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Abstract

Theoretical results strongly suggest that in order to learnthe kind of complicated functions that can repre-
sent high-level abstractions (e.g. in vision, language, and other AI-level tasks), one needsdeep architec-
tures. Deep architectures are composed of multiple levels of non-linear operations, such as in neural nets
with many hidden layers or in complicated propositional formulae re-using many sub-formulae. Searching
the parameter space of deep architectures is a difficult optimization task, but learning algorithms such as
those for Deep Belief Networks have recently been proposed to tackle this problem with notable success,
beating the state-of-the-art in certain areas. This paper discusses the motivations and principles regarding
learning algorithms for deep architectures, in particularthose exploiting as building blocks unsupervised
learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models
such as Deep Belief Networks.

1 Introduction

Allowing computers to model our world well enough to exhibitwhat we call intelligence has been the focus
of more than half a century of research. To achieve this, it isclear that a large quantity of information
about our world should somehow be stored, explicitly or implicitly, in the computer. Because it seems
daunting to formalize manually all that information in a form that computers can use to answer questions
and generalize to new contexts, many researchers have turned to learning algorithmsto capture a large
fraction of that information. Much progress has been made tounderstand and improve learning algorithms,
but the challenge of artificial intelligence (AI) remains. Do we have algorithms that can understand scenes
and describe them in natural language? Not really, except invery limited settings. Do we have algorithms
that can infer enough semantic concepts to be able to interact with most humans using these concepts? No.
If we consider image understanding, one of the best specifiedof the AI tasks, we realize that we do not yet
have learning algorithms that can discover the many visual and semantic concepts that would seem to be
necessary to interpret most images. The situation is similar for other AI tasks.
We assume that the computational machinery necessary to express complex behaviors (which one might
label “intelligent”) requires highly varying mathematical functions, i.e. mathematical functions that are
highly non-linear in terms of raw sensory inputs. Consider for example the task of interpreting an input
image such as the one in Figure 1. When humans try to solve a particular task in AI (such as machine vision
or natural language processing), they often exploit their intuition about how to decompose the problem
into sub-problems and multiple levels of representation. Aplausible and common way to extract useful
information from a natural image involves transforming theraw pixel representation into gradually more
abstract representations, e.g., starting from the presence of edges, the detection of more complex but local
shapes, up to the identification of abstract categories associated with sub-objects and objects which are parts



of the image, and putting all these together to capture enough understanding of the scene to answer questions
about it. We view the raw input to the learning system as a highdimensional entity, made of many observed
variables, which are related by unknown intricate statistical relationships. For example, using knowledge
of the 3D geometry of solid object and lighting, we can relatesmall variations in underlying physical and
geometric factors (such as position, orientation, lighting of an object) with changes in pixel intensities for
all the pixels in an image. In this case, our knowledge of the physical factors involved allows one to get a
picture of the mathematical form of these dependencies, andof the shape of the set of images associated
with the same 3D object. If a machine captured the factors that explain the statistical variations in the data,
and how they interact to generate the kind of data we observe,we would be able to say that the machine
understandsthose aspects of the world covered by these factors of variation. Unfortunately, in general and
for most factors of variation underlying natural images, wedo not have an analytical understanding of these
factors of variation. We do not have enough formalized priorknowledge about the world to explain the
observed variety of images, even for such an apparently simple abstraction asMAN , illustrated in Figure 1.
A high-level abstraction such asMAN has the property that it corresponds to a very large set of possible
images, which might be very different from each other from the point of view of simple Euclidean distance
in the space of pixel intensities. The set of images for whichthat label could be appropriate forms a highly
convoluted region in pixel space that is not even necessarily a connected region. TheMAN category can be
seen as a high-level abstraction with respect to the space ofimages. What we call abstraction here can be a
category (such as theMAN category) or afeature, a function of sensory data, which can be discrete (e.g., the
input sentence is at the past tense) or continuous (e.g., theinput video shows an object moving at a particular
velocity). Many lower level and intermediate level concepts (which we also call abstractions here) would be
useful to construct aMAN -detector. Lower level abstractions are more directly tiedto particular percepts,
whereas higher level ones are what we call “more abstract” because their connection to actual percepts is
more remote, and through other, intermediate level abstractions.
We do not know exactly how to build robustMAN detectors or even intermediate abstractions that would
be appropriate. Furthermore, the number of visual and semantic categories (such asMAN ) that we would
like an “intelligent” machine to capture is large. The focusof deep architecture learning is to automatically
discover such abstractions, from the lowest level featuresto the highest level concepts. Ideally, we would like
learning algorithms that enable this discovery with as little human effort as possible, i.e., without having to
manually define all necessary abstractions or having to provide a huge set of relevant hand-labeled examples.
If these algorithms could tap into the huge resource of text and images on the web, it would certainly help to
transfer much of human knowledge into machine-interpretable form.
One of the important points we argue in the first part of this paper is that the functions learned should have a
structure composed of multiple levels, analogous to the multiple levels of abstraction that humans naturally
envision when they describe an aspect of their world. The arguments rest both on intuition and on theoretical
results about the representational limitations of functions defined with an insufficient number of levels. Since
most current work in machine learning is based on shallow architectures, these results suggest investigating
learning algorithms for deep architectures, which is the subject of the second part of this paper.
In much of machine vision systems, learning algorithms havebeen limited to specific parts of such a pro-
cessing chain. The rest of of design remains labor-intensive, which might limit the scale of such systems.
On the other hand, a hallmark of what we would consider intelligent includes a large enough vocabulary of
concepts. RecognizingMAN is not enough. We need algorithms that can tackle a very largeset of such
tasks and concepts. It seems daunting to manually define thatmany tasks, and learning becomes essential
in this context. It would seem foolish not to exploit the underlying commonalities between these these tasks
and between the concepts they require. This has been the focus of research onmulti-task learning(Caruana,
1993; Baxter, 1995; Intrator & Edelman, 1996; Baxter, 1997). Architectures with multiple levels natu-
rally provide such sharing and re-use of components: the low-level visual features (like edge detectors) and
intermediate-level visual features (like object parts) that are useful to detectMAN are also useful for a large
group of other visual tasks. In addition, learning about a large set of interrelated concepts might provide a
key to the kind of broad generalizations that humans appear able to do, which we would not expect from
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separately trained object detectors, with one detector pervisual category. If each high-level category is itself
represented through a particular configuration of abstractfeatures, generalization to unseen categories could
follow naturally from new configurations of these features.Even though only some configurations of these
features would be present in the training examples, if they represent different aspects of the data, new ex-
amples could meaningfully be represented by new configurations of these features. This idea underlies the
concept ofdistributed representationthat is at the core of many of the learning algorithms described in this
paper, and discussed in Section 4.

Figure 1: We would like the raw input image to be transformed into gradually higher levels of representation,
representing more and more abstract functions of the raw input, e.g., edges, local shapes, object parts, etc.
In practice, we do not know in advance what the “right” representation should be for all these levels of
abstractions, although linguistic concepts might help us imagine what the higher levels might implicitly
represent.

This paper has two main parts which can be read almost independently. In the first part, Sections 2, 3
and 4 use mathematical arguments to motivate deep architectures, in which each level is associated with a
distributed representation of the input. The second part (in the remaining sections) covers current learning
algorithms for deep architectures, with a focus on Deep Belief Networks, and their component layer, the
Restricted Boltzmann Machine.
The next two sections of this paper review mathematical results that suggest limitations of many existing
learning algorithms. Two aspects of these limitations are considered: insufficientdepth of architectures, and
locality of estimators. To understand the notion ofdepth of architecture, one must introduce the notion
of a set of computational elements. An example of such a set is the set of computations performedby an
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artificial neuron. A function can be expressed by the composition of elements from this set, using a graph
which formalizes this composition, with one node per computational element. Depth of architecture refers
to the depth of that graph, i.e. the longest path from an inputnode to an output node. When the set of
computational elements is the set of computations an artificial neuron can make (depending on its param-
eter values), depth corresponds to the number of layers in a neural network. Section 2 reviews theoretical
results showing that an architecture with insufficient depth can require many more computational elements,
potentially exponentially more (with respect to input size), than architectures whose depth is matched to the
task. This is detrimental for learning. Indeed, if a function represents a solution to the task with a very large
but shallow architecture (with many computational elements), a lot of training examples might be needed
to tune each of these elements. We say that the expression of afunction iscompactwhen it has few com-
putational elements, i.e. less degrees of freedom that can be tuned by learning. So for a fixed number of
training examples, we would expect that compact representations of the target function would yield better
generalization.
Connected to the depth question is the question of locality of estimators, discussed in Section 3. This is
another, more geometrically obvious, limitation of a largeclass of non-parametric learning algorithms: they
obtain good generalization for a new inputx by mostly exploiting training examples in the neighborhood
of x. For example, thek nearest neighbors of the test pointx, among the training examples, vote for the
prediction atx. This locality issue is directly connected to the literature on thecurse of dimensionality, but
the results we cite show thatwhat matters for generalization is not dimensionality, butinstead the number
of “variations” of the function we wish to obtain after learning. For example, if the function represented
by the model is piecewise-constant (e.g. decision trees), then the question that matters is the number of
pieces required to approximate properly the target function. There are connections between the number of
variations and the input dimension: one can readily design families of target functions for which the number
of variations is exponential in the input dimension, such asthe parity function withd inputs.
Section 4 suggests how deep architectures could be exploited to extract multiple levels ofdistributed rep-
resentations, where the set of configurations of values at each level of thecomputation graph can be very
large. This would allow us to compactly represent a complicated function of the input.
In the remainder, the paper describes and analyses some of the algorithms that have been proposed to train
deep architectures.1 Many of these algorithms are based on theautoassociator: a simple unsupervised al-
gorithm for learning a one-layer model that computes a distributed representation for its input (Rumelhart,
Hinton, & Williams, 1986a; Bourlard & Kamp, 1988; Hinton & Zemel, 1994). We also discussconvo-
lutional neural networks, the oldest successful example of deep architecture, specialized for vision and
signal processing tasks (LeCun, Boser, Denker, Henderson,Howard, Hubbard, & Jackel, 1989; LeCun, Bot-
tou, Bengio, & Haffner, 1998b). Sections 9 and 10 are devotedto a family of more recently proposed learning
algorithms that have been very successful to train deep architectures: Deep Belief Networks (DBNs) (Hin-
ton, Osindero, & Teh, 2006) and Stacked Autoassociators (Bengio, Lamblin, Popovici, & Larochelle, 2007;
Ranzato, Poultney, Chopra, & LeCun, 2007). DBNs are based onRestricted Boltzmann Machines (RBMs)
and the Contrastive Divergence algorithm (Hinton, 2002), introduced in Section 6. In Section 7 we describe
estimators of the log-likelihood gradient for RBMs. This analysis shows how reconstruction error (used
to train autoassociators), and Contrastive Divergence (used to train RBMs) approximate the log-likelihood
gradient. Section 8 generalizes as much as possible the parametrization of RBMs so as to keep its basic
factorizing property and the Contrastive Divergence estimator of the gradient. Finally, we consider the most
challenging question: how can we possibly deal with the difficult optimization problem that training these
deep architectures entails? This part of the paper containsmostly questions and suggestions for research
directions. In particular, we discuss the principle of continuation methods, which first solves smoother ver-
sions of the desired cost function, to make a dent in the optimization of deep architectures, and we find that
existing algorithms for RBMs and DBNs already are approximate continuation methods.

1Mostly deep neural networks, to date, but we suggest later that ensembles of trees could be learned and stacked similarlyto layers
in a neural network.
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1.1 Desiderata for Learning AI

Summarizing some of the above issues, we state a number of requirements we perceive for learning algo-
rithms to solve AI.

• Ability to learn complex, highly-varying functions, i.e.,with a number of variations much greater than
the number of training examples.

• Ability to learn with little human input the low-level, intermediate, and high-level abstractions that
would be useful to represent the kind of complex functions needed for AI tasks.

• Ability to learn from a very large set of examples: computation time for training should scale well
with the number of examples, i.e. close to linearly.

• Ability to learn from mostly unlabeled data, i.e. to work in the semi-supervised setting, where not all
the examples come with the “right” associated labels.

• Ability to exploit the synergies present across a large number of tasks, i.e. multi-task learning. These
synergies exist because all the AI tasks provide different views on the same underlying reality.

• In the limit of a large number of tasks and when future tasks are not known ahead of time, strong
unsupervised learning(i.e. capturing the statistical structure in the observed data) is an important
element of the solution.

Other elements are equally important but are not directly connected to the material in this paper. They
include the ability to learn to represent context of varyinglength and structure (Pollack, 1990), so as to
allow machines to operate in a stream of observations and produce a stream of actions, the ability to make
decisions when actions influence the future observations and future rewards (Sutton & Barto, 1998), and the
ability to influence future observations so as to collect more relevant information about the world (i.e. a form
of active learning (Cohn, Ghahramani, & Jordan, 1995)).

2 Theoretical Limitations of Shallow Architectures

In this section, we present an argument in favor of deep architecture models by way of theoretical results re-
vealing limitations of archictectures with insufficient depth. This part of the paper (this section and the next)
motivate the algorithms described in the later sections, and can be skipped without making the remainder
difficult to follow. The main conclusion of this section is that functions that can be compactly represented
by a depthk architecture might require an exponential number of computational elements to be represented
by a depthk − 1 architecture. Since the number of computational elements one can afford depends on the
number of training examples available to tune or select them, the consequences are not just computational
but also statistical: poor generalization may be expected when using an insufficiently deep architecture for
representing some functions.
We consider the case of fixed-dimension inputs, where the computation performed by the machine can be
represented by a directed acyclic graph where each node performs a computation that is the application of
a function on its inputs, each of which is the output of another node in the graph or one of the external
inputs to the graph. The whole graph can be viewed as acircuit that computes a function applied to the
external inputs. When the set of functions allowed for the computation nodes is limited tologic gates, such
as{ AND, OR, NOT}, this is a boolean circuit, orlogic circuit .
Let us return to the notion of depth with more examples of architectures of different depths. Consider the
functionf(x) = x ∗ sin(a ∗ x + b). It can be expressed as the composition of simple operationssuch as
addition, subtraction, multiplication, and thesin operation, as illustrated in Figure 2. In the example, there
would be a different node for the multiplicationa ∗ x and for the final multiplication byx. Each node in
the graph is associated with an output value obtained by applying some function on input values that are
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Figure 2: Examples of functions represented by a graph of computations, where each node is taken in
some set of allowed computations. Left: the elements are{∗, +, sin} ∪

�
. The architecture computes

x∗sin(a∗x+b) and has depth 4. Right: the elements are artificial neurons computingf(x) = tanh(b+w′x);
each element in the set has a different(w, b) parameter. The architecture is a multi-layer neural network of
depth 3.

the outputs of other nodes of the graph. For example, in a logic circuit each node can compute a boolean
function taken from a small set of boolean functions. The graph as a whole has input nodes and output nodes
and computes a function from input to output. Thedepth of an architecture is the maximum length of a path
from any input of the graph to any output of the graph, i.e. 3 inthe case ofx ∗ sin(a ∗ x + b) in Figure 2.

