separate training examples from
model samples with a decision surface, we could increaséiHiod by reducing the value of the energy
function on one side of the decision surface (the side whenetare more training examples) and increasing
it on the other side (the side where there are more samplestfre model). Mathematically, consider the
gradient of the log-likelihood with respect to the parame®f theFreeEnergy(x) (or Energy(z) if we

do not introduce explicit hidden variables), given in eq. Nbw consider a highly regularized two-class
probabilistic classifier which is only able to produce anpotitorobabilityg(xz) = P(y = 1|z) barely dif-
ferent from3 (hopefully on the right side more often than not). lgét) = sigm(a(z)), i.e.,a(z) is the
discriminant function or an unnormalized conditional lpgbability, just like the free energy. The average
conditional log-likelihood gradient for this probabiistlassifier is

E, [8log;‘;(ylw)} - B, [5(ylogq(w) + (18—9y) log(1 — q(%)))}
= B |- o) 252y =1] - £ [at) 252 |y =]
~ 3B {8‘;—? y=1:|—%E‘,—;, [8‘5—(9“) y:O] (34)

where the last equality is when the classifier is highly ragméd: when the output weights are smally)

is close to 0 andj(z) ~ 3, so that(l — g(z)) ~ q(z). This expression for the log-likelihood gradient
corresponds exactly to the one obtained for energy-baseeéiswhere the likelihood is expressed in terms
of a free energy (eq. 16), when we interpret training exaspke positive exampleg (= 1) and model
samples as negative examples£ 0). One way to interpret this result is that if we could imprave
classifier that separated training samples from model sssnple could improve the log-likelihood of the
model, by putting more probability mass on the side of tregrsamples. Practically, this could be achieved
with a classifier whose discriminant function was definedhasftee energy of a generative model (up to
a multiplicative factor), and assuming one could obtain @am (possibly approximate) from the model.
A particular variant of this idea has been used to justify adbing-like incremental algorithm for adding
experts in products of experts (Welling et al., 2003).

6.6 Variants of RBMs

We have already mentioned that it is straightforward to gaire the conditional distributions associated
with visible or hidden units, e.g., to any member of the exgrural family (Welling et al., 2003). Gaussian
units and exponential or truncated exponential units haentproposed or used in Freund and Haussler
(1994), Welling et al. (2003), Bengio et al. (2007), Lard@het al. (2007). With respect to the analysis
presented here, the equations can be easily adapted bysihgriging the domain of the sum (or integral)
for the h; andzx;. Diagonal quadratic terms (e.g., to yield Gaussian or et Gaussian distributions) can
also be added in the energy function without losing the piiygikat the free energy factorizes.

We review some of the more structural variations that haealpeoposed on the basic RBM model, in order
to increase its expressive power or exploit particularcstme in the data.

6.6.1 Lateral Connections

The RBM can be made slightly less restricted by introducitigraction terms or “lateral connections” be-
tween visible units. Samplingfrom P(h|x) is still easy but sampling from P(z|h) is now generally more
difficult, and amounts to sampling from a Markov Random Fighdch is also a fully observed Boltzmann
machine, in which the biases are dependent on the valie @fsindero and Hinton (2008) propose such
a model for capturing image statistics and their resultgeagthat Deep Belief Nets (DBNs) using such
modules generate more realistic image patches than DBMg osdinary RBMs. Their results also show

28

that the resulting distribution has marginal and pairwtagistics for pixel intensities that are similar to those
observed on real image patches.

These lateral connections capture pairwise dependeheiestn be more easily captured this way than using
hidden units, saving the work of hidden units for higheresrdependencies. In the case of the first layer, it
can be seen that this amounts to a form of whitening, whictbkeas found useful as a preprocessing step in
image processing systems (Olshausen & Field, 1997). Tleeddeposed in Osindero and Hinton (2008) is
to use lateral connections at all levels of a DBN (which caw be seen as a hierarchy of Markov random
fields). The generic advantage of this type of approach woelthat the higher level factors represented by
the hidden units do not have to encode all the local “detdiiat the lateral connections at the levels below
can capture. For example, when generating an image of atfecapproximate locations of the mouth and
nose might be specified at a high level whereas their prectsgion could be selected in order to satisfy
the pairwise preferences encoded in the lateral connexctipa lower level. This appears to yield generated
images with sharper edges and generally more accuracy neldte/e locations of parts, without having to
expand a large number of higher-level units.

In order to sample fronP(z|h), we can start a Markov chain at the current example (whickymably
already has pixel co-dependencies similar to those repieddy the model, so that convergence should
be quick) and only run a short chain. To reduce sampling maeidn CD for this model, Osindero and
Hinton (2008) used five damped mean-field steps instead ofrdinasy Gibbs chain on the’s: z; =
axi—1 + (1 — a)sigm(b + Uxi—1 + W'h), witha € (0,1).

6.6.2 Conditional RBMs and Temporal RBMs

A Conditional RBM is an RBM where some of the parameters are not free but aeathgtarametrized
functions of another random variable. For example, comsideRBM for the joint distributionP (X, H)
between observed vectdf and hidden vectoH, with parameters$b, ¢, W) as per eq. 21, respectively for
input biase9, hidden biases, and the weight matri¥}/. This idea has been introduced in Taylor, Hinton,
and Roweis (2006) for context-dependent RBMs in which trdeldin biases are affine functions of a
context variable”. Hence the RBM represeni¥ X, H|C), or marginalizing oved, P(X|C). In general
the parameteré of the RBM can be written as a parametrized function f(C';w) with parameters.
The Contrastive Divergence algorithm for RBMs can be eaglyeralized to the case of Conditional RBMs.
The CD gradient estimatdkf on a parametétcan be simply back-propagated to obtain a gradient estimato
onw:

00

Aw = Ad—. (35)
Oow

In the affine casé = 5 + M C (with b, 5 andC column vectors and/ a matrix) studied in Taylor et al.
(2006), the CD update on the conditional parameters is gimpl

A3 = Ab
AM = AbC' (36)

where the last multiplication is an outer product, axis the update given by CIR-

This idea has been successfully applied to model conditidis&ibutions P(x¢|xi—1, xt—2,x:—3) In Se-
guential data of human motion (Taylor et al., 2006), wherés a vector of joint angles and other geometric
features computed from motion capture data of human movensech as walking and running. Interest-
ingly, this allowsgeneratingrealistic human motiosequencesby successively sampling theth frame
given the previously samplédframes, i.e. approximating

T
P(Jﬁl,xg,...,l‘T)Q‘.»P(],‘l,...],‘k) H P($t|$t—17---$t—k)- (37)
t=k+1

The initial frames can be generated by using special nullesahs context or using a separate model for
P(xy,...21).

29

hi—o hi—y iy

Tt—2 Tt-1 Ty

Figure 8: Example of Temporal RBM for modeling sequentighdéncluding dependencies between the
hidden variables. The double-arrow arc indicates an uatdideconnection, i.e. an RBM. The single-arrow
arcs indicate conditional dependency: the, h;) RBM is conditionned by the values of the past inputs and
past hidden vectors.

As demonstrated in Memisevic and Hinton (2007), it can bdéulise make not just the biases but also the
weights conditional on a context variable. In that case veatly increase the number of degrees of freedom,
introducing the capability to model three-way interactidtr@tween an input unit;, a hidden unit:;, and a
context unitc, through interaction parametels;,. This approach has been used wkhan image and’

the previous image in a video, and the model learns to cafiawdields(Memisevic & Hinton, 2007).
Probabilistic models of sequential data with hidden vdeial, (calledstate) can gain a lot by capturing the
temporal dependencies between the hidden variable atetiffémest in the sequence. This is what allows
Hidden Markov Models (HMMs) (Rabiner & Juang, 1986) to capture dependencies ng kequence
even if the model only considers the hidden variable to be a&kMachain of order 1 (where the direct
dependence is only betweéh andH;.). Whereas the hidden variable representatigin HMMs is local

(all the possible values dff; are enumerated and specific parameters associated witlhEthase values),
Temporal RBMs have been proposed (Sutskever & Hinton, 2007) to constrdistdbuted representation of
the state. The idea is an extension of the Conditional RBMegreed above, but where the context includes
not only past inputs but also past values of the state, eegbhuid a model of

P(Hy, Xe|Hy1, Xe—1, oo Hyegy Xo—g) (38)

where the context i€y, = (Hy—1, X¢—1,...,Hi—r, Xt—k), as illustrated in Figure 8. Although sampling
of sequences generated by Temporal RBMs can be done as intiGoadRBMs (with the same MCMC
approximation used to sample from RBMs, at each time ste)ténference of the hidden state sequence
given an input sequence is not anymore tractable. Insteatsk&ser and Hinton (2007) propose to use a
mean-field filtering approximation of the hidden sequencsqrior.

6.6.3 Factored RBMs

In several probabilistic language models, it has been megdo learn a distributed representation of each
word (Deerwester, Dumais, Furnas, Landauer, & Harshma®Q;1®liikkulainen & Dyer, 1991; Bengio

et al., 2001, 2003). For an RBM that models a sequence of wdrdgould be convenient to have a
parametrization that automatically learns a distributggt@sentation for each word in the vocabulary. This
is essentially what Mnih and Hinton (2007) propose. Theyaifactorization of the weight matrid/ into

two factors, one that depends on the location in the inputegirence, and one that does not. Consider the
computation of the hidden units’ probabilities given thpuhsubsequenc@u;, ws, . .., wy), where each
word w; is represented by a one-hot vectgr(all 0’s except for a 1 at positiom;) and these vectors are
concatenated into the input vector= (vq, ..., vg). Instead of applying directly a matri¥ to «, do the fol-
lowing. First, each word symbal; is mapped through a matrik to ad-dimensional vectoR_,,, = Ru,

30

fort € {1...k}; second, the concatenated vectaRs ., , R w,;-- -, R.w,) = (Rvi,...Rug) are multi-
plied by a matrixB. HenceW = B(R R ... R), where(R R ... R) indicates concatenation (not product)
of R. This model has produced better out-of-sample log-lilaiththan state-of-the-art language models
based on n-grams (Mnih & Hinton, 2007). This factorizatiam e combined with the temporal RBM idea
introduced above, yielding further improvements in geliation performance (Mnih & Hinton, 2007).

7 Truncations of the Log-Likelihood in Gibbs-Chain Models

Here we approach the Contrastive Divergence update rute &different perspective, which gives rise to
possible generalizations of it and links it to the recorcttam error often used to monitor its performance
and that is used to optimize autoassociators (eq. 5). Thperation for this derivation comes from Hinton
et al. (2006): first from the idea (explained in Section 1ihkt the Gibbs chain can be associated with an
infinite directed graphical model (which here we associatarnt expansion of the log-likelihood and of its
gradient), and second that the convergence of the chaifiggstontrastive Divergence (since the expected
value of eq. 33 becomes equivalent to eq. 15 when the chaiplsancomes from the model).

Consider a converging Markov chain = h; = ;41 = ... defined by conditional distribution8(h;|x;)

and P (z41|ht). A sufficient condition for convergence is that it mixes,,i@ne can reach any state from
any state in finite time.

The following Lemma, demonstrated in (Bengio & DelalleaQ02), shows that the by consecutive appli-
cation of Bayes rule, one can expand the log-likelihood ierées that involves the samples in the Gibbs
chain.

Lemma 7.1. Consider the Gibbs chaim; = h; = z2 = ho... starting at data pointz;. The log-
likelihood can be expanded as follows for any path of therchai

t—1

P(x4|hs) P(hs|zs+1)

log P(x1) = log P(xy) + lo + 1o 39

g (1) g (t) ; gP(hg|xg) gP($s+1|hS) ()
and consequently, since this is true for any path:
t—1

P(z4|hs) P(hs|zs+1)
log P(x1) = Ellog P(x;)] + FE |lo +lo 40
2 P(er) = Fllog Ple) + 3 o e 2+ tog e (40)

where the expectation is over the Markov chain, conditiamat; .

In the limit¢ — oo, the last term is just the entropy of distributidt{x). Note that the terms do not vanish
ast — oo, S0 as such this expansion does not justify truncating thesse approximate the log-likelihood.

We will see that reconstruction error, often used for momptraining progress of RBMs, is closely related
to the first term in the series.

Now consider the corresponding gradient series. To prowé¢horem, the following simple lemma, which
we use later, is very useful:

Lemma 7.2. For any modelP(Y") with parameter9,

dlogP(Y)]

when the expected value is taken according’{d”).

31

Proof. We start from the sum to 1 constraint 6t{Y"), differentiate and obtain the Lemma. To obtain the
last line below we use the fact that for any functif), we have?2() — f(g)2Ls/(®),

E[l] = Y P(Y=
0N, PV =y o
0 90
ZP(Y:y)alogPa(eYzy) _ 0

Y

The following theorem can then be proved (Bengio & Delal|e2107).

Theorem 7.3. Consider the converging Gibbs chain = h; = x2 = hs... starting at data pointz;.
The log-likelihood gradient can be expanded in a convergmges as follows, where all expectations are
conditional onzy:

6loga];(x1) fi (E [8log];(9w5|hs)] B [310gP(8/”;5|xs+1)]>

0log P(x4)
o0

s=1

+ E { (42)

with the terms ins converging to 0 as — oo, and the final term (irt) also converges to 0, &s— co.

Since thek-th term becomes small @sincreases, that justifies truncating the chairk tsteps. Note how
the sums in the above expansion can be readily replaced lyteabtain samples (for the firdt steps

in the Gibbs chain). This gives rise to a stochastic gragdighbse expected value is the exact expression
associated with a truncation of the above log-likelihoaatlignt expansion. Finally, it can be shown (Bengio
& Delalleau, 2007) that truncating to the fikssteps gives a parameter update that is exactly théQpdate

in the case of a binomial RBM.

Corollary 7.4. When considering only the terms arising of the firstteps in the Gibbs chaimy, = h; =
ro = ho = ...x, = hyg, the unbiased stochastic estimator of the gradient of thedated log-likelihood
expansion of theorem 7.3 (with expectations replaced bykamnin the chain) equals the CPupdate in
the case of a binomial RBM.

Experiments and theory support the idea that Efpelds better and faster convergence (in terms of number
of iterations) than CO% — 1) (but the computational overhead might not always be woytf his is because
smallerk corresponds to more bias in the estimation of the log-lile@d gradient. So CD-1 corresponds
to taking the first two terms in the expansion (one sample;¢f; and one sample af;|h;). What about
taking only the first one? The first term in the log-likelihagrdient expansion is

810 P(x1|h
ZP (h1lz1) g (1lh1) (43)
Now consider a mean-field approximation of the above, in tvinistead of the average over all configu-
rations according t@(h;|x1) one replaces, by its average configuratidn = E[h|z1], yielding:

810g P(Z‘ﬂill)

00 (44)

32

which is minus the gradient @éconstruction error,
—log P(x1|h1) (45)

typically used to train autoassociators.

So we have found that the truncation of the log-likelihoopansion gives rise to first approximation (1 term)
to roughly reconstruction error (through a biased meaud-figiproximation), with slightly better approxi-
mation (2 terms) to CD-1 (approximating the expectation Bgmple), and with more terms to Cb-Note

that reconstruction error is deterministically computed &or this reason has been used to track progress
when training RBMs with CD. Since reconstruction error aiigtCare complementary in terms of bias and
variance (as estimators of the log-likelihood gradieritjnight be interesting to explore combinations of
them: a low-variance high-bias estimator (reconstruatioor gradient) might be more useful at the begin-
ning of training (where having a precise estimation of thedgent is less important) whereas the low-bias
high-variance estimator (CB} would be more useful to achieve training convergence.

8 Generalizing RBMs and Contrastive Divergence

Let us try to generalize the definition of RBM so as to includarge class of parametrizations for which
essentially the same ideas and learning algorithms (CstiveaDivergence) that we have discussed above
can be applied in a straightforward way. We generalize RBéMskows: aGeneralized RBMis an energy-
based probabilistic model with input vectoand hidden vectads whose energy function is such thath|z)

and P(z|h) both factorize. This definition can be formalized in termsha parametrization of the energy
function:

Proposition 8.1. The energy function associated with a model of the form oflécuch thatP(h|z) =
[I; P(hilz) and P(z|h) = []; P(x;|h) must have the form

Energy(z,h) = > ¢;(w;) + > &(hi) + > miy(has ;). (46)
i i i

Proof. To achieve factorization aP(%|xz) we have already shown that the energy function must be vigitab
as a sum over(with one term peh;), in eq. 18. This gives us the constraint tRakergy(z, h) can be written
asEnergy(x, h) = —f(z) + >, vi(z, hs), for somes and+;. Using the same arguments but inverting the
roles ofz andh, we obtain that the constraifihergy(z, h) = —a(h) + 3_; p;(z;, h) for somea andp;.
Clearly if Energy(x, h) can be written as in eq. 46, then these two constraints aisfiedt On the other
hand, consider adding a term of a different from (not depgmdnly onh;, only onz;, or only on a pair
(hs, z;) to the right hand side of eq. 46. Then one of the above twotcainss would be violated. Therefore
the above equation is the most general formulation thagfgegiboth factorization assumptions. O

In the case where the hidden and input values are binarynthisformulation does not actually bring
any additional power of representation. Indegd;(h;,z;), which can take at most four different values
according to the x 2 configurations of h;, z;) could always be rewritten as a second order polynomial in
(hi, ;) a + bh; + cxj + dhz;. However,b andc can be folded into the bias terms amdnto a global
addititive constant which does not matter (because it getsalled by the partition function).

On the other hand, whenor h are real-valued, one could imagine higher-capacity madeif the(h;, z;)
interaction, possibly non-parametric, e.g., graduallyiag terms tay; ; so as to better model the interaction.
Furthermore, sampling from the conditional densifi&s:; |1) or P(h;|x) would be tractable even if thg ;

are complicated functions, simply because these are 1rdiimeal densities from which efficient approxi-
mate sampling and numerical integration are easy (e.g.ptmpating cumulative sums of the density over
nested subintervals or bins).

This analysis also highlights the basic limitation of RBM4hich is that its parametrization only considers
pairwise interactions between variables. It is becausé tire hidden and that we can have as many hidden

33

units as we want that we still have full expressive power @assible marginal distributions in. Other
variants of RBMs discussed in Section 6.6 allow to introdilcee-way interactions (Memisevic & Hinton,
2007).

Can Contrastive Divergence be applied to this generaliz&d Formulation? Clearly, theorem 7.3 can still
be applied. Furthermore, it can be shown, generalizinglieoyo/.4 that considering only the firgtsteps
of the Gibbs chain in the log-likelihood gradient expansimme obtains an update rule similar to GOer
binomial RBMs.

Proposition 8.2. Consider a generalized RBM, with the energy function as irdéq When considering
only the terms arising of the firétsteps in the Gibbs chaity, = h1 = x5 = hy = ... 2, = hyg, With the
unbiased stochastic estimator of the gradient of the tréeddog-likelihood expansion of theorem 7.3, all
the intermediate gradient terms cancel each other and tlaelignt estimator only depends directly on the
first pair (x1, h1) and on the last paifzy, hi), €.9., ford a parameter ofy; ;:

06 06 00 00

s=1 ij i

t—1
B [8logP(xs|h5) N 8logP(h5|xs+1)] — 5|} Mij(hii,215)) Mij (Pesis T j) (47)

wherehy, ; is thei-th element of thé-th hidden vector,, in the chain, and similarly foe;, ;, and the
expectation is over the Markov chain, conditionnedwgn

Proof. Note that thep; and¢; terms can be represented by exirg terms so we will ignore them in the
proof. By definition of our energy function and using the éattation of the conditionals shown above, we

have h
P(hs77;|$s) _ eXp(Zj 771,](s,zj xs,])) (48)

exp(X_g,, , 2 Mivi (hsir Tsj))

and

exp (3, i (hs,is Ts11,5)) (49)
exp(Xoz, .y, 2o Mg (hsis Tsg1,5))
Differentiating them and taking expectations with respethe Markov chain, we find that the gradient of the

denominator ofog P(x|hs) cancels the gradient of the numeratotay P(hg|xs+1), and similarly that the
gradient of the denominator dfg P(hs|zs+1) cancels the gradient of the numeratoi@f P(xs11|hst1).

Hence, ignoring the remaindér [%ﬁf’““)} due to truncation of the series, there only remains from

eq. 42 the gradient of the numeratoief P(x;|h1) and the gradient of the denominatoioef P(hg|zk+1).
o

P(Is+1,j|h8) =

Therefore, when generalizing RBMs with an energy functibthe form of eq. 46, a Gibbs chain can still
be run easily (thanks to Proposition 8.1), either to sampta éfom the model or for learning, and a GD-
algorithm can be run to gradually tune the parameters, Wwittparameter update given by

87]1‘,;‘ (hl,i7 $1,j) 87]1‘,;‘ (hk,u xk:,j)
M=) T T T g (50)
] 4,
with € a learning rate for the stochastic gradient descent. Natdritmost parametrizations we would have
a particular element df only depend on a particulag ; (and no sum is needed). We recover Algorithm 1
whenn; ;(hi:,21,;) = Wijhi ;21,5 and the other variants described in (Welling et al., 200518 et al.,
2007) for different forms of the energy and allowed set otieslfor hidden and input units.

34

9 Stacked Autoassociators

Autoassociators have been used as building blocks to buliésp multi-layer neural network (Bengio et al.,
2007; Ranzato et al., 2007; Larochelle et al., 2007). Theitrg procedure is simpler than with Deep Belief
Networks, so we start with it, noting that many variationglweit scheme are possible:

1. Train the first layer as an autoassociator to minimize sfmrma of reconstruction error of the raw
input. This is purely unsupervised.