• If we include affine operations and sigmoids in the set of computational elements, linear regression
and logistic regression have depth 1, i.e., have a single level.

• When we put a fixed kernel computationK(u, v) in the set of allowed operations, along with affine
operations, kernel machines (Schölkopf, Burges, & Smola,1999a) with a fixed kernel can be consid-
ered to have two levels. The first level has one element computing K(x, xi) for each prototypexi (a
selected representative training example) and matches theinput vectorx with the prototypesxi. The
second level performs a linear combination

∑
i αiK(x, xi) to associate the matching prototypesxi

with the expected response.

• When we put artificial neurons (affine transformation followed by a non-linearity) in our set of el-
ements, we obtain ordinary multi-layer neural networks (Rumelhart et al., 1986a). With the most
common choice of one hidden layer, they also have depth two (the hidden layer and the output layer).

• Decision trees can also be seen as having two levels, as discussed in Section 3.3.

• Boosting (Freund & Schapire, 1996) usually adds one level toits base learners: that level computes a
vote or linear combination of the outputs of the base learners.

• Stacking (Wolpert, 1992) is another meta-learning algorithm that adds one level.

• Based on current knowledge of brain anatomy (Serre, Kreiman, Kouh, Cadieu, Knoblich, & Poggio,
2007), it appears that the cortex can be seen as a deep architecture, e.g., consider the many so-called
layers in the visual system.

Although depth depends on the choice of the set of allowed computations for each element, theoretical
results suggest that it is not the absolute number of levels that matters, but the number of levels relative to
how many are required to represent efficiently the target function (with some choice of set of computational
elements). As we will describe, if a function can be compactly represented withk levels using a particular
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choice of computational element set, it might require a hugenumber of computational elements to represent
it with k − 1 or less levels (using that same computational element set).
The most formal arguments about the power of deep architectures come from investigations into computa-
tional complexity of circuits. The basic conclusion that these results suggest is thatwhen a function can be
compactly represented by a deep architecture, it might needa very large architecture to be represented by
an insufficiently deep one.
A two-layer circuit of logic gates can represent any booleanfunction (Mendelson, 1997). Any boolean
function can be written as a sum of products (disjunctive normal form: AND gates on the first layer with
optional negation of inputs, and OR gate on the second layer)or a product of sums (conjunctive normal
form: OR gates on the first layer with optional negation of inputs, and AND gate on the second layer). To
understand the limitations of shallow architectures, the first important result to consider is that with depth-
two logical circuits, most boolean functions require anexponentialnumber of logic gates (Wegener, 1987)
to be represented (with respect to input size).
Furthermore, there are functions computable with a polynomial-size logic gates circuit of depthk that require
exponential size when restricted to depthk − 1 (Hastad, 1986). The proof of this theorem relies on earlier
results (Yao, 1985) showing thatd-bit parity circuits of depth 2 have exponential size. The d-bit parity
function is defined as usual:

parity : (b1, . . . , bd) ∈ {0, 1}d 7→

{
1 if

∑d
i=1 bi is even

−1 otherwise.

One might wonder whether these computational complexity results for boolean circuits are relevant to ma-
chine learning. See Orponen (1994) for an early survey of theoretical results in computational complexity
relevant to learning algorithms. Interestingly, many of the results for boolean circuits can be generalized
to architectures whose computational elements arelinear threshold units (also known as artificial neu-
rons (McCulloch & Pitts, 1943)), which compute

f(x) = �w′x+b≥0 (1)

with parametersw andb. Thefan-in of a circuit is the maximum number of inputs of a particular element.
Circuits are often organized in layers, like multi-layer neural networks, where elements in a layer only take
their input from elements in the previous layer(s), and the first layer is the neural network input. Thesizeof
a circuit is the number of its computational elements (excluding input elements, which do not perform any
computation).
One might argue that the limitations of logic gates circuitsmight not apply to the kind of architectures
found in machine learning algorithms. With that in mind, it is interesting to note that similar theorems were
proved for circuits of linear threshold units, which are thecomputational elements of some multi-layer neural
networks. Of particular interest is the following theorem,which applies tomonotone weighted threshold
circuits (i.e. multi-layer neural networks with linear threshold units and positive weights) when trying to
represent a function compactly representable with a depthk circuit:

Theorem 2.1. A monotone weighted threshold circuit of depthk − 1 computing a functionfk ∈ Fk,N has
size at least2cN for some constantc > 0 andN > N0 (Hastad & Goldmann, 1991).

The class of functionsFk,N is defined as follows. It contains functions ofN2k−2 variables each defined by
a depthk circuit that is a tree. At the leaves of the tree there are unnegated input variables, and the function
value is at the root. Thei-th level from the bottom consists of AND gates wheni is even and OR gates when
i is odd. The fan-in at the top and bottom level isN and at all other levels it isN2.
The above results do not prove that other classes of functions (such as those we want to learn to perform
AI tasks) require deep architectures, nor that these demonstrated limitations apply to other types of circuits.
However, these theoretical results beg the question: are the depth 1, 2 and 3 architectures (typically found
in most machine learning algorithms) too shallow to represent efficiently more complicated functions? Re-
sults such as the above theorem also suggest thatthere might be no universally right depth: each function
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(i.e. each task) might require a particular minimum depth (for a given set of computational elements). We
should therefore strive to develop learning algorithms that use the data to determine the depth of the final
architecture.
Depth of architecture is connected to the notion of highly-varying functions. We argue that, in general, deep
architectures can compactly represent highly-varying functions which would otherwise require a very large
size to be represented with an inappropriate architecture.We say that a function ishighly-varying when
a piecewise approximation (e.g., piecewise-constant or piecewise-linear) of that function would require a
large number of pieces. A deep architecture is a compositionof many operations, and it could in any case
be represented by a possibly very large depth-2 architecture. The composition of computational units in a
small but deep circuit can actually be seen as an efficient factorization of a large but shallow circuit. Reor-
ganizing the way in which computational units are composed can have a drastic effect on the efficiency of
representation size. For example, whereas the polynomial

∏n
i=1

∑m
j=1 aijxj can be represented efficiently

as a product of sums, with onlyO(mn) computational elements, it would be very inefficiently represented
with a sum of product architecture, requiringO(nm) computational elements.
Further examples suggesting greater expressive power of deep architectures and their potential for AI and
machine learning are also discussed in Bengio and Le Cun (2007). An earlier discussion of the expected
advantages of deeper architectures in a more cognitive perspective is found in Utgoff and Stracuzzi (2002).
Having established some theoretical grounds justifying the need for learning deep architectures, we next turn
to a related question: deep architectures can represent highly-varying functions compactly, with less com-
putational elements than there are variations in the represented function, but many state-of-the-art machine
learning algorithms do not have that characteristic.
To conclude, a number of computational complexity results strongly suggest that functions that can be com-
pactly represented with a depthk architecture could require a very large number of elements in order to be
represented by a shallower architecture. Since each element of the architecture might have to be selected,
i.e., learned, using examples, these results mean that depth of architecture can be very important from the
point of view a statistical efficiency.

3 Local vs Non-Local Generalization: the Limits of Matching Local
Templates

This section focuses on the locality of estimators in many shallow architectures, which gives rise to poor
generalization when trying to learn highly-varying functions. This is because highly-varying functions,
which can sometimes be represented efficiently with deep architectures, cannot be represented efficiently if
the learning algorithm is a local estimator.
A local estimatorpartitions the input space in regions (possibly in a soft rather than hard way) and requires
different parameters or degrees of freedom to account for the possible shape of the target function in each of
the regions. When many regions are necessary because the function is highly varying, the number of required
parameters will also be large, and thus the number of examples needed to achieve good generalization.
As an extreme example of a shallow and local architecture, consider a disjunctive normal form (depth 2)
logic-gate circuit with all possible2n gates at the first level. The2n possibilities come from the choice, for
each gate, of negating or not each of then inputs before applying the AND computation. Each such product
is called aminterm . One can see such as circuit simply as a very large pattern matcher. More generally, if
only a subset of the input variables is used in a particular AND gate, then that gate will respond to a larger
set of input patterns. The gate is then a template matcher that responds to patterns in a connected region of
input space, e.g. the subspace that is the set of vectorsx such thatx1 = 1, x2 = 0 but x3 andx4 can take
any value.
More generally, architectures based on matching local templates can be thought of as having two levels. The
first level is made of a set of templates which can be matched tothe input. A template unit will output a
value that indicates the degree of matching. The second level combines these values, typically with a simple

8



linear combination (an OR-like operation), in order to estimate the desired output. The prototypical example
of architectures based on maching local templates is thekernel machine(Schölkopf et al., 1999a)

f(x) = b +
∑

i

αiK(x, xi), (2)

whereb andαi form the second level,kernel function K(x, xi) matches the inputx to the training example
xi, and the sum runs over all or a subset of the input patterns of the training set. In the above equation,f(x)
could be the discriminant function of a classifier, or the output of regression predictor. A kernel islocal, when
K(x, xi) > ρ is true forx in some connected region aroundxi. The size of that region can usually be con-
trolled by a hyper-parameter. An example of local kernel is the Gaussian kernelK(x, xi) = e−||x−xi||

2/σ2

,
whereσ controls the size of the region aroundxi. We can see the Gaussian kernel as computing a soft con-
junction, because it can be written as a product of one-dimensional conditions:K(u, v) =

∏
i e−(ui−vi)

2/σ2

.
If |ui − vi|/σ is small for alli, then the pattern matches andK(u, v) is large. If |ui − vi|/σ is large for a
singlei, then there is no match andK(u, v) is small.
Well-known example of kernel machines include Support Vector Machines (SVMs) (Boser, Guyon, & Vap-
nik, 1992; Cortes & Vapnik, 1995) and Gaussian processes (Williams & Rasmussen, 1996)2 for classifica-
tion and regression, but also classical non-parametric learning algorithms for classification, regression and
density estimation, such as thek-nearest neighbor algorithm, Nadaraya-Watson or Parzen windows density
and regression estimators, etc. In Section 3.2 we discussmanifold learning algorithmssuch as Isomap and
LLE that can also be seen as local kernel machines, as well as related semi-supervised learning algorithms
also based on the construction of aneighborhood graph (with one node per example and arcs between
neighboring examples).
Kernel machines with a local kernel yield generalization byexploiting what could be called thesmoothness
prior : the assumption that the target function is smooth or can be well approximated with a smooth function.
For example, in supervised learning, if we have the trainingexample(xi, yi), then it makes sense to construct
a predictorf(x) which will output something close toyi whenx is close toxi. Note how this prior requires
defining a notion of proximity in input space. This is a usefulprior, but one of the claims made in Bengio,
Delalleau, and Le Roux (2006) and Bengio and Le Cun (2007) is that such a prior if often insufficient to
generalize when the target function is highly-varying in input space (according to the notion of proximity
embedded in the prior or kernel). Consider that most kernelsused in practice can be seen as a dot product in
a feature space:K(x, xi) = φ(x) · φ(xi), where generallyφ(x) is a non-linear transformation of the input
x into a high-dimensionalfeature space. A good feature space would be one where the target function is
smooth when expressed in the feature space. One could therefore correctly argue that if the target function is
highly varying in input space and in the kernel feature space, it might simply be because we have not selected
the appropriate feature space. If our feature space does nothave that property, i.e. the approximationy ≈ yi

whenφ(x) ≈ φ(xi) is only valid in a small region aroundφ(xi), then one will need many such regions to
cover the domain of interest. Unfortunately, at least as many training examples will be needed as there are
regions necessary to cover the variations of interest in thetarget function.
The limitations of a fixed generic kernel such as the Gaussiankernel have motivated a lot of research in
designing kernelsbased on prior knowledge about the task (Jaakkola & Haussler, 1998; Schölkopf, Mika,
Burges, Knirsch, Müller, Rätsch, & Smola, 1999b; Gärtner, 2003; Cortes, Haffner, & Mohri, 2004). How-
ever, if we lack sufficient prior knowledge for designing an appropriate kernel, can we learn it? this ques-
tion also motivated much research (Lanckriet, Cristianini, Bartlett, El Gahoui, & Jordan, 2002; Wang &
Luk Chan, 2002; Cristianini, Shawe-Taylor, Elisseeff, & Kandola, 2002), and deep architectures can be
viewed as a promising development in this direction. It has been shown that a Gaussian Process kernel
machine can be improved using a Deep Belief Network to learn afeature space (Salakhutdinov & Hinton,
2008): predictions are improved by using the top-level representation instead of the raw input representa-
tion, and they are further improved by tuning the deep network to minimize the prediction error made by

2In the Gaussian Process case, as in kernel regression,f(x) in eq. 2 is the conditional expectation of the target variableY to predict,
given the inputx
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the Gaussian process, using gradients of the prediction error back-propagated into the neural network. The
feature space can be seen as a representation of the data. Good representations make examples which share
abstract characteristics close to each other. Learning algorithms for deep architectures can be seen as ways
to learn a good feature space for kernel machines.
In the next subsection we review theoretical results on the limitations of kernel machines with a Gaussian
kernel in the case of supervised learning, which show that the required number of examples grows linearly
with the number of bumps in the target function to be learned.In subsection 3.2 we present results of a
similar flavor for semi-supervised non-parametric learning algorithms, and in subsection 3.3 for decision
trees. We conclude in subsection 3.4 with a discussion on theuse of smoothness as a prior, and how it
can be made more powerful by extending the notion of complexity of a function, in the extreme case using
Kolmogorov complexity.

3.1 Theoretical Limitations of Local Kernels

Here we consider formal results about limitations of local kernel machines. The notion that local kernels
are insufficient to capture highly-varying functions is formalized in a few particular cases in Bengio et al.
(2006), Bengio and Le Cun (2007). One result is the following:

Theorem 3.1. Suppose that the learning problem is such that in order to achieve with a Gaussian kernel
machine (eq. 2) a given error level for samples from a distributionP , f must change sign at least2k times
along some straight line (i.e., in the case of a classifier, a sufficiently good decision surface must be crossed
at least2k times by that straight line). Then the kernel machine must have at leastk bases (non-zeroαi’s),
and hence at leastk training examples.

decision surface

Class −1

Class 1

Figure 3: The dotted line crosses the decision surface 19 times: according to Theorem 3.1, and in line with
intuition, one needs 10 Gaussians to learn it with an affine combination of Gaussians, with each Gaussian
capturing one of the bumps in the function.