2. The hidden units’ outputs in the autoassociator are n@d as input for another layer, also trained to
be an autoassociator. Again, we only need unlabeled example

3. lterate as in (2) to add the desired number of layers.

4. Take the last hidden layer output as input to a supervisger land initialize its parameters (either
randomly or by supervised training, keep the rest of the asgtfixed).

5. Fine-tune all the parameters of this deep architectutie espect to the supervised criterion. Alter-
nately, unfold all the autoassociators into a very deepamstciator and fine-tune the global recon-
struction error, as in (Hinton & Salakhutdinov, 2006).

The hope is that the unsupervised initialization in a grdeglgr-wise fashion has put the parameters of all
the layers in a region of parameter space from which a goa gatimum can be reached by local descent.
This indeed appears to happen in a number of tasks (Benglq 2087; Ranzato et al., 2007; Larochelle
et al., 2007).

The principle is exactly the same as the one previously megdor training Deep Belief Networks (Hinton
et al., 2006), but using autoassociators instead of RBMmgzoative experimental results in (Bengio et al.,
2007; Larochelle et al., 2007) suggest that Deep Belief Mekwrtypically (but not systematically) have a
slight edge over stacked autoassociators, maybe becaudei8oser to the log-likelihood gradient than
the reconstruction error gradient. However, since thensttaction error gradient has less variance than
CD-k (because no sampling is involved), it might be interestongdmbine the two criteria, at least in the
initial phases of learning.

An advantage of using autoassociators instead of RBMs asrtbagpervised building block of a deep ar-
chitecture is that almost any parametrizations of the kgee possible, as long as the training criterion is
continuous in the parameters. On the other hand, the clgsbébilistic models for which CD or other
known tractable estimators of the log-likelihood gradiean be applied is currently more limited. A dis-
advantage of stacked autoassociators is that they do neispand to a generative model: with generative
models such as RBMs and DBNs, samples can be drawn to chelitatively what has been learned, e.g.,
by visualizing the images or word sequences that the modsla plausible.

Note that the above algorithm can be naturally in the sempéstised setting, where only a fraction of the
training examples are associated with a supervision labet. unlabeled examples only an unsupervised
criterion is used (e.g., reconstruction error at each lewveler the whole network), whereas for supervised
examples the supervised criterion is used. For labeled pbesyboth criteria can be combined. Combining
both criteria has been found useful not only at the fine-tystage (where all the layers are jointly optimized)
but also during the greedy layerwise stage (Bengio et ai7 0T his form ofpartial supervisiorhas been
found useful in cases where the true input distribution is veyy informative of the target conditional
distribution that one wants to capture for the supervisskl.ta

35

10 Deep Belief Networks

A Deep Belief Network (Hinton et al., 2006) withlayers models the joint distribution between observed
vectorz and/ hidden layer&* as follows:
0—2
P(z,h', ... h’) = <H P(h"’|h’“+1)> P(h*~1 h*) (51)

k=1

wherex = h°, P(h*~!|h*) is a conditional distribution for visible hidden units in RBM associated with
level k of the DBN, andP(h‘~!, h?) is the visible-hidden joint distribution in the top-leveBRI. This is
illustrated in Figure 9.

Algorithm 2

Tr ai nUnsuper vi sedDBN(p, €, L,n,W,b)

Train a DBN in a purely unsupervised way, with the greedytayise procedure in which each added layer
is trained as an RBM by contrastive divergence.

pis the input training distribution for the network

e is a learning rate for the stochastic gradient descent irtr@stive Divergence

L is the number of layers to train

n = (n',...,n") is the number of hidden units in each layer

W is the weight matrix for level, for i from 1 to L

b is the bias vector for level for i from O to L

e initialize b° = 0
for ¢ =1to L do
e initialize W =0, 4" =0
while not stopping criteriomlo
e sampleh’ = x fromp
fork=1to¢—1do
e sampleh” from Q(h*|h*~1)
end for
e RBMupdat e(h’~1, e, W¥ b, b*~1) {thus providingQ (h’|h’~1) for future usé
end while
end for

When we train the DBN in a greedy layerwise fashion, as ilatstd with the pseudo-code of Algorithm 2,
each layer is initialized as an RBM, and we den@th”, h*~1) the k-th RBM trained in this way. We
will use Q(h*|h*~1) as an approximation aP(h*|h*~1), because it is easy to compute and sample from
Q(h*|h*~1) (which factorizes), and not from? (h* |h*~1) (which does not). Thesg@(h*|h*~!) can also be
used to construct a representation of the input vectdio obtain an approximate posterior or representation
for all the levels, we use the following procedure. First plgth! ~ Q(h'|x) from the first-level RBM, or
alternatively with a mean-field approach Uge= E [h!|h?] instead of a sample &f', where the expectation

is over the RBM distributiorQ (h*|h*~1). This is just the output probabilities of the hidden unitstte
common case where they are binomial unli$: = sigm(b! + W'z). Taking either the sample! or the
mean-field vectoh! as input for the second-level RBM, compliﬁ%or a samplér?, etc. until the last layer.

A sample of the DBN generative model forcan be obtained as follows:

1. Sample a visible vectdr‘~! from the top-level RBM. This can be achieved approximatglyunning
a Gibbs chain in that RBM alternating betwéen~ P(hf|h‘~1) andh’~! ~ P(h*~1|h%), as outlined
in Section 6.3.1. By starting the chain from a representdifo ' obtained from a training set example
(through theR’s as above), fewer Gibbs steps might be required.

36

COOOOO0) hs

RBM

Y
@QQAQOOO) h1

3 4
COOOO00) x

Figure 9: Deep Belief Network as a generative model (geiverpaith, with bold arcs) and a means to extract
multiple levels of representation of the input (recogmitath, with dashed arcs). The top two laykfsand

h3 form an RBM (for their joint distribution). The lower layeferm a directed graphical model (sigmoid
belief neth? = h! = z) and the prior for the penultimate laykf is provided by the top-level RBM.

2.

3.

Fork = ¢ —1downto 1, sampl&d*~! givenh* according to the levet-hidden-to-visible conditional
distribution P(h*~1|h*).

x = h® is the DBN sample.

The principle of greedy layer-wise unsupervised trainihgaxh layer on top of the previously trained ones
can be applied with RBMs as the building blocks for each l&y@nton et al., 2006; Hinton & Salakhutdinov,
2006; Bengio et al., 2007; Salakhutdinov & Hinton, 2007).

1.
2.

Train the first layer as an RBM that models the raw inpet h° as its visible layer.

As outlined above, use that first layer to obtain a repitesien of the input data that will be used as
data for the second layer. Two common solutions are to takaei layer samples & |h° or the real

valuesh! = E(h'|h?)) for this representation.

. Train the second layer as an RBM, taking the transforméal @a|z or izl(a:)) as training example

(for the visible layer of that RBM).

. lterate (2 and 3) for the desired number of layers, each tiropagating upward either samples or

mean values.

. Fine-tune all the parameters of this deep architectute wespect to a proxy for the DBN log-

likelihood, or with respect to a supervised training cidar(after adding extra learning machinery
to convert the learned representation into supervisedgireals).

The remark made at the end of Section 9 about semi-supemsigEdartially supervised training also applies
to DBNs. Combining labeled data and unlabeled data is simfite DBNs, and the partially supervised
setting has been found experimentally useful for some t#sgio et al., 2007).

37

11 Stochastic Variational Bounds for Joint Optimization of DBN
Layers

In this section we discuss mathematical underpinningsadrfittg algorithms for DBNs. The log-likelihood
of a DBN can be lower bounded using Jensen’s inequality, andeadiscuss below, this can justify the
greedy layer-wise training strategy introduced in (Hingdal., 2006) and described in Section 10. Starting
from eq. 51 for a DBN joint distribution, writing for h! (the first level hidden vector) to lighten notation,
and introducing an arbitrary conditional distributiQti|z) we have

log P(z) = logZP;Lh

B Q(h|2)P(z. h)
R DTy

P(x,h)
zth(hm log a2
> Q(h|z) (log P(x, h) —log Q(hl))
h

v

= Houw) + Y_ Q(h|z) (log P(h) + log P(x|h)) . (52)
h

whereH g |, is the entropy of the distributio@(h|x). To see what the inequality is missing out, we can
use another derivation, which is again true for @&:|x) and P. First multiply byl = >, Q(h|z), then

useP(z) = 1’;8@‘};), and multiply byl = Q(Zimg and expand the terms:

ZQ (h|x))log P(x ZQ (h|x)lo ((hiz))
(W Qi)
2 QU108 BT o

Homnz) + Z Q(h|x)log P(x, h) + Z Q(h|x)log
h h

log P(x)

Q(hlz)
P(hlz)

= KL(Q(h|2)||P(hl2)) + Hoeup) + Y Q(hlz) (log P(h) +log P(x|h)) . (53)
h

So the missing term in inequality 52 is the Kullback-Lield@rergence between the two conditional distri-
butions@(h|z) andP(h|x). Whereas we have chosen to u3éo denote probabilities under the DBN, let us
use(to denote probabilities under an RBM (which we will call thesfilevel RBM) , and in the equations
choose&?) (h|x) to be the hidden-given-visible conditional distributiditiuat first level RBM. We define that
first level RBM such that)(z|h) = P(z|h). In generalP(h|z) # Q(h|x). This is because although the
marginal P(h) on the first layer hidden vectdr' = h is determined by the upper layers in the DBN, the
RBM marginal@(h) only depends on the parameters of the RBM.

11.1 Unfolding RBMs into Infinite Directed Belief Networks

Before using the above decomposition of the likelihood &iify the greedy training procedure for DBNSs,
we need to establish a connection betwé&¥h') in a DBN and the corresponding margir@(h') given
by the first level RBM. The interesting observation is tharéhexists a DBN whosk! marginal equals the
first RBM h! marginal, i.e.P(h') = Q(h'), as long the dimension &f? equals the dimension ¢ = .

38

w RBM W3
hi—s

))
W’ w_3

RBM -

) . n
W wW_2
i1

) . Jn!
W’ w_l

) .
Ty

Figure 10: An RBM can be unfolded as an infinite directed lhelegwork with tied weights (see text), left.
The weight matrixit” or its transpose are used depending on the parity of the laglex. This sequence
of random variables corresponds to a Gibbs Markov chain teggex; (for ¢ large). On the right, the
top-level RBM in a DBN can also be unfolded in the same waywéhg that a DBN is an infinite directed
graphical model in whiclsomeof the layers are tied (all except the bottom few ones).

To see this, consider a second RBM whose weight matrix igémspose of the first level RBM (that is why
we need the matching dimensions). Hence, by symmetry ofilles of visible and hidden in an RBM joint
distribution (when transposing the weight matrix), the giaal distribution over the visible vector of the
second RBM is equal to the marginal distributi@h) of the hidden vector of the first RBM.

Another interesting explanationis givenin (Hinton et2006): consider the infinite Gibbs sampling Markov
chain starting at = —oc and terminating at = 0, alternating between andh' for the first RBM, with
visible vectors sampled on eveand hidden vectors on odd This chain can be seen as an infinite directed
belief network with tied parameters (all even steps use maigatrix 17’ while all odd ones use weight
matrix W). Alternatively, we can summarize any sub-chain from —oo to t = 7 by an RBM with weight
matrix W or W’ according to the parity of, and obtain a DBN with — 7 layers (not counting the input
layer), as illustrated in Figure 10. This argument also shthat a 2-layer DBN in which the second level
has weights equal to the transpose of the first level weighggiivalent to a single RBM.

11.2 Variational Justification of Greedy Layerwise Training

Here we discuss the argument made in Hinton et al. (2006)itding one RBM layer improves the like-
lihood of a DBN. Let us suppose we have trained an RBM to magelhich provides us with a model
Q(r) expressed through two conditional)¥h'|z) and Q(z|h'). Exploiting the argument in the previ-

39

ous subsection, let us now initialize an equivalent 2-layBN, i.e., generatind®(xz) = Q(x), by taking
P(zx|/h') = Q(x|/h') and P(h', h?) given by a second-level RBM whose weights are the transpioeo
first-level RBM. Now let us come back to eq. 53 above, and theative of improving the DBN likelihood
by changingP(h'), i.e., keeping?(x|h!) andQ(h'|z) fixed but allowing the second level RBM to change.
Starting fromP(z|h!) = Q(x|h!), the KL term is zero and the entropy term in eq. 53 does notmtkpe
on the DBNP(h'), so small improvements to the term with(h') guarantee an increaselisg P(x). We

are also guaranteed that further improvements ofttie') term (i.e. further training of the second RBM)
cannot bring the log-likelihood lower than it was before $eeond RBM was added. This is simply because
of the positivity of the KL and entropy terms: further traigiof the second RBM increases a lower bound
on the log-likelihood, as argued in Hinton et al. (2006).djaistifies training the second RBM to maximize
the expectation over the training set)},; Q(h'|z)log P(h').

The second-level RBM is thus trained to maximize

> P(x)Q(h'|z)log P(h') (54)
z,h!

with respect taP(h!). This is the maximume-likelihood criterion for a model thaes examplek! obtained
as marginal samples from the joint distributiét{x)Q(h'|x). If there was no constraint o (h!), the
maximizer of the above training criterion would be its “emigal” or target distribution

Z P(z)Q(h!|z). (55)

If we keep the first-level RBM fixed, then the second-level RBMId therefore be trained as follows:
sampler from the training set, then samdié ~ Q(h'|z), and consider thdt as a training sample for the
second-level RBM.

The same argument can be made to justify adding a third later\Ve obtain the greedy layer-wise training
procedure outlined in Section 10. In practice the requirgrtigat layer sizes alternate is not satisfied, and
consequently neither is it common practice to initialize trewly added RBM with the transpose of the
weights at the previous layer (Hinton et al., 2006; Bengialgt2007), although it would be interesting to
verify experimentally (in the case where the size constiaiimposed) whether the initialization with the
transpose of the previous layer helps to speed up training.

Note that as we continue training the second RBM (and thisdes adding extra layers), there is no guaran-
tee thafog P(z) (in average over the training set) will monotonically inese. As our lower bound continu-
ous to increase, the actual log-likelihood could start éasing. Let us examine more closely how this could
happen. It would require the KL term to decrease as the seRBMI continues to be trained. However, this
is unlikely in general: as the DBNB(h') deviates more and more from the first RBM’s margi@gh') on

h!, itis likely that the posterior®(h!|x) (from the DBN) and@(h'|z) (from the RBM) deviate more and
more (since”(h!|z) o« P(z|/h!)P(h')), making the KL term in eq. 53 increase. As the training likebd

for the second RBM increaseB(h') moves smoothly fron)(h') towardsP*(h'). Consequently, it seems
very plausible that continued training of the second RBMadihg to increase the DBN's likelihood (not just
initially) and by transitivity, adding more layers will @dikely increase the DBN'’s likelihood.

Another argument to explain why the greedy procedure warksd following (Hinton, NIPS’2007 tutorial).
The training distribution for the second RBM (samplgsfrom P*(h')) looks more like data generated by
an RBM than the original training distributiafi(z). This is becaus®*(h') was obtained by applying one
sub-step of an RBM Gibbs chain on examples frﬁﬁ(nc), and we know that applying many Gibbs steps
would yield data from that RBM.

Unfortunately, when we train an RBM that will not be the t@yél level of a DBN, we are not taking into
account the fact that more capacity will be added later taoawgthe prior on the hidden units. Le Roux and
Bengio (2008) have proposed considering alternatives tar@stive Divergence for training RBMs destined
to initialize intermediate layers of a DBN. The idea is to sioler thatP (%) will be modeled with a very high
capacity model (the higher levels of the DBN). In the limiseaf infinite capacity, one can write down what

40

that optimalP (h) will be: it is simply the stochastic transformation of thegncal distribution through the
stochastic mappin@(h|x) of the first RBM (or previous RBMs). Plugging this back inte@téxpression
for log P(x), one finds that a good criterion for training the first RBM ig tL divergence between the
data distribution and the distribution of the stochastiworestruction vectors after one step of the Gibbs
chain. Experiments (Le Roux & Bengio, 2008) confirm that triterion yields better optimization of the
DBN (initialized with this RBM). Unfortunately, this critéon is not tractable since it involves summing
over all configurations of the hidden vectar Tractable approximations of it might be considered. Aroth
interesting alternative, explored in the next sectiongiditectly work on joint optimization of all the layers
of a DBN.

11.3 Joint Unsupervised Training of All the Layers

We discuss here how one could train the whole DBN with resfmettie unsupervised log-likelihood. The
log-likelihood decomposition in eq. 53

log P(z) = K L(Q(h|z)||P(h|x)) + Honpr) + Y Q(hlz) (log P(h) + log P(x|h)) . (56)
h

can be used not only to justify the greedy training algoritbut also to justify learning algorithms in which
all the layers of a DBN are simultaneously updated, mayhss afgreedy layerwise initialization phase.
The top level of the DBN would be trained as an RBM, i.e., chopsP(h) to maximize
>, Q(h|z)log P(h), whereh is the penultimate layer of the DBN, and the top level RBM esgnts the
joint distribution between the penultimate and top layethef DBN.

Instead of keeping the lower levels fixed, if we want to imgrtvem while taking into account the particulars
of higher levels, we can return to eq. 53 and compute an egtiofahe gradient of the log-likelihood with
respect taP(z|h) andQ(h|x). To simplify the exposition we only consider the case of @Il DBN, but
the same principle can be easily generalized to any numbevels.

The gradient of the entropy @) (h|z) is easy to estimate stochastically, using one or more sangile
h ~ Q(h|z). Consider a parametérthat influence®)(h|z). Using firstgy = ydlgjy and Lemma 7.2 in
the second line,

OHg(h|»
géh\.) _ ZQ (hlz) alogQ Olog Q(h|z) ZQ (hlx) log Q(hz)alogaQH(hkc)
= —Ehjcz(hm logcz<h|x>ak’$9(h'x). (57)

A stochastic gradient with respect to a paramétef the first level that influenceB(z|h) is also easy to
obtain, using a similar derivation:

0, Q(hlx)log P(z|h) _ ZQ(mx)alogP(hkv)

dlogQ(h
% o0 +§h:Q(h|l‘)10gP(h|x)M

06

(58)

In both cases, we sampldrom the training set antl ~ Q(h|x) and use the gradienlsg Q(h|x)“%’0(h|”)

and 218 PU2) 4 o0 P(h]a) 26 LMT) - Note that these estimators could have high variance becaus
log Q(h|z) andlog P(h|z) could be arbitrarily large. In fact their variance might grbnearly with the
dimension of the hidden vector.

The gradient of the KL divergence is more problematic, beeame do not have a simple expression for
P(h|z). The KL term in eq. 53 could potentially be ignored since paésitive and we would be optimizing

a lower bound on the log-likelihood. Instead, an approxiomhas been used in theake-sleep algo-
rithm for sigmoid belief networks (Hinton et al., 1995). The idedd minimize the other KL divergence,

41

KL(P(h|x)||Q(h|x)). Indeed if we sample from the DBN, we obtain @n x) tuple fromP(x, h) that can
be used as target f@)(h|z). Again using Lemma 7.2 an?i = ydloey,

OKL(P(h|z)||Q(h|z)) P(h|z) dlog P(hlx) Olog P(h|z) 0logQ(h|x)
00 - zhjp(hm (k’g Qhle) 80 a0 a0)
_ ZP(MI) <1og EZ:B 8log8P;(h|x) 3 810g;29(h|x)> . (59)
h

As before, we can obtain a stochastic estimator, bultd@é%w term might have high variance.
In the wake-sleep algorithm (Hinton et al., 1995) and itstcastive version for DBNs (Hinton et al., 2006),
the parameters @ (h|x) and the parameters &f(x|h) are decoupled. In the context of a DBN, for all levels
except the top one, there is no reason to believe that theaptjenerative weights” (those usedi{z|h))
have to be equal (transposed) to the “recognition weighlsise used id) (2|x)). The wake-sleep algorithm
provides an update rule for both. We know that the true pistét(h|x) does not necessarily factorize
(cannot be written af[, P(h;|z)) whereag) (h|z) does factorize. The algorithm proceeds in two phases: the
wake phase and the sleep phase. Inthke phase we start from a training sampieand compute samples
from the approximate posteriors given by tQéh* | |h*~!)'s at each level (starting from® =). These
samples(h®, h!, ... h~1) provide fully observed training data for updating tR¢h*—!|h*) generative
distributions, i.e, a stochastic step in the direction effibllowing gradient is performed

l—1 _
> Q). Qe [Zoe PR (60

00
h!,... h¢-1 k=1

An update of the top-level RBM is also performed in the wakageh withh‘~! as observation for its visible
vector. In thesleep phasewe generate a full observatigh®, h', h=!) from the model: we first sample
h’~! from the top-level RBM, and then sample edeh according toP(h*|h**+!). This is then used as
fully observed training data for the recognition condits(Q (h*|h*~1), by making a stochastic step in the
direction of the following gradient:

-1 ke
Z P(hZ—l)P(h£—2|hZ—1) N P(h0|h1) H 810g Q(hk |hk 1). (61)

ho, ..., ht¢-1 k=1 89

With respect to the log-likelihood gradient decomposittbat we have been describing in this section,
the approximations performed with the wake-sleep algorittre thus the following: (a) approximate the
gradient with respect t& L(Q(h|z)||P(h|z)) by the gradient with respect t& L(P(h|x)||Q(h|x)), and
(b) approximate

(hlz)8logP h|z) P(h|z) 0log Q(h|x)
ZP (h|z) log o) ZQ (h|z)log o) 5 ~0 (62)

which might be reasonable as long@&:|z) is a good approximation aP(h|z). Experiments suggest that
the wake-sleep algorithm can be used (albeit slowly) to fime a DBN and improve both the generative
model and its ability to classify correctly (Hinton et alQds).