This theorem says that we need as many examples as there are variations (“bumps”) in the function that
we wish to represent with a Gaussian kernel machine. As illustrated in Figure 3, a function may have a
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large number of variations (e.g. a sinusoidal) and yet be representable much more compactly because these
variations are interdependent. It is conceivable that a different learning algorithm could take advantage of
the global regularity (repeating pattern) to learn it with few parameters (thus requiring few examples). By
contrast, with an affine combination of Gaussians, theorem 3.1 implies one would need at leastdm

2 e = 10
Gaussians. With a local estimator, it is plausible that moreexamples will be needed to take care of new
instances of the repeating pattern in the curve. For complextasks in high dimension, the complexity of the
decision surface could quickly make learning impractical when using a local kernel method. It could also
be argued that if the curve has many variations and these variations are not related to each other through
an underlying regularity, then no learning algorithm will do much better than local estimators. However,
it might be worth it to look for more compact representationsof these variations, because if one could be
found, it would be likely to lead to better generalization, especially for variations not seen in the training set.
Of course this could only happen if there were underlying regularities to be captured in the target function,
but these are the functions that we want to learn for AI.
A different type of variability is illustrated by the parityfunction, where a small change in any direction in
input space corresponds to a large change in the desired output. In that case one can show (Bengio et al.,
2006) that the number of examples necessary with a Gaussian kernel machine is exponential in the input
dimension:

Theorem 3.2. Let f(x) = b +
∑2d

i=1 αiKσ(xi, x) be an affine combination of Gaussians with same width
σ centered on pointsxi ∈ {−1, 1}d. If f solves the parity problem, then there are at least2d−1 non-zero
coefficientsαi.

Note that one way in which the parity function is not representative of the kind of functions we are more
interested in AI is that the target function does not depend on the order of the inputs. Also, parity can be
represented with a shallow neural network withO(d) units (andO(d2) parameters). This solution exploits
the fact that projecting the input vectorx to the scalars =

∑
i xi preserves the information that is necessary

to compute parity: it is enough to consider in which ofd+1 intervalss falls to determine the correct answer,
andd threshold units are sufficient to achieve this.
Hence the theoretical results discussed in this section aremerely suggestive but do not prove that the learning
algorithms for the functions that we need to represent for AIshould not be local estimators.

3.2 Unsupervised and Semi-Supervised Algorithms Based on Neighborhood-Graph

Local estimators are found not only in supervised learning algorithms such as those discussed above, but also
in unsupervised and semi-supervised learning algorithms,to which we now turn. Here again, we find that in
order to cover the many possible variations in the function to be learned, one needs a number of examples
proportional to the number of variations to be covered.
Unsupervised learningalgorithms attempt to capture characteristics of the inputdistribution. For exam-
ple, manifold learning algorithms attempt to discover a lower-dimensional regionnear which the density
concentrates. There is a connection between kernel machines such as SVMs and Gaussian processes and
a number of unsupervised and semi-supervised learning algorithms: many of these unsupervised and semi-
supervised algorithms can be expressed as kernel machines with a particular kernel, one that is possibly
data-dependent (Bengio, Delalleau, Le Roux, Paiement, Vincent, & Ouimet, 2004). The following unsuper-
vised learning algorithms, included in this analysis, attempt to capture the manifold structure of the data by
capturing its local changes in shape: Locally Linear Embedding (Roweis & Saul, 2000), Isomap (Tenen-
baum, de Silva, & Langford, 2000), kernel Principal Components Analysis (Schölkopf, Smola, & Müller,
1998) (or kernel PCA) Laplacian Eigenmaps (Belkin & Niyogi,2003), Manifold Charting (Brand, 2003),
and spectral clustering algorithms (see Weiss (1999) for a review). Several non-parametric semi-supervised
learning algorithms are based on similar concepts, involving the use of a kernel (Zhu, Ghahramani, & Laf-
ferty, 2003; Zhou, Bousquet, Navin Lal, Weston, & Schölkopf, 2004; Belkin, Matveeva, & Niyogi, 2004;
Delalleau, Bengio, & Le Roux, 2005).
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Most of these unsupervised and semi-supervised algorithmsrely on theneighborhood graph: a graph with
one node per example and arcs between near neighbors. The question we want to discuss here is whether the
above non-parametric algorithms are likely to suffer from the same limitations already discussed for local
kernel machines for classification or regression in the previous section. With these algorithms, one can get
geometric intuition of what they are doing, as well as how being a local estimators can hinder them. This
is illustrated with the example in Figure 4 in the case of manifold learning. The issue is related to the curse
of dimensionality: to cover all the variations with locallylinear patches, a lot of patches might be necessary,
and enough examples in each patch to characterize its shape,i.e. the tangent plane at the patch location.

Figure 4: The set of images associated with the same object class forms a manifold, i.e. a region of lower
dimension than the original space of images. By rotating, translating, or shrinking an image, e.g., of digit 4,
we get other images of the same class, i.e. on the same manifold. Since the manifold is locally smooth, it can
in principle be approximated locally by linear patches, each being tangent to the manifold. Unfortunately, if
the manifold is highly curved, the patches are required to besmall, and exponentially many might be needed
with respect to manifold dimension.

Similar limitations have been proved for a large class of semi-supervised learning algorithms also based on
the neighborhoodgraph (Zhu et al., 2003; Zhou et al., 2004; Belkin et al., 2004; Delalleau et al., 2005). These
algorithms partition the neighborhood graph in regions of constant label. It can be shown that the number
of regions with constant label cannot be greater than the number of labeled examples (Bengio et al., 2006).
Hence one needs at least as many labeled examples as there arevariations of interest for the classification.
This can be prohibitive if the decision surface of interest has a very large number of variations.

3.3 Decision Trees Do not Generalize to New Variations

Decision trees are among the best studied learning algorithms. Because they can focus on specific subsets
of input variables, at first blush they seem non-local. However, they are also local estimators in the sense of
relying on a partition of the input space and using separate parameters for each region (Bengio, Delalleau,
& Simard, 2007). As we argue here, this means that they also suffer from the limitation discussed for other
non-parametric learning algorithms in the previous sections: they need at least as many training examples as
there are variations of interest in the target function, andthey cannot generalize to new variations not covered
in the training set.
As illustrated in Figure 5, a decision tree recursively partitions the input space and assigns an output value
for each of the input regions in that partition. Learning algorithms for decision trees (Breiman, Friedman,
Olshen, & Stone, 1984) are non-parametric and involve a non-convex optimization to choose a tree structure
and parameters associated with nodes and leaves. Fortunately, greedy heuristics that build the tree incre-
mentally have been found to work well. Each node of the tree corresponds to a region of the input space,
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Figure 5: A decision tree recursively partitions the input space. In a binary tree, the root node splits it in two.
Each node is associated with a region. An output value is learned for each leaf node region.

and the root is associated with the whole input space. We callconstant-leaves decision tree(the common
type) one where the whole tree corresponds to a piece-wise constant function where the pieces are defined
by the internal decision nodes: each leaf is associated withone piece, along with a constant to output in
the associated region. The decision nodes on the path from the root to a leaf define one of the mutually
exclusive regions formed by the decision tree. Like in a disjunctive normal form circuit or a Gaussian kernel
machine, the outputs of decision nodes are multiplied and form a conjunction: an example has to satisfy all
the conditions to belong to a leaf region. The decision nodesform the first level of the architecture. The
predictions associated with the leaves, along with their parameters, form the second level of the architecture.
Bengio et al. (2007) study fundamental limitations of decision trees concerning their inability togeneralize
to variations not seen in the training set. The basic argument is that a decision tree needs a separate leaf
node to properly model each such variation, and at least one training example for each leaf node. That
theoretical analysis is built along lines similar to ideas exploited previously in the computational complexity
literature (Cucker & Grigoriev, 1999). These results are also in line with previous empirical results (Pérez
& Rendell, 1996; Vilalta, Blix, & Rendell, 1997) showing that the generalization performance of decision
trees degrades when the number of variations in the target function increases.
The following results are taken from Bengio et al. (2007).

Proposition 3.3. LetF be the set of piece-wise constant functions. Consider a target functionh :
�d →

�
. For a given representation error levelε, let N be the minimum number of constant pieces required to

approximate, with a function inF , the target functionh with an error less thanε. Then to train a constant-
leaves decision tree with error less thanε one requires at leastN training examples.

The above proposition states that the number of examples needed grows linearly with the number of regions
needed to achieve a desired error level. The theorem below states a more specific result in the case of a
family of function for which the number of needed regions is exponential in the input size.
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Figure 6: Whereas a single tree can discriminate among a number of regions linear in the number of parame-
ters (leaves), an ensemble of trees can discriminate among anumber of regions exponential in the number of
trees, i.e. exponential in the total number of parameters (at least as long as the number of trees is less or equal
to the number of inputs). Each distinguishable region is associated with one of the leaves of each tree (here
there are 3 trees, each defining 2 regions, for a total of 7 regions). This is equivalent to a multi-clustering,
here 3 clusterings each associated with 2 regions. A binomial RBM is a multi-clustering with 2 linearly
separated regions per partition (each associated with one hidden unit). A multi-clustering is therefore a
distributed representation of the input pattern.

Theorem 3.4. On the task of learning thed-bit parity function, a constant-leaves decision tree withaxis-
aligned decision nodes will require at least2d(1 − 2ε) examples in order to achieve a generalization error
less than or equal toε.

Ensembles of trees (like boosted trees (Freund & Schapire, 1996), and forests (Ho, 1995; Breiman, 2001))
are more powerful than a single tree. They add a third level tothe architecture which allows the model to
discriminate among a number of regionsexponential in the number of parameters(Bengio et al., 2007).
As illustrated in Figure 6, they implicitly form adistributed representation(a notion discussed further in
Section 4) with the output of all the trees in the forest. Eachtree in an ensemble can be associated with a
discrete symbol identifying the leaf/region in which the input example falls for that tree. The description of
an input pattern with the identities of the leaf nodes for thetrees is very rich: it can represent a very large
number of possible patterns, because the number of intersections of the leaf regions associated with then
trees can be exponential inn. Since a depthk − 1 architecture might be very inefficient to represent a depth
k function, it might be interesting to explore learning algorithms based upon decision trees in which the
architecture depth is even greater than in ensembles of trees.

3.4 Smoothness versus Kolmogorov Complexity

To escape the curse of dimensionality, it is necessary to have a model that can capture a large number of
variations that can occur in the data without having to enumerate all of them. Instead, a compact representa-
tion that captures most of these variations has to be discovered by the learning algorithm. Here “compact”
means that itcould beencoded with a few bits.
The notion of local estimator is connected to the notion of smoothness and smoothness priors introduced
at the beginning of Section 3. Smoothness as a measure of simplicity is a useful way to control general-
ization, but others are possible, and probably more desirable. For example, consider a target function is
highly-varying with a number of variations much larger thanthe number of training examples one can hope
to get. A deep architecture could potentially represent such a function with a small number of parameters
(comparable to the number of training examples one could get). If one discovers such a compact represen-
tation of the target function, then a form of compression hasbeen achieved. This is likely to yield good
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generalization (Solomonoff, 1964; Kolmogorov, 1965; Li & Vitanyi, 1997; Hutter, 2005) because of Oc-
cam’s Razor. Maybe the most extreme and general way to measure that compression is with Kolmogorov
complexity. TheKolmogorov complexity is the length of the smallest string that represents the solution, in
some programming language. Using a different language onlyadds a constant to the string length (for the
code that translates strings in one language to strings in another). It is clear that many functions expressible
with a very short string can be highly varying, such as the sinus example of Figure 3. Learning theory (Vap-
nik, 1995; Li & Vitanyi, 1997) shows that if a compact description can be found to summarize the training
set, good generalization is to be expected.
The main advantage of smoothness expressed through a kernelor covariance function (in Gaussian pro-
cesses) is that the optimization problem involved in the learning algorithm can be convex, i.e. devoid of lo-
cal minima and hence easy to solve. Kolmogorov complexity isnot even computable, but it can be bounded
from above. Upper bounds on Kolmogorov complexity can be optimized. Our thesis is that deep archi-
tectures can represent many functions compactly, and that their approximate optimization might yield very
good solutions even if the global optimum is not found: any solution that is more compact than previous
ones brings a gain in generalization. Minimum Description Length (Rissanen, 1990) and its variants such
as Minimum Message Length (Wallace & Boulton, 1968) also usethis principle in the context of random
variables with many realizations: a good predictive model (in terms of out-of-sample log-likelihood) is also
one that can assign a short code to each example,on average, including not only the bits to describe each
example but also the bits necessary to describe the model itself.
What can be concluded from our analysis of limitations of learning algorithms due to insufficient depth
and local estimation? In either case, insufficient depth or local estimator, we found that one might need to
represent the target function with a very large number of tunable elements, and thus one would need a very
large number of examples. On the other hand, if a representation exists that can compactly represent the
target function, then good generalization could be obtained from a number of examples much smaller than
the number of variations of the target function. An important idea that gives hope of compactly representing
a very large number of configurations is the idea of distributed representation, discussed next, and which
introduces the second part of this paper, about learning algorithms for deep architectures.

4 Learning Distributed Representations

An old idea in machine learning and neural networks research, which could be of help in dealing with
the curse of dimensionality and the limitations of local generalization is that ofdistributed representa-
tions (Hinton, 1986; Rumelhart, McClelland, & the PDP Research Group, 1986b; Bengio, Ducharme, &
Vincent, 2001). A cartoonlocal representationfor integersi ∈ {1, 2, . . . , N} is a vectorr(i) of N bits
with a single 1 andN − 1 zeros,rj(i) = �i=j , called theone-hotrepresentation ofi. A distributed repre-
sentation for the same integer is a vector oflog2 N bits, which is a much more compact way to representi.
For the same number of possible configurations, a distributed representation can potentially be exponentially
more compact than a very local one. In practice, we use local representations which are continuous-valued
vectors where thei-th element varies according to some distance between the input and a prototype or re-
gion center, as with the Gaussian kernel discussed in Section 3. In a distributed representation the input
pattern is represented by a set of features that are not mutually exclusive, and might even be statistically
independent. For example, clustering algorithms do not build a distributed representation since the clusters
are essentially mutually exclusive, whereas Independent Components Analysis (Bell & Sejnowski, 1995;
Pearlmutter & Parra, 1996) and Principal Components Analysis or PCA (Hotelling, 1933) build a distributed
representation.
Consider a discrete distributed representationr(x) for an input patternx, whereri(x) ∈ {0, 1, . . .M},
i ∈ {1, . . . , N}. Eachri(x) can be seen as a classification ofx into M classes. Eachri(x) partitions the
x-space inM regions, but the different partitions can be combined to give rise to a potentially exponential
number of possible regions inx-space, corresponding to different configurations ofri(x). Note that some
configurations may be impossible because they are incompatible. For example, in language modeling, a local
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representation of a word could directly encode its identityby an index in the vocabulary table, or equivalently
a one-hot code with as many entries as the vocabulary size. Onthe other hand, a distributed representation
could represent the word by a number of syntactic features (e.g., distribution over parts of speech it can
have), morphological features (which suffix or prefix does ithave?), and semantic features (is it the name of
a kind of animal?). Like in clustering, we construct discrete classes, but the potential number of combined
classes is huge: we obtain what we call amulti-clustering . Whereas clustering forms a single partition
and generally involves a loss of information about the input, a multi-clustering provides asetof separate
partitions of the input space. Identifying to which region of each partition the input example belongs forms
a description of the input pattern which might be very rich, possibly not losing any information. The tuple
of symbols specifying to which region of each partition the input belongs can be seen as a transformation of
the input into a new space, where the statistical structure of the data and the factors of variation in it could
be disentangled. This corresponds to the kind of partition of x-space that an ensemble of trees can represent,
as discussed in the previous section.
In the realm of supervised learning, multi-layer neural networks (Rumelhart et al., 1986b, 1986a) and Boltz-
mann machines (Ackley, Hinton, & Sejnowski, 1985) have beenintroduced with the goal of learning dis-
tributed internal representations in the hidden layers. Unlike in the linguistic example above, the objective
is to let learning algorithms discover the features that compose the distributed representation. In a multi-
layer neural network with more than one hidden layer, there are several representations, one at each layer.
Learning multiple levels of distributed representations involves a challenging optimization problem, which
is central in the remainder of this paper.

5 Learning Deep Architectures: a Difficult Optimization Problem

After having motivated the need for deep architectures thatare non-local estimators, we now turn to the
difficult problem of training them. Experimental evidence suggests that training deep architectures involves
optimization problems that are more difficult than those involved in training shallow architectures (Bengio
et al., 2007). Much of that evidence comes from research on training multi-layer neural networks, suggesting
that training gets stuck in local minima or plateaus, with worse results than with neural networks with one
or two hidden layers.
A typical set of equations for multi-layer neural networks is the following. As illustrated in Figure 7, layer
` computes an output vectorz` using the outputz`−1 of the previous layer, starting with the inputz0,

z` = tanh(b` + W`z`−1) (3)

with parametersb` (the biases) andW` (the weights). Thetanh can be replaced bysigm(x) = 1/(1+e−x) =
1
2 (tanh(x) + 1). The top layer outputzL is used for making a prediction and is combined with a supervised
targety into a loss functionL(zL, y), typically convex. The output layer might have a non-linearity different
from tanh, e.g., the softmax

zLi =
ebLi+WLizL−1

∑
j ebLj+WLjzL−1

(4)

whereWLi is thei-th row of WL, zLi is positive and
∑

i zLi = 1. The softmax outputzLi can be used as
estimator ofP (Y = i|x), with the interpretation thatY = i is thei-th class associated with input pattern
x. In this case one often uses the negative conditional log-likelihoodL(zL, y) = − log zLy as a loss, whose
expected value over(x, y) pairs is to be minimized.
Deep architectures have not been studied much in the machinelearning literature, because of the difficulty in
optimizing them (Bengio et al., 2007). Notable exceptions includeconvolutional neural networks (LeCun
et al., 1989; LeCun et al., 1998b; Simard & Platt, 2003; Ranzato et al., 2007), and Sigmoidal Belief Networks
using variational approximations (Dayan, Hinton, Neal, & Zemel, 1995; Hinton, Dayan, Frey, & Neal, 1995;
Saul, Jaakkola, & Jordan, 1996; Titov & Henderson, 2007), and more recently Deep Belief Networks (Hinton
et al., 2006; Bengio et al., 2007). Many unreported negativeobservations as well as the experimental results
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Figure 7: Multi-layer neural network, typically used in supervised learning to make a prediction or classifica-
tion, through a series of layers each of which combines an affine operation and a non-linearity. Computations
are performed in a feedforward way from the inputx, through the hidden layershk, to the network output̂y,
which gets compared with a labely to obtain the lossL(ŷ, y) to be minimized.

in Bengio et al. (2007) suggest that gradient-based training of deep supervised multi-layer neural networks
gets stuck in local minima or plateaus. These appear to correspond to poor solutions that perform worse than
the solutions obtained for networks with 1 or 2 hidden layers. The experiments reported in Bengio et al.
(2007) also help to disantangle the effect of poor optimization with the effect of overfitting. They reveal
that in a gradient-trained deep supervised neural network with random parameter initialization, the lower
layers (closer to inputs) are poorly optimized. Indeed, we know that a two-layer network can be well trained
in general, and that from the point of view of the top two layers in a deep network, they form a shallow
network whose input is the output of the lower layers. If the top layers have enough capacity (enough hidden
units) this can be sufficient to bring training error very low, but this yields worse generalization than shallow
neural networks. On the other hand, with better initialization of the lower hidden layers, both training
and generalization error can be very low. In a well-trained deep neural network, the hidden layers form a
“good” representation of the data, which helps to make good predictions. When the lower layers are poorly
initialized, these deterministic and continuous representations generally keep most of the information about
the input, but these representations might hurt rather thanhelp the top layers to perform classification. It is
simple to obtain very smalltraining error by simply increasing the capacity of the top layer(s). For example,
optimizing the last layer of a deep neural network is usuallya convex optimization problem. Optimizing the
last two layers, although not convex, is known to be much easier than optimizing a deep network. Hence,
what matters for good generalization, and is more difficult,is the optimization of the lower layers (excluding
the last one or two). These are the layers that can give rise toa good representation of the input, in the sense
that better generalization can be achieved from these representations. We believe that good representations
capture the factors of variation in the input space and also disentangle them.
Although replacing the top two layers of a deep neural network by a convex machine such as a Gaussian
process or an SVM can yield some improvements (Bengio & Le Cun, 2007), especially on the training error,
it won’t help much in terms of generalization if the lower layers have not been sufficiently optimized.
The above clues suggest that the gradient propagated backwards into the lower layer is not sufficient to
move the parameters into regions corresponding to good solutions. Basically the optimization gets stuck
in a poor local minimum or plateau (i.e. small gradient). Since gradient-based training of the top layers
works reasonably well, it appears that the gradient becomesless informative about the required changes
in the parameters as we move towards the lower layers. There might be some connection between this
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difficulty in exploiting the gradient and the difficulty in training recurrent neural networks through long
sequences, analyzed in (Hochreiter, 1991; Bengio, Simard,& Frasconi, 1994; Lin, Horne, Tino, & Giles,
1995). In recurrent neural networks, the difficulty can be traced to a vanishing (or sometimes explosion)
of the gradient propagated through many non-linearities. There is an additional difficulty in the case of
recurrent neural networks, due to a mismatch between short-term and long-term components of the gradient.

5.1 Convolutional Neural Networks

Although deep neural networks were generally found too difficult to train well, there is one notable excep-
tion: convolutional neural networks. Convolutional nets were inspired by the visual system’s structure, and
in particular by the models of it proposed by Hubel and Wiesel(1962). The first computational models based
on these local connectivities between neurons and on hierarchically organized transformations of the image
are found in Fukushima’s Neocognitron (Fukushima, 1980). As he recognized, when neurons with the same
parameters are applied on patches of the previous layer at different locations, a form of translational invari-
ance is obtained. Later, LeCun followed-up on this idea and trained such networks using the error gradient,
obtaining and maintaining state-of-the-art performances(LeCun et al., 1989; LeCun et al., 1998b) on several
vision tasks. Modern understanding of the physiology of thevisual system is consistent with the processing
style found convolutional networks (Serre et al., 2007), atleast for the quick recognition of objects, i.e.,
without the benefit of attention and top-down feedback connections. To this day, vision systems based on
convolutional neural networks are among the best performing systems. This has been shown clearly for
handwritten character recognition (LeCun et al., 1998b), which has served as a machine learning benchmark
for many years.3

Concerning our discussion of training deep architecturs, the example of convolutional neural networks (Le-
Cun et al., 1989; LeCun et al., 1998b; Simard & Platt, 2003; Ranzato et al., 2007) is interesting because they
typically have five, six or seven layers, a number of layers which makes fully-connected neural networks
almost impossible to optimize properly when initialized randomly. What is particular in their architecture
that might explain their good generalization performance in vision tasks?
LeCun’s convolutional neural networks are organized in layers of two types: convolutional layers and sub-
sampling layers. Each layer has atopographic structure, i.e., each neuron is associated with a fixed two-
dimensional position that corresponds to a location in the input image, along with a receptive field (the region
of the input image that influences the response of the neuron). At each location of each layer, there are a
number of different neurons, each with its set of weights, associated with neurons in a rectangular patch in
the previous layer. The same set of weights, but with a different input rectangular patch, is associated with
neurons at different locations.
One untested hypothesis is that the small fan-in of these neurons (few inputs per neuron) allows gradients to
propagate through so many layers without diffusing so much as to become useless. That would be consistent
with the idea that gradients propagated through many paths gradually become too diffuse, i.e., the credit
or blame for the output error is distributed too widely and thinly. Another hypothesis (which does not
necessarily exclude the first) is that the hierarchical local connectivity structure is a very strong prior that is
particularly appropriate for vision tasks, and sets the parameters of the whole network in a favorable region
(with all non-connections corresponding to zero weight) from which gradient-based optimization works
well. The fact is that even withrandom weightsin the first layers, a convolutional neural networks performs
well (Ranzato, Huang, Boureau, & LeCun, 2007), i.e., betterthan a trained fully connected neural network
but worse than a fully optimized convolutional neural network.

3Maybe too many years? It is good that the field is moving towards more ambitious benchmarks, such as those introduced
in Larochelle, Erhan, Courville, Bergstra, and Bengio (2007).
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5.2 Autoassociators

Some of the deep architectures discussed below (Deep BeliefNets and stacked autoassociators) exploit as
component or monitoring device a particular type of neural network: the autoassociator, also called auto-
encoder, or Diabolo network (Rumelhart et al., 1986a; Bourlard & Kamp, 1988; Hinton & Zemel, 1994;
Schwenk & Milgram, 1995; Japkowicz, Hanson, & Gluck, 2000).There are also connections between the
autoassociator and RBMs discussed in Section 7. Because training an autoassociator seems easier than
training a deep network, they have been used as building blocks to train deep networks, where each level is
associated with an autoassociator that can be trained separately.
An autoassociator is trained to encode the input in some representation so that the input can be reconstructed
from that representation. Hence the target output is the input itself. If there is one linear hidden layer and the
mean squared error criterion is used to train the network, then thek hidden units learn to project the input
in the span of the firstk principal components of the data (Bourlard & Kamp, 1988). Ifthe hidden layer
is non-linear, the autoassociator behaves very differently from PCA, with the ability to capture multi-modal
aspects of the input distribution (Japkowicz et al., 2000).The formulation that we prefer generalizes the
mean squared error criterion to the minimization of the negative log-likelihood of the reconstruction, given
the encodingc(x):

RE = − logP (x|c(x)). (5)

For example, if the inputsxi are either binary or considered to be binomial probabilities, then the loss
function would be

− logP (x|c(x)) = −
∑

i

xi log fi(c(x)) + (1− xi) log(1− fi(c(x))) (6)

wheref(c(x)) is the output of the network, and in this case should be a vector of numbers in(0, 1), e.g.,
obtained with a sigmoid. The hope is thatc(x) is a distributed representation that captures the main factors
of variation in the data.
One serious issue with this approach is that if there is no other constraint, then an autoassociator with
n-dimensional input and an encoding of dimension greater or equal ton could potentially just learn the
identity function, for which many encodings would be useless (e.g., just copying the input). Surprisingly,
experiments reported in (Bengio et al., 2007) suggest that in practice, when trained with stochastic gradient
descent, autoassociators with more hidden units than inputs yield useful representations (in the sense of
classification error measured on a network taking this representation in input). A simple explanation is based
on the observation that stochastic gradient descent with early stopping is similar to aǹ2 regularization of
the parameters (Collobert & Bengio, 2004). To achieve perfect reconstruction of continuous inputs, a one-
hidden layer autoassociator with non-linear hidden units needs very small weights in the first layer (to bring
the non-linearity of the hidden units in their linear regime) and very large weights in the second layer. With
binary inputs, very large and very small weights are also needed to completely minimize the reconstruction
error. Since the implicit or explicit regularization makesit difficult to reach large-weight solutions, the
optimization algorithm find encodings which only work well for examples similar to those in the training
set, which is what we want. It means that the representation is exploiting statistical regularities present in
the training set, rather than learning to approximate the identity through a function and its inverse.
Instead or in addition to constraining the encoding by explicit or implicit regularization, one strategy is
to add noise in the encoding. This is essentially what RBMs do, as we will see later. Another strategy,
which was found very successful (Olshausen & Field, 1997; Doi, Balcan, & Lewicki, 2006; Ranzato et al.,
2007; Ranzato & LeCun, 2007; Ranzato, Boureau, & LeCun, 2008), is based on a sparsity constraint on the
code. Interestingly, these approaches give rise to weight vectors that match well qualitatively the observed
receptive fields of neurons in V1, a major area of the mammal visual system. The question of sparsity is
discussed further in Section 13.2.
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5.3 Unsupervised Learning as an Optimization Strategy

Another principle that has been found to help optimizing deep networks is based on the use of unsupervised
learning to initialize each layer in the network. If gradients with respect to a criterion defined at the output
layer become less useful as they are propagated backwards tolower layers, it is reasonable to believe that an
unsupervised learning criterion defined at the level of a single layer could be used to move its parameters in
a favorable direction. It would be reasonable to expects this if the single-layer learning algorithm discovered
a representation that captures statistical regularities of the layer’s input. PCA and most variants of ICA
seem inappropriate because they generally do not make sensein the so-calledovercomplete case, where the
number of outputs of the layer is is greater than the number ofinputs of the layer. This suggests looking in
the direction of extensions of ICA to deal with the overcomplete case (Lewicki & Sejnowski, 1998; Hinton,
Welling, Teh, & Osindero, 2001; Teh, Welling, Osindero, & Hinton, 2003), as well as algorithms related
to PCA and ICA, such as autoassociators and Restricted Boltzmann Machines, which can be applied in the
overcomplete case. Indeed, experiments performed with these one-layer unsupervised learning algorithms
in the context of a multi-layer system confirm this idea (Hinton et al., 2006; Bengio et al., 2007; Ranzato
et al., 2007).
In addition to the motivation that unsupervised learning could help reduce the dependency on the unreliable
update direction given by the gradient with respect to a supervised criterion, there is another motivation for
using unsupervised learning at each level of a deep architecture. It could be a way to naturally decompose
the problem into sub-problems associated with different levels of abstraction. We know that unsupervised
learning algorithms can extract salient information aboutthe input distribution. This information can be
captured in a distributed representation, i.e., a set of features which encode the salient factors of variation
in the input. A one-layer unsupervised learning algorithm could extract such salient features, but because
of the limited capacity of that layer, the features extracted on the first level of the architecture can be seen
as low-level features. It is conceivable that learning a second layer based on the same principle but taking
as input the features learned with the first layer could extract slightly higher-level features. In this way,
one could imagine that higher-level abstractions that characterize the input could emerge. Note how in this
process all learning could remain local to each layer, therefore side-stepping the issue of gradient diffusion
that might be hurting gradient-based learning of deep neural networks, when we try to optimize a single
global criterion. This motivates the next section, where weformalize the concepts behind RBMs.