12 Global Optimization Strategies

Although deep architectures promise a more efficient retasion of a distribution, and hence better gen-
eralization, they appear to come at the price of a more diffaptimization problem, as discussed earlier

42

in Section 5. Here, we draw connections between existingc\and approaches that could help to deal this
difficult optimization problem, based on the principlecointinuation methods(Allgower & Georg, 1980).
Although they provide no guarantee to obtain the globalmpin, these methods have been particularly
useful in computational chemistry to find approximate gohsa of difficult optimization problems involving
the configurations of molecules (Coleman & Wu, 1994; More &,\1896; Wu, 1997). The basic idea is
to first solve a smoothed version of the problem and gradwalhsider less smoothing, with the intuition
that a smooth version of the problem reveals the global mctOn defines a single-parameter family of cost
functionsC (9) such thaC) can be optimized easily (maybe conveXdjnwhile C is the criterion that we
actually wish to minimize. One first minimiz&s, (9) and then gradually increasaswhile keepingd at a
local minimum ofC,(6). Typically Cy is a highly smoothed version @f;, so thatd gradually moves into
the basin of attraction of the dominant (if not global) miwim of C;.

12.1 Greedy Layerwise Training of DBNs as a Continuation Metod

The greedy layerwise training algorithm for DBNs describe8ection 10 can be viewed as an approximate
continuation method, as follows. First of all recall (SentiL1.1) that an RBM (and in particular the top-level
RBM of a DBN) can be unfolded into an infinite directed gratimodel with tied parameters. At each
step of the greedy layerwise procedure, we untie the pasamet the top-level RBM from the parameters
of penultimate level. So one can view the layerwise procedsrfollows. The model structure remains the
same, an infinite chain of sigmoidal belief layers, but weng®athe constraint on the parameters at each
step of the layerwise procedure. Initially all the layers tied. After training the first RBM (i.e. optimizing
under this constraint), we untie the first level parametennfthe rest. After training the second RBM (i.e.
optimizing under this slightly relaxed constraint), weiarthe second level parameters from the rest, etc.
Instead of a continuum of training criteria, we have a digcsequence of (presumably) gradually more
difficult optimization problems. By making the process ghg&ve fix the parameters of the firktlevels
after they have been trained and only optimize(the- 1)-th, i.e. train an RBM.

It would not be difficult to transform this layerwise apprbdnto a continuation method by introducing a
continuous parametey, at each steg of adding a level to the DBN, such that whep = 0 the parameters

of the(k+1)-th level (and above) are still tied to those of théh, whereas whefy,, = 1, they are completely
free of that constraint. But even in its current, discretesiam, this analysis suggests an explanation for the
good performance of the layerwise training approach in seofrreaching better optima, as evidenced in
comparative experiments against the traditional optitionatechniques in which all the levels are trained
together (Bengio et al., 2007).

12.2 Controlling Temperature

Even optimizing the log-likelihood of a single RBM might belifficult optimization problem. It turns out
that the use of stochastic gradient (such as the one obthm@dCD-k) and small initial weights is again
close to a continuation method, and could easily be turnteddne. Consider the family of optimization
problems corresponding to thegularization path(Hastie, Rosset, Tibshirani, & Zhu, 2004) for an RBM,
e.g., with¢; or ¢, regularization of the parameters, the family of traininigecta parametrized by € (0, 1]:

Cx(0) = = " log Py(x;) — [|0]]* log A. (63)

When\ — 0, we haved — 0, and it can be shown that the RBM log-likelihood becomes earin 6.
When\ — 1, there is no regularization (note that some intermediaigevaf A might be better in terms of
generalization, if the training set is small). Note thattroliing the magnitude of the biases and weights in
an RBM is equivalent to controlling themperature in a Boltzmann machine (a scaling coefficient for the
energy function). High temperature corresponds to a higtdghastic system, and at the limit a factorial
and uniform distribution over the input. Low temperatureresponds to a more deterministic system where
only a small subset of possible configurations are plausible

43

Interestingly, stochastic gradient descent starting fsomall weights gradually allows the weights to increase
in magnitude, approximately following the regularizatmath. Early stoppings a well-known and efficient
capacity control technique based on monitoring perforraamca validation set during training and keeping
the best parameters in terms of validation set error. Théemadtical connection between early stopping
and/s regularization (along with margin) has already been eistaddl (Collobert & Bengio, 2004). There
is no guarantee that the local minimum associated with ealtleof) in eq. 63 is tracked by simply letting
the weights follow the stochastic gradient path. It would be difficult to slightly change the stochastic
gradient algorithm to gradually increasewvhen the optimization is near enough a local minimum for the
current value of\. Note that the same technique might be extended for otHendtinon-linear optimization
problems found in machine learning, such as training a depprsised neural network. We want to start
from a globally optimal solution and gradually track locahima, starting from heavy regularization and
moving slowly to little or none.

12.3 Shaping: Training with a Curriculum

Humans need about two decades to be trained as fully furadt@mtults of our society. That training is highly
organized, based on an education system and a curriculuohwitroduces different concepts at different
times, exploiting previously learned concepts to easedhming of new abstractions. The idea of training
a learning machine with a curriculum can be traced back at kea(Elman, 1993). The basic idea is to
start smal] learn easier aspects of the task or easier sub-tasks, andythdually increase the difficulty
level. From the point of view of building representatiordyacated here, the idea is to learn representations
that capture low-level abstractions first, and then exphl@m and compose them to learn slightly higher-
level abstractions necessary to explain more complextstrin the data. By choosing which examples to
present and in which order to present them to the learningsyone camguidetraining and remarkably
increase the speed at which learning can occur. This ideautinely exploited inanimal trainingand is
calledshaping (Skinner, 1958; Peterson, 2004).

Shaping and the use of a curriculum can also be seen as catidimumethods. For this purpose, consider
the learning problem of modeling the data coming from a trgjrdistribution 2. The idea is to reweight
the probability of sampling the examples from the distiitmitaccording to a given schedule, starting from
the “easiest” examples and moving gradually towards exesipistrating more abstract concepts. At point
t in the schedule, we train from distributidn, with P, = P and P, chosen to be easy to learn. Like in
any continuation method, we move along the schedule whetetliaer has reached a local minimum at
the current point in the schedule, i.e., when it has sufficiently mastered theipusly presented examples
(sampled fromP,). By making small changes ih correspond to smooth changes in the probability of
sampling examples in the training distribution, we can tms a continuous path starting from an easy
learning problem and ending in the desired training digtidn.

There is a connection between the shaping/curriculum iddadlree greedy layer-wise idea. In both cases we
want to exploit the notion that a high level abstraction carerconveniently be learned once appropriate
lower-level abstractions have been learned. In the casheofalyer-wise approach, this is achieved by
gradually adding more capacity in a way that builds upon ipresly learned concepts. In the case of the
curriculum, we control the training examples so as to make that the simpler concepts have actually been
learned before showing many examples of the more advancegpts. Showing complicated illustrations
of the more advanced concepts is likely to be generally aenafstime, as suggested by the difficulty for
humans to grasp a new idea if they do not first understand theepds necessary to express that new idea
compactly.

With the curriculum idea we introduce a teacher, in additmthe learner and the training distribution or
environment. The teacher can use two sources of informtgidacide on the schedule: (a) prior knowledge
about a sequence of concepts that can more easily be leaheepresented in that order, and (b) monitoring
of the learner’s progress to decide when to move on to newriabteom the curriculum. The teacher has
to select a level of difficulty for new examples which is a coppise between “too easy” (the learner will

44

not need to change its model to account for these exampléesitam hard” (the learner cannot make an
incremental change that can account for these examplesegonMii most likely be treated as outliers or
special cases, i.e. not helping generalization).

13 Other Comments

13.1 Deep + Distributed does not include only Neural

Although much of this paper has focused on deep neural nbitectures, the idea of exploring learning
algorithms for deep architectures should be explored beyba neural net framework. For example, it
would be interesting to consider extensions of decisioa &md boosting algorithms to multiple levels, as
hinted at the end of Section 3.3.

Kernel-learning algorithms suggest another path whiclukshbe explored, since a feature space that cap-
tures the abstractions relevant to the distribution ofregewould be just the right space in which to apply
the kernel machinery. Research in this direction shouldiciem ways in which the learned kernel would
have the ability to generalize non-locally, to avoid theseuof dimensionality issues raised in Section 3.1
when trying to learn a highly-varying function.

13.2 Why Sparse Representations and Not Dimensionality Redtion

We argue here that if one is going to have fixed-size reprasens (as in the brain), then sparse rep-
resentations are more efficient to allow for varying numblebits per example. According to learning
theory (Vapnik, 1995; Li & Vitanyi, 1997), to obtain good gaalization it is enough that the total number
of bits needed to encode tihole training sebe small, compared to the size of the training set. In many
domains of interest different examples have differentrimfation content. This is why for example an image
compression algorithm normally uses a different numberitsffor different images (even if they all have
the same dimensions).

On the other hand, dimensionality reduction algorithmsethbr linear such as PCA and ICA, or non-linear
such as LLE and Isomap, map each example to the same low-siiomah space. In light of the above
argument, it would be more efficient to map each example taiahla-length representation. To simplify
the argument, assume this representation is a binary veétae are required to map each example to a
fixed-length representation, a good solution would be tasbdhat representation to have enough degrees
of freedom to represent the vast majority of the exampledevalhthe same allowing to compress that fixed-
length bit vector to a smaller variable-size code for moshefexamples. We now have two representations:
the fixed-length one, which we might use as input to make ptietis and make decisions, and a smaller,
variable-size one, which can in principle be obtained fromftxed-length one through a compression step.
For example, if the bits in our fixed-length representatientar have a high probability of being O (i.e. a
sparsity condition), then for most examples it is easy tom@ss the fixed-length vector (in average by the
amount of sparsity).

Another argument in favor of sparsity is that the fixed-léngipresentation is going to be used as input for
further processing, so that it should be easy to interprétighly compressed encoding is usually completely
entangled, so that no subset of bits in the code can reallytbgpreted unless all the other bits are taken into
account. Instead, we would like our fixed-length sparseesgnrtation to have the property that individual
bits or small subsets of these bits can be interpretedcoeespond to meaningful aspects of the input, and
capture factors of variation in the data. For example, witip@ech signal as input, if some bits encode the
speaker characteristics and other bits encode generigrésadf the phoneme being pronounced, we have
disentangled some of the factors of variation in the datd,smme subset of the factors might be sufficient
for some particular prediction tasks.