6 Energy-Based Models and Boltzmann Machines

Because Deep Belief Networks (DBNs) are based on RestrictedBoltzmann Machines (RBMs), which are
particularenergy-based models, we introduce here the main mathematical concepts helpful to understand
them, includingContrastive Divergence(CD).

6.1 Energy-Based Models and Products of Experts

Energy-basedmodels associate a scalar energy to each configuration of thevariables of interest (LeCun
& Huang, 2005; LeCun, Chopra, Hadsell, Ranzato, & Huang, 2006; Ranzato, Boureau, Chopra, & LeCun,
2007). Learning corresponds to modifying that energy function so that its shape has desirable properties. For
example, we would like plausible or desirable configurations to have low energy. Energy-based probabilistic
models define a probability distribution through an energy function, as follows:

P (x) =
e−Energy(x)

Z
. (7)

The normalizing factorZ is called thepartition function by analogy with physical systems,

Z =
∑

x

e−Energy(x) (8)

20



with a sum running over the input space, or an appropriate integral whenx is continuous.
In theproducts of expertsformulation (Hinton, 1999, 2002), the energy function is a sum of terms, each
one associated with an “expert”fi:

Energy(x) =
∑

i

fi(x), (9)

i.e.
P (x) ∝= Pi(x) ∝

∏

i

e−fi(x) (10)

Each expertPi(x) can thus be seen as a detector of implausible configurations of x, or equivalently, as
enforcing constraints onx. This is clearer if we consider the special case wherefi(x) can only take two
values, one (small) corresponding to the case where the constraint is satisfied, and one (large) corresponding
to the case where it is not. Hinton (1999) explains the advantages of aproduct of expertsby opposition to
a mixture of experts where the product of probabilities is replaced by a weightedsum of probabilities. To
simplify, assume that each expert corresponds to a constraint that can either be satisfied or not. In a mixture
model, the constraint associated with an expert is an indication of belonging to a region which excludes
the other regions. One advantage of the product of experts formulation is therefore that the set offi(x)
forms a distributed representation: instead of trying to partition the space with one region per expert as in
mixture models, they partition the space according to all the possible configurations (where each expert can
have its constraint violated or not). Hinton (1999) proposed an algorithm for estimating the gradient of
log P (x) in eq. 10 with respect to parameters associated with each expert, using a variant (Hinton, 2002) of
the Contrastive Divergence algorithm described below.

6.1.1 Introducing Hidden Variables

In many cases of interest, we do not observe the examplex fully, or we want to introduce some non-observed
variables to increase the expressive power of the model. So we consider an observed part (still denotedx)
and ahiddenparth

P (x, h) =
e−Energy(x,h)

Z
(11)

and because onlyx is observed, we care about the marginal

P (x) =
∑

h

e−Energy(x,h)

Z
. (12)

In such cases, to map this formulation to one similar to eq. 7,we introduce the notation (inspired from
physics) offree energy, defined as follows:

P (x) =
e−FreeEnergy(x)

∑
x e−FreeEnergy(x)

, (13)

with Z =
∑

x e−FreeEnergy(x), i.e.

FreeEnergy(x) = − log
∑

h

e−Energy(x,h). (14)

The data log-likelihood gradient then has a particularly interesting form. Let us introduceθ to represent
parameters of the model. Starting from eq. 13, we obtain

∂ log P (x)

∂θ
= −

∂FreeEnergy(x)

∂θ
+

1

Z

∑

x̃

e−FreeEnergy(x̃) ∂FreeEnergy(x̃)

∂θ

= −
∂FreeEnergy(x)

∂θ
+
∑

x̃

P (x̃)
∂FreeEnergy(x̃)

∂θ
. (15)
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Hence the average log-likelihood gradient is

EP̂

[
∂ log P (x)

∂θ

]
= −EP̂

[
∂FreeEnergy(x)

∂θ

]
+ EP

[
∂FreeEnergy(x)

∂θ

]
(16)

whereP̂ denotes the training set empirical distribution andEP denotes expected value under the model’s
distributionP . Therefore, if we could sample fromP and compute the free energy tractably, we would have
a Monte-Carlo way to obtain a stochastic estimator of the log-likelihood gradient.
If the energy can be written as a sum of terms associated with each hidden unit (or to none)

Energy(x, h) = −β(x) +
∑

i

γi(x, hi), (17)

a condition satisfied in the case of the RBM, then the free energy and numerator of the likelihood can be
computed tractably (even though it involves a sum with an exponential number of terms):

P (x) =
1

Z
e−FreeEnergy(x) =

1

Z

∑

h

e−Energy(x,h)

=
1

Z

∑

h1

∑

h2

. . .
∑

hk

eβ(x)−
P

i
γi(x,hi) =

1

Z

∑

h1

∑

h2

. . .
∑

hk

eβ(x)
∏

i

e−γi(x,hi)

=
eβ(x)

Z

∑

h1

e−γ1(x,h1)
∑

h2

e−γ2(x,h2) . . .
∑

hk

e−γk(x,hk)

=
eβ(x)

Z

∏

i

∑

hi

e−γi(x,hi) (18)

In the above,
∑

hi
is a sum over all the values thathi can take. Note that all sums can be replaced by

integrals ifh is continuous, and the same principles apply. In many cases of interest, the sum or integral
(over a single hidden unit’s values) is easy to compute. The numerator of the likelihood (i.e. the free energy)
can be computed exactly in the case whereEnergy(x, h) = −β(x) +

∑
i γi(x, hi), and we have

FreeEnergy(x) = −β(x)−
∑

i

log
∑

hi

e−γi(x,hi). (19)

6.1.2 Conditional Energy-Based Models

Whereas computing the partition function is difficult in general, if our ultimate goal is to make a decision
concerning a variabley given a variablex, instead of considering all configurations(x, y), it is enough to
consider the configurations ofy for each givenx. A common case is one wherey can only take values in a
small discrete set, i.e.

P (y|x) =
e−Energy(x,y)

∑
y e−Energy(x,y)

. (20)

In this case the gradient of the conditional log-likelihoodwith respect to parameters of the energy function
can be computed efficiently. This approach has been exploited in a series of probabilistic language models
based on neural networks (Bengio et al., 2001; Schwenk & Gauvain, 2002; Bengio, Ducharme, Vincent, &
Jauvin, 2003; Xu, Emami, & Jelinek, 2003; Schwenk, 2004; Schwenk & Gauvain, 2005). That formulation
(or generally when it is easy to sum or maximize over the set ofvalues of the terms of partition function)
has been explored at length (LeCun & Huang, 2005; LeCun et al., 2006; Ranzato et al., 2007, 2007). An
important and interesting element in the latter work is thatit shows that such energy-based models can be
optimized not just with respect to log-likelihood but with respect to more general criteria whose gradient has
the property of making the energy of “correct” responses decrease while making the energy of competing
responses increase. This criterion does not necessarily give rise to a probabilistic model, but it gives rise to
a function that can be used to choosey givenx, which is often the ultimate goal in applications.
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6.2 Boltzmann Machines

The Boltzmann machine is a particular type of energy-based model, and RBMs are special forms of Boltz-
mann machines in whichP (h|x) andP (x|h) are both tractable because they factorize. In a Boltzmann
machine (Hinton, Sejnowski, & Ackley, 1984; Ackley et al., 1985; Hinton & Sejnowski, 1986), the energy
function is a second-order polynomial:

Energy(x, h) = −b′x− c′h− h′Wx− x′Ux− h′V h. (21)

There are two types of parameters, which we collectively denote byθ: the biasesbi andci (each associated
with a single element of the vectorx or of the vectorh), and the weightsWij , Uij andVij (each associated
with a pair of units). MatricesU andV are assumed to be symmetric, and in most models with zeros in
the diagonal. Non-zeros in the diagonal can be used to obtainother variants, e.g., with Gaussian instead of
binomial units (Welling, Rosen-Zvi, & Hinton, 2005).
Because of the quadratic interaction terms inh, the trick to analytically compute the free energy (eq. 18)
cannot be applied here. However, an MCMC (Monte Carlo MarkovChain (Andrieu, de Freitas, Doucet, &
Jordan, 2003)) sampling procedure can be applied in order toobtain a stochastic estimator of the gradient.
The gradient of the log-likelihood can be written as follows, starting from eq. 12:

∂ log P (x)

∂θ
=

∂ log
∑

h e−Energy(x,h)

∂θ
−

∂ log
∑

x,h e−Energy(x,h)

∂θ

= −
1∑

h e−Energy(x,h)

∑

h

e−Energy(x,h) ∂Energy(x, h)

∂θ

+
1∑

x,h e−Energy(x,h)

∑

x,h

e−Energy(x,h) ∂Energy(x, h)

∂θ

= −
∑

h

P (h|x)
∂Energy(x, h)

∂θ
+
∑

x,h

P (x, h)
∂Energy(x, h)

∂θ
. (22)

Note that∂Energy(x,h)
∂θ is easy to compute. Hence if we have a procedure to sample fromP (h|x) and one

to sample fromP (x, h), we can obtain an unbiased stochastic estimator of the log-likelihood gradient. Hin-
ton et al. (1984), Ackley et al. (1985), Hinton and Sejnowski(1986) introduced the following terminology:
in the positive phase, x is clamped to the observed input vector, and we sampleh given x; in the neg-
ative phasebothx andh are sampled, ideally from the model itself. Only approximate sampling can be
achieved tractably, e.g., using an iterative procedure that constructs an MCMC. The MCMC sampling ap-
proach introduced in Hinton et al. (1984), Ackley et al. (1985), Hinton and Sejnowski (1986) is based on
Gibbs sampling (Geman & Geman, 1984; Andrieu et al., 2003). Gibbs sampling of the joint ofN random
variablesX1 . . .XN is done through a sequence ofN sampling sub-steps of the form

Xi ∼ P (Xi|X−i = x−i) (23)

whereX−i contains theN−1 other random variables inX , excludingXi. After theseN samples have been
obtained, a step of the chain is completed, yielding a sampleof X whose distribution converges toP (X) as
the number of steps goes to∞.
Let y = (x, h) denote all the units in the Boltzmann machine, andy−i the set of values associated with
all units except thei-th one. The Boltzmann machine energy function can be rewritten by putting all the
parameters in a vectord and a symmetric matrixA,

Energy(y) = −d′y − y′Ay, (24)

with d−i the vectord without the elementdi, A−i the matrixA without thei-th row and column, andAi

the vector that is thei-th row (or column) ofA, without thei-th element. The idea is to exploit the fact that
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P (yi|y−i) can be computed and sampled from easily in a Boltzmann machine. For example, ifyi ∈ {0, 1},

P (yi = 1|y−i) =
exp(di + d′−iy−i + A′

iy−i + y′
−iA−iy−i)

exp(di + d′−iy−i + A′
iy−i + y′

−iA−iy−i) + exp(d′−iy−i + y′
−iA−iy−i

)

=
exp(di + A′

iy−i)

exp(di + A′
iy−i) + 1

=
1

1 + exp(−di −A′
iy−i

)

= sigm(di + A′
iy−i) (25)

which is the usual equation for computing a neuron’s output in terms of other neuronsy−i, in artificial neural
networks.
Two MCMC chains (one for the positive phase and one for the negative phase) are needed for each example
x, the computation of the gradient can be very expensive, and training time very long. This is essentially
why the Boltzmann machine was replaced in the late 80’s by theback-propagation algorithm for multi-layer
neural network as the dominant learning approach. However,recent work has shown that short chains can
sometimes be used successfully, and this is the principle ofContrastive Divergence, discussed below to train
RBMs.

6.3 Restricted Boltzmann Machines

TheRestrictedBoltzmann Machine (RBM) is the building block Deep Belief Networks (DBN) because it
shares parametrization with individual layers of a DBN, andbecause efficient learning algorithms were found
to train it. In an RBM,U = 0 andV = 0 in eq. 21, i.e., the only interaction terms are between a hidden unit
and a visible unit, but not between units of the same layer. This form of model was first introduced under
the name ofHarmonium (Smolensky, 1986), and learning algorithms (beyond the ones for Boltzmann
Machines) were discussed in Freund and Haussler (1994). Empirically demonstrated and efficient learning
algorithms and variants were proposed more recently (Hinton, 2002; Welling et al., 2005; Carreira-Perpiñan
& Hinton, 2005). As a consequence of the lack of input-input and hidden-hidden interactions, the energy
function is bilinear,

Energy(x, h) = −b′x− c′h− h′Wx (26)

and the factorization of the free energy of the input, introduced with eq. 17 and 19 can be applied with
β(x) = b′x andγi(x, hi) = hiWix, whereWi is the row vector corresponding to thei-th row of W .
Therefore the free energy of the input (i.e. its unnormalized log-probability) can be computed efficiently:

FreeEnergy(x) = −b′x−
∑

i

log
∑

hi

ehiWix. (27)

Using the same factorization trick (in eq. 18) due to the affine form ofEnergy(x, h) with respect toh, we
readily obtain a tractable expression for the conditional probabilityP (h|x):

P (h|x) =
exp(b′x + c′h + h′Wx)

∑
h̃ exp(b′x + c′h̃ + h̃′Wx)

=

∏
i exp(cihi + hiWix)

∏
i

∑
h̃i

exp(cih̃i + h̃iWix)

=
∏

i

exp(hi(ci + Wix))
∑

h̃i
exp(h̃i(ci + Wix))

=
∏

i

P (hi|x).
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In the commonly studied case wherehi ∈ {0, 1}, we obtain the usual neuron equation for a neuron’s output
given its input:

P (hi = 1|x) =
eci+Wix

1 + eci+Wix
= sigm(ci + Wix). (28)

Sincex andh play a symmetric role in the energy function, a similar derivation allows to efficiently compute
and sampleP (x|h):

P (x|h) =
∏

i

P (xi|h) (29)

and in the binary case
P (xj = 1|h) = sigm(bj + W ′

.j · h) (30)

whereW.j is thej-th column ofW .
In Hinton et al. (2006) binomial input units are used to encode pixel gray levels as if they were the probability
of a binary event. In the case of handwritten character images this approximation works well, but in other
cases it does not. Experiments showing the advantage of using Gaussian input units rather than binomial
units when the inputs are continuous-valued are described in Bengio et al. (2007). See Welling et al. (2005)
for a general formulation wherex andh (given the other) can be in any of the exponential family distributions
(discrete and continuous).
Although RBMs might not be able to represent efficiently somedistributions that could be represented
compactly with an unrestricted Boltzmann machine, RBMs canrepresent any discrete distribution (Freund
& Haussler, 1994; Le Roux & Bengio, 2008), if enough hidden units are used. In addition, it can be shown
that unless the RBM already perfectly models the training distribution, adding a hidden unit (and properly
choosing its weights and bias) can always improve the log-likelihood (Le Roux & Bengio, 2008).
An RBM can also be seen as forming a multi-clustering (see Section 4), as illustrated in Figure 6. Each
hidden unit creates a 2-region partition of the input space (with a linear separation). The binary setting of
the hidden units identifies one region in input space among all the regions associated with configurations of
the hidden units. Note that not all configurations of the hidden units correspond to a non-empty region in
input space. This representation is similar to what an ensemble of 2-leaf trees would create.
The sum over an exponential number of configurations can alsobe seen as a particularly interesting form of
mixture, with an exponential number of components (with respect to the number of parameters):

P (x) =
∑

h

P (x|h)P (h) (31)

whereP (x|h) is the model associated with the component indexed by configuration h. For example, if
P (x|h) is chosen to be Gaussian (see Welling et al. (2005), Bengio etal. (2007)), this is a Gaussian mixture
with 2n components whenh hasn bits. Of course, these2n components cannot be tuned independently
because they depend on shared parameters (the RBM parameters). We can see that the Gaussian mean for
each component (in the Gaussian case) is obtained as a linearcombinationb + W ′h, i.e., each hidden unit
bit contributes (or not) a vectorWi in the mean.