Another way to justify sparsity of the representation waspesed in Ranzato et al. (2008). This view actu-
ally explains how one could get good models even though théipa function is not explicitly maximized,

45

or only maximized approximately, as long as other condsgsuch as sparsity) are used on the learned rep-
resentation. Suppose that the representation learned aytaassociator is sparse, then the autoassociator
cannot reconstruct well every possible input pattern. Toimize the average reconstruction error on the
training set, the autoassociator then has to find a reprsamtvhich captures statistical regularities of the
data distribution. First of all, Ranzato et al. (2008) carirtbe free energy with a form of reconstruction
error (when one replaces summing over hidden unit configuraby maximizing over them). Minimizing
reconstruction error on the training set therefore amotmtainimizing free energy, i.e., maximizing the
numerator in eq. 13. Since the denominator (the partitiowwtion) is just a sum of the numerator over all
possible input configurations, we would like to make recartdion error high for most input configurations.
This can be achieved if the encoder (which maps an input tejiiesentation) is constrained in such a way
that it cannot represent well most of the possible inputepa#t (i.e., the reconstruction error is high for
most possible input patterns). One approach is to imposarmigppenalty on the representation Ranzato
et al. (2008), which can be incorporated in the trainingecidn. In this way, the term of the log-likelihood
gradient associated with the partition function is comgdieavoided, and replaced by a sparsity penalty on
the hidden unit code. Interestingly, this idea could paédigtbe used to improve RBM training, which only
uses ammpproximateestimator of the gradient of the log of the partition funotitf we add a penalty sparsity

to the hidden representation, we may compensate for thengsaks of that approximation, by making sure
we increase the free energy of most possible input configagtand not only of the reconstructed neighbors
of the input example that are obtained in the negative phSemtrastive Divergence.

13.3 Other Reasons Why Unsupervised Learning is Crucial

One of the claims of this paper is that powerful unsupervigegsemi-supervised learning is a crucial com-
ponent in building successful learning algorithms for daeghitectures aimed at Al. We briefly cover the
arguments in favor of this hypothesis here:

e Unknown future tasks: if a learning agent does not know whairé learning tasks it will have to
deal with in the future, but it knows that the task will be defirwith respect to a world (i.e. random
variables) that it can observe now, it would appear veryred to collect as much information as
possible about this world so as to learn what makes it tick.

e Once a good high-level representation is learned, othenilgg@tasks (e.g., supervised or reinforce-
ment learning) could be much easier. We know for examplekéraiel machines can be very powerful
if using an appropriate kernel, i.e. an appropriate feaspace. Similarly, we know powerful rein-
forcement learning algorithms which have guarantees ircise where the actions are essentially
obtained through linear combination of appropriate fezgunNVe do not know what the appropriate
representation should be, but one would be reassured ipiticed the salient factors of variation in
the input data, and disentangles them.

e Layer-wise unsupervised learning: this was argued in 8e&i3. Much of the learning could be done
using information available locally in one layer or subdayf the architecture, thus avoiding the
hypothesized problems with supervised gradients propagttrough long chains with large fan-in
elements.

e Connected to the two previous points is the idea that unsigest learning could put the parameters
of a supervised or reinforcement learning machine in a refyjmm which gradient descent (local op-
timization) would yield good solutions. This has been vedfempirically in cases studied in Bengio
et al. (2007).

e Less prone to overfitting: it has been argued (Hinton, 2008&) tnsupervised learning is less prone
to overfitting than supervised learning. The intuition ig ttollowing. When doing discriminant
classification, one only needs to learn a function whosetiaris matter near the decision boundary.

46

14

A very small subset of the input variations might be relevantincover the proper classification.
On the other hand, unsupervised learning tries to captutbealariations in the input. Therefore it
requires a lot more capacity, or equivalently, is less pioneverfitting at equal capacity and equal
number of training examples. Unsupervised learning candeel tio initialize or regularize in the
context of supervised learning systems.

The extra constraints imposed on the optimization by réggithe model to capture not only the input-
to-target dependency but also the statistical regulardfethe input distribution might be helpful in
avoiding some local minima (those that do not corresponatagnodeling of the input distribution).

Open Questions

Research on deep architectures is still young and manyignesemain unanswered. The following are
potentially interesting.

1.

10.

11.

12.
13.

14.

15.

16.

Can the results pertaining to the role of computationptidé circuits be generalized beyond logic
gates and linear threshold units?

Is there a depth that is mostly sufficient for the compatetinecessary to achieve Al?

How can the theoretical results on depth of circuits wifixed size input be generalized to dynamical
circuits operating in time, with context and the possipitf recursive computation?

Why is gradient-based training of deep neural netwoksfrandom initialization often unsuccessful?

Are RBMs trained by CD doing a good job of preserving theiinfation in their input, and if not how
can that be fixed?

Is the presence of local minima an important issue inimgikRBMs?

Could we replace RBMs by algorithms that would be proficémextracting good representations but
involving an easier optimization problem, perhaps evenraveoone?

Should the number of Gibbs steps in Contrastive Divergéecadjusted during training?

Besides reconstruction error, are there other more apipte ways to monitor progress during training
of RBMs? Equivalently, are there tractable approximatigithe partition function in RBMs?

Could RBMs and autoassociators be improved by imposingesform of sparsity penalty on the
representations they learn, and what would be good ways so®@o

Without increasing the number of hidden units, can thgaciy of an RBM be increased using non-
parametric forms of its energy function?

Is there a probabilistic interpretation to models ledrim stacked autoassociators?

How efficient is the greedy layer-wise algorithm for tiag Deep Belief Networks (in terms of max-
imizing the training data likelihood)? Is it too greedy?

Can we obtain low variance and low bias estimators of digelikelihood gradient in Deep Belief
Networks, i.e., can we jointly train all the layers (with pest to the unsupervised objective)?

Can optimization strategies based on continuation ogstieliver significantly improved training of
Deep Belief Networks?

Aren’t there other efficiently trainable deep architees besides the Deep Belief Network model?

47

17. Is a curriculum needed to learn the kinds of high-levet@etions that humans take years or decades
to learn?

18. Can the principles discovered to train deep architestbe applied or generalized to train recurrent
networks or dynamical belief networks, which learn to repre context and long-term dependencies?

19. Could we compute a tractable proxy for log-likelihoodDieep Belief Networks that could be used to
monitor their performance during training, even in the peswvised case?

20. How can deep architectures be generalized to repregentiation that, by its nature, might seem not
easily representable by vectors, because of its variabdessid structure (e.g. trees, graphs)?

21. Although Deep Belief Networks are in principle well sditfor the semi-supervised setting, how
should their algorithms be adapted to this setting and houldvihey fare compared to existing semi-
supervised algorithms?

22. When labeled examples are available, how should sigsehend unsupervised criteria be combined
to learn the model’s representations of the input?

23. Can we find analogs of the computations necessary for&ive Divergence and Deep Belief Net
learning in the brain?

24. Can decision tree ensembles be stacked to obtain andtciiferent type of deep architecture?

15 Conclusion

This paper started with a number of motivations: first to @sering to approach Al, then on the intuitive
plausibility of decomposing a problem into multiple levelscomputation and representation, followed
by theoretical results showing that a computational aechitre that does not have enough of these levels
can require a huge number of computational elements, andraitg algorithm that relies only on local
generalization is unlikely to generalize well when tryimgearn highly-varying functions.

Turning to architectures and algorithms, we first motivatetributed representations of the data, in which
a huge number of possible configurations of abstract featfrthe input are possible, allowing a system to
compactly represent each example, while opening the domritth form of generalization. The discussion
then focused on the difficulty of optimizing deep architeetufor learning multiple levels of distributed
representations. Although the reasons for the failureasfddrd gradient-based methods in this case remain
to be clarified, several algorithms have been introduceddemt years that demonstrate much better perfor-
mance than was previously possible with simple gradiesetaptimization, and we have tried to focus on
the underlying principles behind their success.

The paper focussed on a particular family of algorithms,Dieep Belief Networks, and their component
elements, the Restricted Boltzmann Machine. We studiedcandected together estimators of the log-
likelihood gradient in Restricted Boltzmann machinesphgj to justify the use of the Contrastive Diver-
gence update for training Restricted Boltzmann Machines. highlighted an optimization principle that
has worked well for Deep Belief Networks and related aldponis such as Stacked Autoassociators, based
on a greedy, layerwise, unsupervised initialization ofhelagel of the model. We found that this optimiza-
tion principle is actually an approximation of a more gehegimization principle, exploited in so-called
continuation methods, in which a series of gradually mofficdit optimization problems are solved. This
suggested new avenues for optimizing deep architectuitbgr dy tracking solutions along a regulariza-
tion path, or by presenting the system with a sequence ofteeleexamples illustrating gradually more
complicated concepts, in a way analogous to the way studematsimals are trained.

48

Acknowledgements

The author is particularly grateful for the inspirationft@and constructive discussions with Yann Le Cun,
Geoffrey Hinton, Joseph Turian, Aaron Courville, Hugo Larelle, Olivier Delalleau, Nicolas Le Roux,
Jérdme Louradour, Pascal Lamblin, James Bergstra, amditRuErhan. This research was performed
thanks to funding from NSERC, MITACS, and the Canada Rebdahairs.

References

Ackley, D., Hinton, G., & Sejnowski, T. (1985). A learninggalrithm for Boltzmann machinegognitive
Science9.

Allgower, E. L., & Georg, K. (1980)Numerical Continuation Methods. An Introductidso. 13 in Springer
Series in Computational Mathematics. Springer-Verlag.

Andrieu, C., de Freitas, N., Doucet, A., & Jordan, M. (2003n introduction to MCMC for machine
learning.Machine Learning50, 5-43.

Baxter, J. (1995). Learning internal representationg2rbteedings of the Eighth International Conference
on Computational Learning Thegrgp. 311-320 Santa Cruz, California. ACM Press.

Baxter, J. (1997). A bayesian/information theoretic marfébarning via multiple task samplingdachine
Learning 28, 7-40.

Belkin, M., & Niyogi, P. (2003). Using manifold structurerfpartially labeled classification. In Becker,
S., Thrun, S., & Obermayer, K. (EdsAdvances in Neural Information Processing System€am-
bridge, MA. MIT Press.

Belkin, M., Matveeva, |., & Niyogi, P. (2004). Regularizati and semi-supervised learning on large graphs.
In Shawe-Taylor, J., & Singer, Y. (EdsGOLT 2004 Springer.

Bell, A., & Sejnowski, T. (1995). An information maximisati approach to blind separation and blind
deconvolutionNeural Computation7(6), 1129-1159.

Bengio, Y., Ducharme, R., & Vincent, P. (2001). A neural mbllistic language model. In Leen, T.,
Dietterich, T., & Tresp, V. (Eds.)Advances in Neural Information Processing System9p3933—
938. MIT Press.

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (ZD0Greedy layer-wise training of deep networks.
In Scholkopf, B., Platt, J., & Hoffman, T. (EdsAdvances in Neural Information Processing Systems
19, pp. 153-160. MIT Press.

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning ldegn dependencies with gradient descent is
difficult. IEEE Transactions on Neural Networkg?2), 157-166.

Bengio, Y., & Delalleau, O. (2007). Justifying and generialg contrastive divergence. Tech. rep. 1311,
Dept. IRO, Université de Montréal.