6.3.1 Gibbs Sampling in RBMs

Sampling from an RBM is useful for several reasons. First of all it is useful in learning algorithms, to obtain
an estimator of the log-likelihood gradient. Second, inspection of examples generated from the model is
useful to get an idea of what the model has captured or not captured about the data distribution. Since DBNs
are obtained by stacking RBMs, sampling from an RBM enables us to sample from a DBN.
Gibbs sampling in full-blown Boltzmann Machines is slow because one needs to sample both for the positive
phase (x clamped to the observed input vector) and for the negative phase (x andh are sampled from the
model) and because there are as many sub-steps in the Gibbs chain as there are units in the network. On the
other hand, the factorization enjoyed by RBMs brings two benefits: first we do not need to sample in the
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positive phase because the free energy (and therefore its gradient) is computed analytically; second, the set
of variables in(x, h) can be sampled in two sub-steps in each step of the Gibbs chain. First we sampleh
givenx, and then a newx givenh. In general product of experts models, an alternative to Gibbs sampling is
hybrid Monte-Carlo, an MCMC method involving a number of free-energy gradient computation sub-steps
for each step of the Markov chain. The RBM structure is therefore a special case of product of experts model:
the i-th termlog

∑
hi

eWixhi in eq. 27 corresponds to an expert, i.e., there is one expert per hidden neuron
and one for the input biases. With that special structure, a very efficient Gibbs sampling can be performed.
Fork Gibbs steps:

x0 ∼ P̂ (x)

h0 ∼ P (h|x0)

x1 ∼ P (x|h0)

h1 ∼ P (h|x1)

. . .

xk ∼ P (x|hk−1). (32)

Algorithm 1
RBMupdate(x1, ε, W, b, c)
This is the RBM update procedure for binomial units. It can easily adapted to other types of units.
x1 is a sample from the training distribution for the RBM
ε is a learning rate for the stochastic gradient descent in Contrastive Divergence
W is the RBM weight matrix, of dimension (number of hidden units, number of inputs)
b is the RBM biases vector for hidden units
c is the RBM biases vector for input units

for all hidden unitsi do
• computeQ(h1i = 1|x1) (for binomial units,sigm(bi +

∑
j Wijx1j))

• sampleh1i from Q(h1i|x1)
end for
for all visible unitsj do
• computeP (x2j = 1|h1) (for binomial units,sigm(cj +

∑
i Wijh1i))

• samplex2j from P (x2j = 1|h1)
end for
for all hidden unitsi do
• computeQ(h2i = 1|x2) (for binomial units,sigm(bi +

∑
j Wijx2j))

end for
•W ←W + ε(h1x

′
1 −Q(h2. = 1|x2)x

′
2)

• b← b + ε(h1 −Q(h2. = 1|x2))
• c← c + ε(x1 − x2)

6.4 Contrastive Divergence

Contrastive Divergence is an approximation of the log-likelihood gradient that has been found to be a suc-
cessful update rule for training RBMs (Carreira-Perpiñan& Hinton, 2005). A pseudo-code is shown in
Algorithm 1, with the particular equations for the conditional distributions for the case of binary input and
hidden units.
To obtain this algorithm, thefirst approximation we are going to make is replace the average over all
posible inputs (in the second term of eq. 16) by a single sample. Since we update the parameters often (e.g.,
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with stochastic or mini-batch gradient updates after one ora few training examples), there is already some
averaging going on across updates (which we know to work well(LeCun, Bottou, Orr, & Müller, 1998a)),
and the extra variance introduced by taking one or a few MCMC samples instead of doing the complete sum
might be partially canceled in the process of online gradient updates, over consecutive parameter updates.
In any case, we introduce additional variance with this approximation of the gradient.
Running a long MCMC chain is still very expensive. The idea ofk-step Contrastive Divergence (CD-
k) (Hinton, 1999, 2002) is simple, and involves asecond approximation, which introduces some bias in
the gradient: run the MCMC chain for onlyk stepsstarting from the observed examplex. The CD-k update
after seeing examplex is therefore

∆θ = −
∂FreeEnergy(x)

∂θ
+

∂FreeEnergy(x̃)

∂θ
(33)

wherex̃ is a sample from our Markov chain afterk steps. We know that whenk → ∞, the bias goes away.
We also know that when the model distribution is very close tothe empirical distribution, i.e.,P ≈ P̂ , then
when we start the chain fromx (a sample fromP̂ ) the MCMC has already converged, and we need only one
step to obtain an unbiased sample fromP (although it would still be correlated withx).
The surprising empirical result is that evenk = 1 (CD-1) often gives good results. An extensive numeri-
cal comparison of training with CD-k versus exact log-likelihood gradient has been presented inCarreira-
Perpiñan and Hinton (2005). In these experiments, takingk larger than 1 gives more precise results, although
very good approximations of the solution can obtained even with k = 1. Theoretical results (Bengio & De-
lalleau, 2007) discussed below in Section 7 help to understand why small values ofk can work: CD-k
corresponds to keeping the firstk terms of a series that converges to the log-likelihood gradient.
One way to interpret Contrastive Divergence is that it is approximating the log-likelihood gradientlocally
around the training pointx1. The stochastic reconstructionxk+1 (for CD-k) has a distribution (givenx1)
which is in some sense centered aroundx1 and becomes less centered around it ask increases, until it
becomes the model distribution. The CD-k update will decrease the free energy of the training pointx1

(which would increase its likelihood if all the other free energies were kept constant), and increase the
free energy ofxk+1, which is in the neighborhood ofx1. Note thatxk+1 is in the neighborhood ofx1,
but at the same time more likely to be in regions of high probability under the model (especially fork
larger). As argued in (LeCun et al., 2006), what is mostly needed from the training algorithm for an energy-
based model is that it makes the energy (free energy, here, tomarginalize hidden variables) of observed
inputs smaller, shoveling “energy” elsewhere, and most importantly in their neighborhood. The Contrastive
Divergence algorithm is fueled by thecontrastbetween the statistics collected when the input is a real
training example and when the input is a model sample. As further argued in the next section, one can think
of the unsupervised learning problem as discovering a decision surface that can roughly separate the regions
of high probability (where there are many observed trainingexamples) from the rest. Therefore we want
to penalize the model when it generates examples on the wrongside of that divide, and to a good way to
identify where that divide should be moved is to compare training examples with samples from the model.

6.5 Model Samples Are Negative Examples

In this section we argue that training an energy-based modelcan be achieved by solving a series of classifi-
cation problems in which one tries to discriminate trainingexamples from samples generated by the model.
In the Boltzmann machine learning algorithms, as well as in Contrastive Divergence, an important element
is the ability tosample from the model, maybe approximately. An elegant way to understand the value of
these samples in improving the log-likelihood was introduced in Welling, Zemel, and Hinton (2003), using
a connection with boosting. We start by explaining the idea informally and then formalize it, justifying
algorithms based on training the generative model with a classification criterionseparating model samples
from training examples. The maximum likelihood criterion wants the likelihood to be high on the training
examples and low elsewhere. If we already have a model and we want to increase its likelihood, the contrast
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between where the model puts high probability (representedby samples) and where are the training exam-
ples indicates how to change the model. If we were able to approximately separate training examples from
model samples with a decision surface, we could increase likelihood by reducing the value of the energy
function on one side of the decision surface (the side where there are more training examples) and increasing
it on the other side (the side where there are more samples from the model). Mathematically, consider the
gradient of the log-likelihood with respect to the parameters of theFreeEnergy(x) (or Energy(x) if we
do not introduce explicit hidden variables), given in eq. 16. Now consider a highly regularized two-class
probabilistic classifier which is only able to produce an output probabilityq(x) = P (y = 1|x) barely dif-
ferent from 1

2 (hopefully on the right side more often than not). Letq(x) = sigm(a(x)), i.e., a(x) is the
discriminant function or an unnormalized conditional log-probability, just like the free energy. The average
conditional log-likelihood gradient for this probabilistic classifier is

EP̂

[
∂ log P (y|x)

∂θ

]
= EP̂

[
∂(y log q(x) + (1− y) log(1− q(x)))

∂θ

]

= EP̂

[
(1− q(x))

∂a(x)

∂θ

∣∣∣∣ y = 1

]
− EP̂

[
q(x)

∂a(x)

∂θ

∣∣∣∣ y = 0

]

≈
1

2
EP̂

[
∂a(x)

∂θ

∣∣∣∣ y = 1

]
−

1

2
EP̂

[
∂a(x)

∂θ

∣∣∣∣ y = 0

]
(34)

where the last equality is when the classifier is highly regularized: when the output weights are small,a(x)
is close to 0 andq(x) ≈ 1

2 , so that(1 − q(x)) ≈ q(x). This expression for the log-likelihood gradient
corresponds exactly to the one obtained for energy-based models where the likelihood is expressed in terms
of a free energy (eq. 16), when we interpret training examples as positive examples (y = 1) and model
samples as negative examples (y = 0). One way to interpret this result is that if we could improvea
classifier that separated training samples from model samples, we could improve the log-likelihood of the
model, by putting more probability mass on the side of training samples. Practically, this could be achieved
with a classifier whose discriminant function was defined as the free energy of a generative model (up to
a multiplicative factor), and assuming one could obtain samples (possibly approximate) from the model.
A particular variant of this idea has been used to justify a boosting-like incremental algorithm for adding
experts in products of experts (Welling et al., 2003).

6.6 Variants of RBMs

We have already mentioned that it is straightforward to generalize the conditional distributions associated
with visible or hidden units, e.g., to any member of the exponential family (Welling et al., 2003). Gaussian
units and exponential or truncated exponential units have been proposed or used in Freund and Haussler
(1994), Welling et al. (2003), Bengio et al. (2007), Larochelle et al. (2007). With respect to the analysis
presented here, the equations can be easily adapted by simply changing the domain of the sum (or integral)
for thehi andxi. Diagonal quadratic terms (e.g., to yield Gaussian or truncated Gaussian distributions) can
also be added in the energy function without losing the property that the free energy factorizes.
We review some of the more structural variations that have been proposed on the basic RBM model, in order
to increase its expressive power or exploit particular structure in the data.

6.6.1 Lateral Connections

The RBM can be made slightly less restricted by introducing interaction terms or “lateral connections” be-
tween visible units. Samplingh fromP (h|x) is still easy but samplingx fromP (x|h) is now generally more
difficult, and amounts to sampling from a Markov Random Fieldwhich is also a fully observed Boltzmann
machine, in which the biases are dependent on the value ofh. Osindero and Hinton (2008) propose such
a model for capturing image statistics and their results suggest that Deep Belief Nets (DBNs) using such
modules generate more realistic image patches than DBNs using ordinary RBMs. Their results also show
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that the resulting distribution has marginal and pairwise statistics for pixel intensities that are similar to those
observed on real image patches.
These lateral connections capture pairwise dependencies that can be more easily captured this way than using
hidden units, saving the work of hidden units for higher-order dependencies. In the case of the first layer, it
can be seen that this amounts to a form of whitening, which hasbeen found useful as a preprocessing step in
image processing systems (Olshausen & Field, 1997). The idea proposed in Osindero and Hinton (2008) is
to use lateral connections at all levels of a DBN (which can now be seen as a hierarchy of Markov random
fields). The generic advantage of this type of approach wouldbe that the higher level factors represented by
the hidden units do not have to encode all the local “details”that the lateral connections at the levels below
can capture. For example, when generating an image of a face,the approximate locations of the mouth and
nose might be specified at a high level whereas their precise location could be selected in order to satisfy
the pairwise preferences encoded in the lateral connections at a lower level. This appears to yield generated
images with sharper edges and generally more accuracy in therelative locations of parts, without having to
expand a large number of higher-level units.
In order to sample fromP (x|h), we can start a Markov chain at the current example (which presumably
already has pixel co-dependencies similar to those represented by the model, so that convergence should
be quick) and only run a short chain. To reduce sampling variance in CD for this model, Osindero and
Hinton (2008) used five damped mean-field steps instead of an ordinary Gibbs chain on thex’s: xt =
αxt−1 + (1− α)sigm(b + Uxt−1 + W ′h), with α ∈ (0, 1).

6.6.2 Conditional RBMs and Temporal RBMs

A Conditional RBM is an RBM where some of the parameters are not free but are instead parametrized
functions of another random variable. For example, consider an RBM for the joint distributionP (X, H)
between observed vectorX and hidden vectorH , with parameters(b, c, W ) as per eq. 21, respectively for
input biasesb, hidden biasesc, and the weight matrixW . This idea has been introduced in Taylor, Hinton,
and Roweis (2006) for context-dependent RBMs in which the hidden biasesc are affine functions of a
context variableC. Hence the RBM representsP (X, H |C), or marginalizing overH , P (X |C). In general
the parametersθ of the RBM can be written as a parametrized functionθ = f(C; ω) with parametersω.
The Contrastive Divergence algorithm for RBMs can be easilygeneralized to the case of Conditional RBMs.
The CD gradient estimator∆θ on a parameterθ can be simply back-propagated to obtain a gradient estimator
onω:

∆ω = ∆θ
∂θ

∂ω
. (35)

In the affine caseb = β + MC (with b, β andC column vectors andM a matrix) studied in Taylor et al.
(2006), the CD update on the conditional parameters is simply

∆β = ∆b

∆M = ∆b C′ (36)

where the last multiplication is an outer product, and∆b is the update given by CD-k.
This idea has been successfully applied to model conditional distributionsP (xt|xt−1, xt−2, xt−3) in se-
quential data of human motion (Taylor et al., 2006), wherext is a vector of joint angles and other geometric
features computed from motion capture data of human movements such as walking and running. Interest-
ingly, this allowsgeneratingrealistic human motionsequences, by successively sampling thet-th frame
given the previously sampledk frames, i.e. approximating

P (x1, x2, . . . , xT ) ≈ P (x1, . . . xk)

T∏

t=k+1

P (xt|xt−1, . . . xt−k). (37)

The initial frames can be generated by using special null values as context or using a separate model for
P (x1, . . . xk).
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xtxt−1xt−2

htht−1ht−2

Figure 8: Example of Temporal RBM for modeling sequential data, including dependencies between the
hidden variables. The double-arrow arc indicates an undirected connection, i.e. an RBM. The single-arrow
arcs indicate conditional dependency: the(xt, ht) RBM is conditionned by the values of the past inputs and
past hidden vectors.