Bengio, Y., Delalleau, O., & Le Roux, N. (2006). The curse ity variable functions for local kernel
machines. In Weiss, Y., Scholkopf, B., & Platt, J. (EdAdyvances in Neural Information Processing
Systems 1,%p. 107-114. MIT Press, Cambridge, MA.

Bengio, Y., Delalleau, O., Le Roux, N., Paiement, J.-F. cdmt, P., & Ouimet, M. (2004). Learning eigen-
functions links spectral embedding and kernel PGkeural Computation16(10), 2197—-2219.

49

Bengio, Y., Delalleau, O., & Simard, C. (2007). Decisioresalo not generalize to new variations. Tech.
rep. 1304, Universite de Montreal, Dept. IRO.

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003n&ural probabilistic language moddburnal
of Machine Learning ResearcB, 1137-1155.

Bengio, Y., & Le Cun, Y. (2007). Scaling learning algorithmasvards Al. In Bottou, L., Chapelle, O.,
DeCoste, D., & Weston, J. (Edsbarge Scale Kernel MachineMIT Press.

Boser, B., Guyon, I., & Vapnik, V. (1992). A training algdrin for optimal margin classifiers. IRifth
Annual Workshop on Computational Learning Theqy. 144-152 Pittsburgh.

Bourlard, H., & Kamp, Y. (1988). Auto-association by mudijer perceptrons and singular value decompo-
sition. Biological Cybernetics59, 291-294.

Brand, M. (2003). Charting a manifold. In Becker, S., Thr8n, & Obermayer, K. (Eds.Advances in
Neural Information Processing Systems WBT Press.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J8d)9 Classification and Regression Trees
Wadsworth International Group, Belmont, CA.

Breiman, L. (2001). Random forestsglachine Learning45(1), 5-32.

Carreira-Perpifian, M., & Hinton, G. (2005). On contrastdivergence learning. IRroceedings of the
Tenth International Workshop on Artificial Intelligenceda@tatistics, Jan 6-8, 2005, Savannah Hotel,
Barbados

Caruana, R. (1993). Multitask connectionist learning.Pmceedings of the 1993 Connectionist Models
Summer Schoppp. 372-379.

Cohn, D., Ghahramani, Z., & Jordan, M. I. (1995). Active l@ag with statistical models. In Tesauro, G.,
Touretzky, D., & Leen, T. (Eds.Advances in Neural Information Processing Systen@ambridge
MA: MIT Press.

Coleman, T. F., & Wu, Z. (1994). Parallel continuation-tthgobal optimization for molecular conforma-
tion and protein folding. Tech. rep., Cornell Universitygfartment of Computer Science.

Collobert, R., & Bengio, S. (2004). Links between percepsianips and svms. IflCML '04: Twenty-first
international conference on Machine learniNgw York, NY, USA. ACM Press.

Cortes, C., Haffner, P., & Mohri, M. (2004). Rational kersieTheory and algorithmslournal of Machine
Learning Researcltp, 1035-1062.

Cortes, C., & Vapnik, V. (1995). Support vector networkfachine Learning20, 273-297.

Cristianini, N., Shawe-Taylor, J., Elisseeff, A., & Kandpl. (2002). On kernel-target alignmeAtvances
in Neural Information Processing Systertid, 367-373.

Cucker, F., & Grigoriev, D. (1999). Complexity lower bounfids approximation algebraic computation
trees.Journal of Complexityl5(4), 499-512.

Dayan, P., Hinton, G., Neal, R., & Zemel, R. (1995). The Hedttthmachine. Neural Computation?,
889-904.

Deerwester, S., Dumais, S., Furnas, G., Landauer, T., &htaas, R. (1990). Indexing by latent semantic
analysis.Journal of the American Society for Information SciertE6), 391-407.

50

Delalleau, O., Bengio, Y., & Le Roux, N. (2005). Efficient nparametric function induction in semi-
supervised learning. In Cowell, R., & Ghahramani, Z. (Ed®rdceedings of the Tenth International
Workshop on Artificial Intelligence and Statistics, Jan,&2805, Savannah Hotel, Barbadqgp. 96—
103. Society for Artificial Intelligence and Statistics.

Doi, E., Balcan, D. C., & Lewicki, M. S. (2006). A theoreticahalysis of robust coding over noisy over-
complete channels. In Weiss, Y., Scholkopf, B., & PlattEls.),Advances in Neural Information
Processing Systems J&. 307-314. MIT Press, Cambridge, MA.

Elman, J. L. (1993). Learning and development in neural agtsr The importance of starting small..
Cognition 48, 781-799.

Freund, Y., & Haussler, D. (1994). Unsupervised learningdisfributions on binary vectors using two layer
networks. Tech. rep. UCSC-CRL-94-25, University of Catifia, Santa Cruz.

Freund, Y., & Schapire, R. E. (1996). Experiments with a needling algorithm. IrMachine Learning:
Proceedings of Thirteenth International Confereyge. 148—156 USA. ACM.

Fukushima, K. (1980). Neocognitron: A self-organizing reémetwork model for a mechanism of pattern
recognition unaffected by shift in positioBiological Cybernetics36, 193—-202.

Gartner, T. (2003). A survey of kernels for structured d&t@M SIGKDD Explorations Newslettes(1).

Geman, S., & Geman, D. (1984). Stochastic relaxation, giligtsibutions, and the bayesian restoration of
images.[EEE Transactions on Pattern Analysis and Machine Intelige 6.

Hastad, J. (1986). Almost optimal lower bounds for smalltbejircuits. InProceedings of the 18th annual
ACM Symposium on Theory of Computipp. 6-20 Berkeley, California. ACM Press.

Hastad, J., & Goldmann, M. (1991). On the power of small-depteshold circuitsComputational Com-
plexity, 1, 113-129.

Hastie, T., Rosset, S., Tibshirani, R., & Zhu, J. (2004). &htre regularization path for the support vector
machine.Journal of Machine Learning Researd) 1391-1415.

Hinton, G. E., Osindero, S., & Teh, Y. (2006). A fast learnigorithm for deep belief netsNeural
Computation18, 1527-1554.

Hinton, G. E., & Sejnowski, T. J. (1986). Learning and reféag in Boltzmann machines. In Rumelhart,
D. E., & McClelland, J. L. (Eds.Rarallel Distributed Processing: Explorations in the Mistructure
of Cognition. Volume 1: Foundation®IT Press, Cambridge, MA.

Hinton, G. (1986). Learning distributed representatiohsomcepts. InProceedings of the Eighth Annual
Conference of the Cognitive Science Socigpy 1-12 Amherst 1986. Lawrence Erlbaum, Hillsdale.

Hinton, G. (2002). Training products of experts by minimzcontrastive divergencileural Computation
14, 1771-1800.

Hinton, G. (2006). To recognize shapes, first learn to géeénasages. Tech. rep. UTML TR 2006-003,
University of Toronto.

Hinton, G., Dayan, P., Frey, B., & Neal, R. (1995). The waleep algorithm for unsupervised neural
networks.Science268 1558-1161.

Hinton, G., Sejnowski, T., & Ackley, D. (1984). Boltzmann aines: Constraint satisfaction networks that
learn. Tech. rep. TR-CMU-CS-84-119, Carnegie-Mellon énsity, Dept. of Computer Science.

51

Hinton, G., Welling, M., Teh, Y., & Osindero, S. (2001). A neiiew of ica. InProceedings of ICA-2001
San Diego, CA.

Hinton, G. (1999). Products of experts. Pnoceedings of the Ninth International Conference on Aitifi
Neural Networks (ICANNMol. 1, pp. 1-6.

Hinton, G. E., & Salakhutdinov, R. (2006). Reducing the Disienality of Data with Neural Networks.
Science313 504-507.

Hinton, G. E., & Zemel, R. S. (1994). Autoencoders, minimuesctiption length, and Helmholtz free
energy.Advances in Neural Information Processing Systeén3—10.

Ho, T. K. (1995). Random decision forest. 3nd International Conference on Document Analysis and
Recognitionpp. 278-282 Montreal, Canada.

Hochreiter, S. (1991). Untersuchungen zu dynamischeronailen Netzen. Diploma thesis, Institut fur
Informatik, Lehrstuhl Prof. Brauer, Technische UnivarsiMinchen.. See www7.informatik.tu-
muenchen.de/"hochreit.

Hotelling, H. (1933). Analysis of a complex of statisticariables into principal componentdournal of
Educational Psychologp4, 417-441, 498-520.

Hubel, D., & Wiesel, T. (1962). Receptive fields, binoculateraction, and functional architecture in the
cat’s visual cortexJournal of Physiology (London} 60, 106—154.

Hutter, M. (2005).Universal Atrtificial Intelligence: Sequential Decisionaded on Algorithmic Probability
Springer, Berlin.

Intrator, N., & Edelman, S. (1996). How to make a low-dimensil representation suitable for diverse tasks.
Connection Science, Special issue on Transfer in Neuraldtis 8, 205—-224.

Jaakkola, T., & Haussler, D. (1998). Exploiting generativadels in discriminative classifiers..

Japkowicz, N., Hanson, S. J., & Gluck, M. A. (2000). Nonlinaatoassociation is not equivalent to PCA.
Neural Computation12(3), 531-545.

Kolmogorov, A. N. (1965). Three approaches to the quantéadefinition of information. Problems of
Information and Transmissiod(1), 1-7.

Lanckriet, G., Cristianini, N., Bartlett, P., EI Gahoui, I& Jordan, M. (2002). Learning the kernel matrix
with semi-definite programming. fi€ML’2002.

Larochelle, H., Erhan, D., Courville, A., Bergstra, J., &M8go, Y. (2007). An empirical evaluation of deep
architectures on problems with many factors of variationTwenty-fourth International Conference
on Machine Learning (ICML'2007)

Le Roux, N., & Bengio, Y. (2008). Representational powerastricted boltzmann machines and deep belief
networks.Neural Computationto appear

LeCun, Y., Boser, B., Denker, J., Henderson, D., HowardHRhbard, W., & Jackel, L. (1989). Backprop-
agation applied to handwritten zip code recognitibieural Computationl(4), 541-551.

LeCun, Y., Bottou, L., Orr, G., & Milller, K.-R. (1998a). Hifent backprop. In Orr, G., & Muller, K.-R.
(Eds.),Neural Networks: Tricks of the Tragdpp. 9-50. Springer.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998b). @rant based learning applied to document
recognition.Proceedings of the IEEB6(11), 2278—-2324.

52

LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M.-A., & Hudng]. (2006). A tutorial on energy-based learn-
ing. In Bakir, G., Hofman, T., Scholkopf, B., Smola, A., & kas, B. (Eds.) Predicting Structured
Data. MIT Press.

LeCun, Y., & Huang, F. (2005). Loss functions for discrintime training of energy-based models.Rroc.
of the 10-th International Workshop on Atrtificial Intelligee and Statistics (AlStats’05)

Lewicki, M., & Sejnowski, T. (1998). Learning nonlinear aeemplete representations for efficient coding.
In Jordan, M., Kearns, M., & Solla, S. (Edsfdvances in Neural Information Processing Systems 10
MIT Press.