As demonstrated in Memisevic and Hinton (2007), it can be useful to make not just the biases but also the
weights conditional on a context variable. In that case we greatly increase the number of degrees of freedom,
introducing the capability to model three-way interactions between an input unitxi, a hidden unithj, and a
context unitck through interaction parametersUijk. This approach has been used withX an image andC
the previous image in a video, and the model learns to captureflow fields(Memisevic & Hinton, 2007).
Probabilistic models of sequential data with hidden variablesHt (calledstate) can gain a lot by capturing the
temporal dependencies between the hidden variable at different timest in the sequence. This is what allows
Hidden Markov Models (HMMs) (Rabiner & Juang, 1986) to capture dependencies in a long sequence
even if the model only considers the hidden variable to be a Markov chain of order 1 (where the direct
dependence is only betweenHt andHt+1). Whereas the hidden variable representationHt in HMMs is local
(all the possible values ofHt are enumerated and specific parameters associated with eachof these values),
Temporal RBMs have been proposed (Sutskever & Hinton, 2007) to construct adistributed representation of
the state. The idea is an extension of the Conditional RBM presented above, but where the context includes
not only past inputs but also past values of the state, e.g., we build a model of

P (Ht, Xt|Ht−1, Xt−1, . . . , Ht−k, Xt−k) (38)

where the context isCt = (Ht−1, Xt−1, . . . , Ht−k, Xt−k), as illustrated in Figure 8. Although sampling
of sequences generated by Temporal RBMs can be done as in Conditional RBMs (with the same MCMC
approximation used to sample from RBMs, at each time step), exact inference of the hidden state sequence
given an input sequence is not anymore tractable. Instead, Sutskever and Hinton (2007) propose to use a
mean-field filtering approximation of the hidden sequence posterior.

6.6.3 Factored RBMs

In several probabilistic language models, it has been proposed to learn a distributed representation of each
word (Deerwester, Dumais, Furnas, Landauer, & Harshman, 1990; Miikkulainen & Dyer, 1991; Bengio
et al., 2001, 2003). For an RBM that models a sequence of words, it would be convenient to have a
parametrization that automatically learns a distributed representation for each word in the vocabulary. This
is essentially what Mnih and Hinton (2007) propose. They usea factorization of the weight matrixW into
two factors, one that depends on the location in the input subsequence, and one that does not. Consider the
computation of the hidden units’ probabilities given the input subsequence(w1, w2, . . . , wk), where each
word wt is represented by a one-hot vectorvt (all 0’s except for a 1 at positionwt) and these vectors are
concatenated into the input vectorx = (v1, . . . , vk). Instead of applying directly a matrixW to x, do the fol-
lowing. First, each word symbolwt is mapped through a matrixR to ad-dimensional vectorR.,wt

= Rvt,
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for t ∈ {1 . . . k}; second, the concatenated vectors(R.,w1
, R.,w2

, . . . , R.,wk
) = (Rv1, . . . Rvk) are multi-

plied by a matrixB. HenceW = B(R R . . .R), where(R R . . . R) indicates concatenation (not product)
of R. This model has produced better out-of-sample log-likelihood than state-of-the-art language models
based on n-grams (Mnih & Hinton, 2007). This factorization can be combined with the temporal RBM idea
introduced above, yielding further improvements in generalization performance (Mnih & Hinton, 2007).

7 Truncations of the Log-Likelihood in Gibbs-Chain Models

Here we approach the Contrastive Divergence update rule from a different perspective, which gives rise to
possible generalizations of it and links it to the reconstruction error often used to monitor its performance
and that is used to optimize autoassociators (eq. 5). The inspiration for this derivation comes from Hinton
et al. (2006): first from the idea (explained in Section 11.1)that the Gibbs chain can be associated with an
infinite directed graphical model (which here we associate to an expansion of the log-likelihood and of its
gradient), and second that the convergence of the chain justifies Contrastive Divergence (since the expected
value of eq. 33 becomes equivalent to eq. 15 when the chain sample x̃ comes from the model).
Consider a converging Markov chainxt ⇒ ht ⇒ xt+1 ⇒ . . . defined by conditional distributionsP (ht|xt)
andP (xt+1|ht). A sufficient condition for convergence is that it mixes, i.e., one can reach any state from
any state in finite time.
The following Lemma, demonstrated in (Bengio & Delalleau, 2007), shows that the by consecutive appli-
cation of Bayes rule, one can expand the log-likelihood in a series that involves the samples in the Gibbs
chain.

Lemma 7.1. Consider the Gibbs chainx1 ⇒ h1 ⇒ x2 ⇒ h2 . . . starting at data pointx1. The log-
likelihood can be expanded as follows for any path of the chain:

log P (x1) = log P (xt) +

t−1∑

s=1

log
P (xs|hs)

P (hs|xs)
+ log

P (hs|xs+1)

P (xs+1|hs)
(39)

and consequently, since this is true for any path:

log P (x1) = E[log P (xt)] +

t−1∑

s=1

E

[
log

P (xs|hs)

P (hs|xs)
+ log

P (hs|xs+1)

P (xs+1|hs)

]
(40)

where the expectation is over the Markov chain, conditionalonx1.

In the limit t → ∞, the last term is just the entropy of distributionP (x). Note that the terms do not vanish
ast→∞, so as such this expansion does not justify truncating the series to approximate the log-likelihood.
We will see that reconstruction error, often used for monitoring training progress of RBMs, is closely related
to the first term in the series.
Now consider the corresponding gradient series. To prove the theorem, the following simple lemma, which
we use later, is very useful:

Lemma 7.2. For any modelP (Y ) with parametersθ,

E

[
∂ log P (Y )

∂θ

]
= 0 (41)

when the expected value is taken according toP (Y ).
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Proof. We start from the sum to 1 constraint onP (Y ), differentiate and obtain the Lemma. To obtain the
last line below we use the fact that for any functionf(θ), we have∂f(θ)

∂θ = f(θ)∂ log f(θ)
∂θ .

E[1] =
∑

y

P (Y = y) = 1

∂
∑

y P (Y = y)

∂θ
=

∂1

∂θ
= 0

∑

y

P (Y = y)
∂ log P (Y = y)

∂θ
= 0

The following theorem can then be proved (Bengio & Delalleau, 2007).

Theorem 7.3. Consider the converging Gibbs chainx1 ⇒ h1 ⇒ x2 ⇒ h2 . . . starting at data pointx1.
The log-likelihood gradient can be expanded in a convergingseries as follows, where all expectations are
conditional onx1:

∂ log P (x1)

∂θ
=

t−1∑

s=1

(
E

[
∂ log P (xs|hs)

∂θ

]
+ E

[
∂ log P (hs|xs+1)

∂θ

])

+ E

[
∂ log P (xt)

∂θ

]
(42)

with the terms ins converging to 0 ass→∞, and the final term (int) also converges to 0, ast→∞.

Since thek-th term becomes small ask increases, that justifies truncating the chain tok steps. Note how
the sums in the above expansion can be readily replaced by easy to obtain samples (for the firstk steps
in the Gibbs chain). This gives rise to a stochastic gradient, whose expected value is the exact expression
associated with a truncation of the above log-likelihood gradient expansion. Finally, it can be shown (Bengio
& Delalleau, 2007) that truncating to the firstk steps gives a parameter update that is exactly the CD-k update
in the case of a binomial RBM.

Corollary 7.4. When considering only the terms arising of the firstk steps in the Gibbs chainx1 ⇒ h1 ⇒
x2 ⇒ h2 ⇒ . . . xk ⇒ hk, the unbiased stochastic estimator of the gradient of the truncated log-likelihood
expansion of theorem 7.3 (with expectations replaced by samples in the chain) equals the CD-k update in
the case of a binomial RBM.

Experiments and theory support the idea that CD-k yields better and faster convergence (in terms of number
of iterations) than CD-(k−1) (but the computational overhead might not always be worth it). This is because
smallerk corresponds to more bias in the estimation of the log-likelihood gradient. So CD-1 corresponds
to taking the first two terms in the expansion (one sample ofh1|x1 and one sample ofx2|h1). What about
taking only the first one? The first term in the log-likelihoodgradient expansion is

∑

h1

P (h1|x1)
∂ log P (x1|h1)

∂θ
(43)

Now consider a mean-field approximation of the above, in which instead of the average over allh1 configu-
rations according toP (h1|x1) one replacesh1 by its average configuration̂h1 = E[h1|x1], yielding:

∂ log P (x1|ĥ1)

∂θ
(44)
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which is minus the gradient ofreconstruction error ,

− logP (x1|ĥ1) (45)

typically used to train autoassociators.
So we have found that the truncation of the log-likelihood expansion gives rise to first approximation (1 term)
to roughly reconstruction error (through a biased mean-field approximation), with slightly better approxi-
mation (2 terms) to CD-1 (approximating the expectation by asample), and with more terms to CD-k. Note
that reconstruction error is deterministically computed and for this reason has been used to track progress
when training RBMs with CD. Since reconstruction error and CD-k are complementary in terms of bias and
variance (as estimators of the log-likelihood gradient), it might be interesting to explore combinations of
them: a low-variance high-bias estimator (reconstructionerror gradient) might be more useful at the begin-
ning of training (where having a precise estimation of the gradient is less important) whereas the low-bias
high-variance estimator (CD-k) would be more useful to achieve training convergence.

8 Generalizing RBMs and Contrastive Divergence

Let us try to generalize the definition of RBM so as to include alarge class of parametrizations for which
essentially the same ideas and learning algorithms (Contrastive Divergence) that we have discussed above
can be applied in a straightforward way. We generalize RBMs as follows: aGeneralized RBM is an energy-
based probabilistic model with input vectorx and hidden vectorh whose energy function is such thatP (h|x)
andP (x|h) both factorize. This definition can be formalized in terms ofthe parametrization of the energy
function:

Proposition 8.1. The energy function associated with a model of the form of eq.11 such thatP (h|x) =∏
i P (hi|x) andP (x|h) =

∏
j P (xj |h) must have the form

Energy(x, h) =
∑

j

φj(xj) +
∑

i

ξi(hi) +
∑

i,j

ηi,j(hi, xj). (46)

Proof. To achieve factorization ofP (h|x) we have already shown that the energy function must be writable
as a sum overi (with one term perhi), in eq. 18. This gives us the constraint thatEnergy(x, h) can be written
asEnergy(x, h) = −β(x) +

∑
i γi(x, hi), for someβ andγi. Using the same arguments but inverting the

roles ofx andh, we obtain that the constraintEnergy(x, h) = −α(h) +
∑

j ρj(xj , h) for someα andρj .
Clearly if Energy(x, h) can be written as in eq. 46, then these two constraints are satisfied. On the other
hand, consider adding a term of a different from (not depending only onhi, only onxj , or only on a pair
(hi, xj) to the right hand side of eq. 46. Then one of the above two constraints would be violated. Therefore
the above equation is the most general formulation that satisfies both factorization assumptions.

In the case where the hidden and input values are binary, thisnew formulation does not actually bring
any additional power of representation. Indeed,ηi,j(hi, xj), which can take at most four different values
according to the2× 2 configurations of(hi, xj ) could always be rewritten as a second order polynomial in
(hi, xj): a + bhi + cxj + dhixj . However,b andc can be folded into the bias terms anda into a global
addititive constant which does not matter (because it gets cancelled by the partition function).
On the other hand, whenx or h are real-valued, one could imagine higher-capacity modeling of the(hi, xj)
interaction, possibly non-parametric, e.g., gradually adding terms toηi,j so as to better model the interaction.
Furthermore, sampling from the conditional densitiesP (xj |h) or P (hi|x) would be tractable even if theηi,j

are complicated functions, simply because these are 1-dimensional densities from which efficient approxi-
mate sampling and numerical integration are easy (e.g., by computing cumulative sums of the density over
nested subintervals or bins).
This analysis also highlights the basic limitation of RBMs,which is that its parametrization only considers
pairwise interactions between variables. It is because theh are hidden and that we can have as many hidden
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units as we want that we still have full expressive power overpossible marginal distributions inx. Other
variants of RBMs discussed in Section 6.6 allow to introducethree-way interactions (Memisevic & Hinton,
2007).
Can Contrastive Divergence be applied to this generalized RBM formulation? Clearly, theorem 7.3 can still
be applied. Furthermore, it can be shown, generalizing corollary 7.4 that considering only the firstk steps
of the Gibbs chain in the log-likelihood gradient expansion, one obtains an update rule similar to CD-k for
binomial RBMs.

Proposition 8.2. Consider a generalized RBM, with the energy function as in eq. 46. When considering
only the terms arising of the firstk steps in the Gibbs chainx1 ⇒ h1 ⇒ x2 ⇒ h2 ⇒ . . . xk ⇒ hk, with the
unbiased stochastic estimator of the gradient of the truncated log-likelihood expansion of theorem 7.3, all
the intermediate gradient terms cancel each other and the gradient estimator only depends directly on the
first pair (x1, h1) and on the last pair(xk, hk), e.g., forθ a parameter ofηi,j :

t−1∑

s=1

E

[
∂ log P (xs|hs)

∂θ
+

∂ log P (hs|xs+1)

∂θ

]
= E




∑

i,j

∂ηi,j(h1,i, x1,j)

∂θ
−
∑

i,j

∂ηi,j(hk,i, xk,j)

∂θ



 (47)

wherehk,i is the i-th element of thek-th hidden vectorhk in the chain, and similarly forxk,j , and the
expectation is over the Markov chain, conditionned onx1.

Proof. Note that theφj andξi terms can be represented by extraηi,j terms so we will ignore them in the
proof. By definition of our energy function and using the factorization of the conditionals shown above, we
have

P (hs,i|xs) =
exp(

∑
j ηi,j(hs,i, xs,j))

exp(
∑

h̃s,i

∑
j ηi,j(h̃s,i, xs,j))

(48)

and

P (xs+1,j |hs) =
exp(

∑
i ηi,j(hs,i, xs+1,j))

exp(
∑

x̃s+1,j

∑
i ηi,j(hs,i, x̃s+1,j))

(49)

Differentiating them and taking expectations with respectto the Markov chain, we find that the gradient of the
denominator oflog P (xs|hs) cancels the gradient of the numerator oflog P (hs|xs+1), and similarly that the
gradient of the denominator oflog P (hs|xs+1) cancels the gradient of the numerator oflog P (xs+1|hs+1).