Li, M., & Vitanyi, P. (1997). An Introduction to Kolmogorov Complexity and Its Applicais Second
edition, Springer, New York, NY.

Lin, T., Horne, B., Tino, P., & Giles, C. (1995). Learning pterm dependencies is not as difficult with
NARX recurrent neural networks. Tech. rep. UMICAS-TR-95-Thstitute for Advanced Computer
Studies, University of Mariland.

McCulloch, W., & Pitts, W. (1943). A logical calculus of idg@anmanent in nervous activityBulletin of
Mathematical Biophysic$.

Memisevic, R., & Hinton, G. (2007). Unsupervised learnirignoage transformations. I8VPR’07: Pro-
ceedings of the 2007 Conference on Computer Vision andrR&Riecognition

Mendelson, E. (1997)ntroduction to Mathematical Logic, 4th e@€hapman & Hall.

Miikkulainen, R., & Dyer, M. (1991). Natural language preseng with modular pdp networks and dis-
tributed lexicon.Cognitive Sciengel5, 343—-399.

Mnih, A., & Hinton, G. E. (2007). Three new graphical modets &tatistical language modelling. In
Ghahramani, Z. (Ed.)Twenty-fourth International Conference on Machine Leagn{(ICML’2007)
pp. 641-648. Omnipress.

More, J., & Wu, Z. (1996). Smoothing techniques for macraeualar global optimization. In Pillo, G. D.,
& Giannessi, F. (Eds.onlinear optimization and applicationBlenum Press.

Olshausen, B., & Field, D. (1997). Sparse coding with an coeplete basis set: a strategy employed by
V1?. Journal Researci87, 3311-3325.

Orponen, P. (1994). Computational complexity of neuraoeks: a surveyNordic Journal of Computing
1(1), 94-110.

Osindero, S., & Hinton, G. E. (2008). Modeling image patalith a directed hierarchy of markov random
field. In Neural Information Processing Systems Conference (NIBS) 2

Pearlmutter, B., & Parra, L. (1996). A context-sensitivagmlization of ICA. In Xu, L. (Ed.)International
Conference On Neural Information Processidgng-Kong.

Pérez, E., & Rendell, L. A. (1996). Learning despite coneepiation by finding structure in attribute-based
data. InProceedings of the 13th International Conference on Maghisarning pp. 391-399.

Peterson, G. B. (2004). A day of great illumination: B.F.r8ler's discovery of shapingJournal of the
Experimental Analysis of Behavij@2(3), 317-328.

Pollack, J. B. (1990). Recursive distributed represematiArtificial Intelligence 46(1), 77—-105.
Rabiner, L., & Juang, B. (1986). An introduction to hiddenrktar modelslEEE ASSP Magazin@57-285.

53

Ranzato, M., Boureau, Y., Chopra, S., & LeCun, Y. (2007). Aiad energy-based framework for unsuper-
vised learning. IrProc. Conference on Al and Statistics (Al-Stats)

Ranzato, M., Boureau, Y.-L., & LeCun, Y. (2008). Sparse deatearning for deep belief networks. In
Advances in Neural Information Processing Systems (NIR3)2MIT Press.

Ranzato, M., Huang, F., Boureau, Y., & LeCun, Y. (2007). Upwwised learning of invariant feature
hierarchies with applications to object recognitionPiioc. Computer Vision and Pattern Recognition
Conference (CVPR’07)EEE Press.

Ranzato, M., & LeCun, Y. (2007). A sparse and locally shifinant feature extractor applied to document
images. Innternational Conference on Document Analysis and RetiognjlCDAR)

Ranzato, M., Poultney, C., Chopra, S., & LeCun, Y. (2007)ficient learning of sparse representations
with an energy-based model. In et al., J. P. (Béldyances in Neural Information Processing Systems
(NIPS 2006)MIT Press.

Rissanen, J. (1990%tochastic Complexity in Statistical Inquirworld Scientific, Singapore.

Roweis, S., & Saul, L. (2000). Nonlinear dimensionalitywetion by locally linear embeddingScience
290(5500), 2323-2326.

Rumelhart, D., Hinton, G., & Williams, R. (1986a). Learnirgpresentations by back-propagating errors.
Nature 323 533-536.

Rumelhart, D., McClelland, J., & the PDP Research Group §b®8Parallel Distributed Processing: Ex-
plorations in the Microstructure of Cognitigiol. 1. MIT Press, Cambridge.

Salakhutdinov, R., & Hinton, G. (2007). Semantic hashing. Pfoceedings of the 2007 Workshop on
Information Retrieval and applications of Graphical Mosl¢EIGIR 2007)

Salakhutdinov, R., & Hinton, G. (2008). Using deep beliefsn® learn covariance kernels for gaussian
processes. In Platt, J., Koller, D., Singer, Y., & Roweis(Els.),Advances in Neural Information
Processing Systems 2@IT Press, Cambridge, MA.

Saul, L., Jaakkola, T., & Jordan, M. (1996). Mean field thefmnysigmoid belief networks.Journal of
Artificial Intelligence Researcht, 61-76.

Scholkopf, B., Burges, C. J. C., & Smola, A. J. (1999Advances in Kernel Methods — Support Vector
Learning MIT Press, Cambridge, MA.

Scholkopf, B., Mika, S., Burges, C., Knirsch, P., Mill&-R., Ratsch, G., & Smola, A. (1999b). Input
space versus feature spatleEE Trans. Neural Network400(5), 1000-1017.

Scholkopf, B., Smola, A., & Miller, K.-R. (1998). Nonliae component analysis as a kernel eigenvalue
problem.Neural Computation10, 1299-1319.

Schwenk, H., & Gauvain, J.-L. (2002). Connectionist larggianodeling for large vocabulary continuous
speech recognition. linternational Conference on Acoustics, Speech and SigradeBsing pp.
765—768 Orlando, Florida.

Schwenk, H., & Milgram, M. (1995). Transformation invartaautoassociation with application to hand-
written character recognition. In Tesauro, G., Touretiky,& Leen, T. (Eds.)Advances in Neural
Information Processing Systemspp. 991-998. MIT Press.

Schwenk, H. (2004). Efficient training of large neural netkgofor language modeling. Imternational
Joint Conference on Neural Networks

54

Schwenk, H., & Gauvain, J.-L. (2005). Building continuopase language models for transcribing european
languages. Imnterspeechpp. 737-740.

Serre, T., Kreiman, G., Kouh, M., Cadieu, C., Knoblich, U.P&ggio, T. (2007). A quantitative theory of
immediate visual recognitiorRrogress in Brain Research, Computational Neuroscienteofetical
Insights into Brain Function165, 33-56.

Simard, P.Y. Steinkraus, D., & Platt, J. (2003). Best prasifor convolutional neural networks. Rroc. of
ICDAR

Skinner, B. F. (1958). Reinforcement tod#@merican Psychologisl 3, 94-99.

Smolensky, P. (1986). Information processing in dynamsgatems: Foundations of harmony theory. In
Rumelhart, D., & McClelland, J. (EdsRarallel Distributed Processing/ol. 1, chap. 6, pp. 194-281.
MIT Press, Cambridge.

Solomonoff, R. J. (1964). A formal theory of inductive indaice. Information and Contrgl7, 1-22, 224—
254,

Sutskever, |., & Hinton, G. (2007). Learning multilevel wisuted representations for high-dimensional
sequences. IRProceedings of the Eleventh International Conference difiéial Intelligence and
Statistics, March 21-24, 2007, Porto-Rico

Sutton, R., & Barto, A. (1998)Reinforcement Learning: An IntroductioMIT Press.

Taylor, G., Hinton, G., & Roweis, S. (2006). Modeling humawtion using binary latent variables. In
Advances in Neural Information Processing System$/R0 Press.

Teh, Y.-W., Welling, M., Osindero, S., & Hinton, G. E. (2008nergy-based models for sparse overcomplete
representationslournal of Machine Learning Researeh 1235-1260.

Tenenbaum, J., de Silva, V., & Langford, J. (2000). A glotedmetric framework for nonlinear dimension-
ality reduction.Science290(5500), 2319-2323.

Titov, ., & Henderson, J. (2007). Constituent parsing viitbremental sigmoid belief networks. Rroc.
45th Meeting of Association for Computational Linguis(i8€L 2007)Prague, Czech Republic.

Utgoff, P., & Stracuzzi, D. (2002). Many-layered learnif¢eural Computationl4, 2497-2539.
Vapnik, V. (1995).The Nature of Statistical Learning Theorgpringer, New York.

Vilalta, R., Blix, G., & Rendell, L. (1997). Global data agals and the fragmentation problem in decision
tree induction. InProceedings of the 9th European Conference on Machine lmgrpp. 312-327.
Springer-Verlag.

Wallace, C., & Boulton, D. (1968). An information measure ¢tassification. Computer Journall1(2),
185-194.

Wang, L., & Luk Chan, K. (2002). Learning kernel parametsgrsibing class separability measure phoc.
NIPS

Wegener, |. (1987)The Complexity of Boolean Function¥ohn Wiley & Sons.

Weiss, Y. (1999). Segmentation using eigenvectors: a ingfyiew. InProceedings IEEE International
Conference on Computer Visigop. 975-982.

55

Welling, M., Rosen-Zvi, M., & Hinton, G. (2005). Exponenrtfamily harmoniums with an application to
information retrieval. In Saul, L., Weiss, Y., & Bottou, LE@s.),Advances in Neural Information
Processing Systems. IMIT Press.

Welling, M., Zemel, R., & Hinton, G. E. (2003). Self-supesgd boosting. In Becker, S., Thrun, S., &
Obermayer, K. (Eds.Advances in Neural Information Processing System#lb Press.

Williams, C., & Rasmussen, C. (1996). Gaussian processegedoession. In Touretzky, D., Mozer, M., &
Hasselmo, M. (Eds.Advances in Neural Information Processing Systeppp8514-520. MIT Press,
Cambridge, MA.

Wolpert, D. (1992). Stacked generalizatidveural Networks5, 241-249.

Wu, Z. (1997). Global continuation for distance geometrglppems. SIAM Journal of Optimization?,
814-836.

Xu, P., Emami, A., & Jelinek, F. (2003). Training connectgimodels for the structured language model.
In Empirical Methods in Natural Language Processing, EMNLI®2

Yao, A. (1985). Separating the polynomial-time hierarchyobacles. InProceedings of the 26th Annual
IEEE Symposium on Foundations of Computer Scigmgel—-10.

Zhou, D., Bousquet, O., Navin Lal, T., Weston, J., & Schplikd3. (2004). Learning with local and global
consistency. In Thrun, S., Saul, L., & Scholkopf, B. (Ed&dvances in Neural Information Process-
ing Systems 16€ambridge, MA. MIT Press.

Zhu, X., Ghahramani, Z., & Lafferty, J. (2003). Semi-supsed learning using Gaussian fields and har-
monic functions. INCML'2003.

56