Hence, ignoring the remainderE
[

∂ log P (xk+1)
∂θ

]
due to truncation of the series, there only remains from

eq. 42 the gradient of the numerator oflog P (x1|h1) and the gradient of the denominator oflog P (hk|xk+1).

Therefore, when generalizing RBMs with an energy function of the form of eq. 46, a Gibbs chain can still
be run easily (thanks to Proposition 8.1), either to sample data from the model or for learning, and a CD-k
algorithm can be run to gradually tune the parameters, with the parameter update given by

∆θ =
∑

i,j

∂ηi,j(h1,i, x1,j)

∂θ
−
∑

i,j

∂ηi,j(hk,i, xk,j)

∂θ
(50)

with ε a learning rate for the stochastic gradient descent. Note that in most parametrizations we would have
a particular element ofθ only depend on a particularηi,j (and no sum is needed). We recover Algorithm 1
whenηi,j(h1,i, x1,j) = Wijh1,ix1,j and the other variants described in (Welling et al., 2005; Bengio et al.,
2007) for different forms of the energy and allowed set of values for hidden and input units.
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9 Stacked Autoassociators

Autoassociators have been used as building blocks to build adeep multi-layer neural network (Bengio et al.,
2007; Ranzato et al., 2007; Larochelle et al., 2007). The training procedure is simpler than with Deep Belief
Networks, so we start with it, noting that many variations onthat scheme are possible:

1. Train the first layer as an autoassociator to minimize someform of reconstruction error of the raw
input. This is purely unsupervised.

2. The hidden units’ outputs in the autoassociator are now used as input for another layer, also trained to
be an autoassociator. Again, we only need unlabeled examples.

3. Iterate as in (2) to add the desired number of layers.

4. Take the last hidden layer output as input to a supervised layer and initialize its parameters (either
randomly or by supervised training, keep the rest of the network fixed).

5. Fine-tune all the parameters of this deep architecture with respect to the supervised criterion. Alter-
nately, unfold all the autoassociators into a very deep autoassociator and fine-tune the global recon-
struction error, as in (Hinton & Salakhutdinov, 2006).

The hope is that the unsupervised initialization in a greedylayer-wise fashion has put the parameters of all
the layers in a region of parameter space from which a good local optimum can be reached by local descent.
This indeed appears to happen in a number of tasks (Bengio et al., 2007; Ranzato et al., 2007; Larochelle
et al., 2007).
The principle is exactly the same as the one previously proposed for training Deep Belief Networks (Hinton
et al., 2006), but using autoassociators instead of RBMs. Comparative experimental results in (Bengio et al.,
2007; Larochelle et al., 2007) suggest that Deep Belief Networks typically (but not systematically) have a
slight edge over stacked autoassociators, maybe because CD-k is closer to the log-likelihood gradient than
the reconstruction error gradient. However, since the reconstruction error gradient has less variance than
CD-k (because no sampling is involved), it might be interesting to combine the two criteria, at least in the
initial phases of learning.
An advantage of using autoassociators instead of RBMs as theunsupervised building block of a deep ar-
chitecture is that almost any parametrizations of the layers are possible, as long as the training criterion is
continuous in the parameters. On the other hand, the class ofprobabilistic models for which CD or other
known tractable estimators of the log-likelihood gradientcan be applied is currently more limited. A dis-
advantage of stacked autoassociators is that they do not correspond to a generative model: with generative
models such as RBMs and DBNs, samples can be drawn to check qualitatively what has been learned, e.g.,
by visualizing the images or word sequences that the model sees as plausible.
Note that the above algorithm can be naturally in the semi-supervised setting, where only a fraction of the
training examples are associated with a supervision label.For unlabeled examples only an unsupervised
criterion is used (e.g., reconstruction error at each levelor over the whole network), whereas for supervised
examples the supervised criterion is used. For labeled examples, both criteria can be combined. Combining
both criteria has been found useful not only at the fine-tuning stage (where all the layers are jointly optimized)
but also during the greedy layerwise stage (Bengio et al., 2007). This form ofpartial supervisionhas been
found useful in cases where the true input distribution is not very informative of the target conditional
distribution that one wants to capture for the supervised task.
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10 Deep Belief Networks

A Deep Belief Network (Hinton et al., 2006) with̀layers models the joint distribution between observed
vectorx and` hidden layershk as follows:

P (x,h1, . . . ,h`) =

(
`−2∏

k=1

P (hk|hk+1)

)
P (h`−1,h`) (51)

wherex = h
0, P (hk−1|hk) is a conditional distribution for visible hidden units in anRBM associated with

level k of the DBN, andP (h`−1,h`) is the visible-hidden joint distribution in the top-level RBM. This is
illustrated in Figure 9.

Algorithm 2
TrainUnsupervisedDBN(p̂, ε, L,n,W ,b)
Train a DBN in a purely unsupervised way, with the greedy layer-wise procedure in which each added layer
is trained as an RBM by contrastive divergence.
p̂ is the input training distribution for the network
ε is a learning rate for the stochastic gradient descent in Contrastive Divergence
L is the number of layers to train
n = (n1, . . . , nL) is the number of hidden units in each layer
W i is the weight matrix for leveli, for i from 1 toL
bi is the bias vector for leveli, for i from 0 toL

• initialize b0 = 0
for ` = 1 to L do
• initialize W i = 0, bi = 0
while not stopping criteriondo
• sampleh0 = x from p̂
for k = 1 to `− 1 do
• samplehk from Q(hk|hk−1)

end for
• RBMupdate(h`−1, ε, W `, b`, b`−1) {thus providingQ(h`|h`−1) for future use}

end while
end for

When we train the DBN in a greedy layerwise fashion, as illustrated with the pseudo-code of Algorithm 2,
each layer is initialized as an RBM, and we denoteQ(hk,hk−1) the k-th RBM trained in this way. We
will use Q(hk|hk−1) as an approximation ofP (hk|hk−1), because it is easy to compute and sample from
Q(hk|hk−1) (which factorizes), and not fromP (hk|hk−1) (which does not). TheseQ(hk|hk−1) can also be
used to construct a representation of the input vectorx. To obtain an approximate posterior or representation
for all the levels, we use the following procedure. First sampleh

1 ∼ Q(h1|x) from the first-level RBM, or
alternatively with a mean-field approach useĥ

1 = E[h1|h0] instead of a sample ofh1, where the expectation
is over the RBM distributionQ(hk|hk−1). This is just the output probabilities of the hidden units, in the
common case where they are binomial units:ĥ

1
i = sigm(b1 + W 1

i x). Taking either the sampleh1 or the
mean-field vector̂h1 as input for the second-level RBM, computeĥ2 or a sampleh2, etc. until the last layer.
A sample of the DBN generative model forx can be obtained as follows:

1. Sample a visible vectorh`−1 from the top-level RBM. This can be achieved approximately by running
a Gibbs chain in that RBM alternating betweenh

` ∼ P (h`|h`−1) andh`−1 ∼ P (h`−1|h`), as outlined
in Section 6.3.1. By starting the chain from a representationh

`−1 obtained from a training set example
(through theQ′s as above), fewer Gibbs steps might be required.
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Figure 9: Deep Belief Network as a generative model (generative path, with bold arcs) and a means to extract
multiple levels of representation of the input (recognition path, with dashed arcs). The top two layersh

2 and
h

3 form an RBM (for their joint distribution). The lower layersform a directed graphical model (sigmoid
belief neth2 ⇒ h

1 ⇒ x) and the prior for the penultimate layerh
2 is provided by the top-level RBM.

2. Fork = `−1 down to 1, samplehk−1 givenh
k according to the level-k hidden-to-visible conditional

distributionP (hk−1|hk).

3. x = h
0 is the DBN sample.

The principle of greedy layer-wise unsupervised training of each layer on top of the previously trained ones
can be applied with RBMs as the building blocks for each layer(Hinton et al., 2006; Hinton & Salakhutdinov,
2006; Bengio et al., 2007; Salakhutdinov & Hinton, 2007).

1. Train the first layer as an RBM that models the raw inputx = h
0 as its visible layer.

2. As outlined above, use that first layer to obtain a representation of the input data that will be used as
data for the second layer. Two common solutions are to take hidden layer samples ofh1|h0 or the real
valueŝh1 = E(h1|h0)) for this representation.

3. Train the second layer as an RBM, taking the transformed data (h1|x or ĥ1(x)) as training example
(for the visible layer of that RBM).

4. Iterate (2 and 3) for the desired number of layers, each time propagating upward either samples or
mean values.

5. Fine-tune all the parameters of this deep architecture with respect to a proxy for the DBN log-
likelihood, or with respect to a supervised training criterion (after adding extra learning machinery
to convert the learned representation into supervised predictions).

The remark made at the end of Section 9 about semi-supervisedand partially supervised training also applies
to DBNs. Combining labeled data and unlabeled data is simplewith DBNs, and the partially supervised
setting has been found experimentally useful for some tasks(Bengio et al., 2007).
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11 Stochastic Variational Bounds for Joint Optimization of DBN
Layers

In this section we discuss mathematical underpinnings of training algorithms for DBNs. The log-likelihood
of a DBN can be lower bounded using Jensen’s inequality, and as we discuss below, this can justify the
greedy layer-wise training strategy introduced in (Hintonet al., 2006) and described in Section 10. Starting
from eq. 51 for a DBN joint distribution, writingh for h

1 (the first level hidden vector) to lighten notation,
and introducing an arbitrary conditional distributionQ(h|x) we have

log P (x) = log
∑

h

P (x, h)

= log
∑

h

Q(h|x)P (x, h)

Q(h|x)

≥
∑

h

Q(h|x) log
P (x, h)

Q(h|x)

=
∑

h

Q(h|x) (log P (x, h)− log Q(h|x))

= HQ(h|x) +
∑

h

Q(h|x) (log P (h) + log P (x|h)) . (52)

whereHQ(h|x) is the entropy of the distributionQ(h|x). To see what the inequality is missing out, we can
use another derivation, which is again true for anyQ(h|x) andP . First multiply by1 =

∑
h Q(h|x), then

useP (x) = P (x,h)
P (h|x) , and multiply by1 = Q(h|x)

Q(h|x) and expand the terms:

log P (x) = (
∑

h

Q(h|x)) log P (x) =
∑

h

Q(h|x) log
P (x, h)

P (h|x)

=
∑

h

Q(h|x) log
P (x, h)

P (h|x)

Q(h|x)

Q(h|x)

= HQ(h|x) +
∑

h

Q(h|x) log P (x, h) +
∑

h

Q(h|x) log
Q(h|x)

P (h|x)

= KL(Q(h|x)||P (h|x)) + HQ(h|x) +
∑

h

Q(h|x) (log P (h) + log P (x|h)) . (53)

So the missing term in inequality 52 is the Kullback-Lieblerdivergence between the two conditional distri-
butionsQ(h|x) andP (h|x). Whereas we have chosen to useP to denote probabilities under the DBN, let us
useQ to denote probabilities under an RBM (which we will call the first level RBM) , and in the equations
chooseQ(h|x) to be the hidden-given-visible conditional distribution of that first level RBM. We define that
first level RBM such thatQ(x|h) = P (x|h). In generalP (h|x) 6= Q(h|x). This is because although the
marginalP (h) on the first layer hidden vectorh1 = h is determined by the upper layers in the DBN, the
RBM marginalQ(h) only depends on the parameters of the RBM.

11.1 Unfolding RBMs into Infinite Directed Belief Networks

Before using the above decomposition of the likelihood to justify the greedy training procedure for DBNs,
we need to establish a connection betweenP (h1) in a DBN and the corresponding marginalQ(h1) given
by the first level RBM. The interesting observation is that there exists a DBN whoseh1 marginal equals the
first RBM h

1 marginal, i.e.P (h1) = Q(h1), as long the dimension ofh2 equals the dimension ofh0 = x.
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Figure 10: An RBM can be unfolded as an infinite directed belief network with tied weights (see text), left.
The weight matrixW or its transpose are used depending on the parity of the layerindex. This sequence
of random variables corresponds to a Gibbs Markov chain to generatext (for t large). On the right, the
top-level RBM in a DBN can also be unfolded in the same way, showing that a DBN is an infinite directed
graphical model in whichsomeof the layers are tied (all except the bottom few ones).

To see this, consider a second RBM whose weight matrix is the transpose of the first level RBM (that is why
we need the matching dimensions). Hence, by symmetry of the roles of visible and hidden in an RBM joint
distribution (when transposing the weight matrix), the marginal distribution over the visible vector of the
second RBM is equal to the marginal distributionQ(h1) of the hidden vector of the first RBM.
Another interesting explanation is given in (Hinton et al.,2006): consider the infinite Gibbs sampling Markov
chain starting att = −∞ and terminating att = 0, alternating betweenx andh

1 for the first RBM, with
visible vectors sampled on event and hidden vectors on oddt. This chain can be seen as an infinite directed
belief network with tied parameters (all even steps use weight matrix W ′ while all odd ones use weight
matrixW ). Alternatively, we can summarize any sub-chain fromt = −∞ to t = τ by an RBM with weight
matrix W or W ′ according to the parity ofτ , and obtain a DBN with1 − τ layers (not counting the input
layer), as illustrated in Figure 10. This argument also shows that a 2-layer DBN in which the second level
has weights equal to the transpose of the first level weights is equivalent to a single RBM.

11.2 Variational Justification of Greedy Layerwise Training

Here we discuss the argument made in Hinton et al. (2006) thatadding one RBM layer improves the like-
lihood of a DBN. Let us suppose we have trained an RBM to modelx, which provides us with a model
Q(x) expressed through two conditionalsQ(h1|x) andQ(x|h1). Exploiting the argument in the previ-
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ous subsection, let us now initialize an equivalent 2-layerDBN, i.e., generatingP (x) = Q(x), by taking
P (x|h1) = Q(x|h1) andP (h1,h2) given by a second-level RBM whose weights are the transpose of the
first-level RBM. Now let us come back to eq. 53 above, and the objective of improving the DBN likelihood
by changingP (h1), i.e., keepingP (x|h1) andQ(h1|x) fixed but allowing the second level RBM to change.
Starting fromP (x|h1) = Q(x|h1), the KL term is zero and the entropy term in eq. 53 does not depend
on the DBNP (h1), so small improvements to the term withP (h1) guarantee an increase inlog P (x). We
are also guaranteed that further improvements of theP (h1) term (i.e. further training of the second RBM)
cannot bring the log-likelihood lower than it was before thesecond RBM was added. This is simply because
of the positivity of the KL and entropy terms: further training of the second RBM increases a lower bound
on the log-likelihood, as argued in Hinton et al. (2006). This justifies training the second RBM to maximize
the expectation over the training set of

∑
h1 Q(h1|x) log P (h1).

The second-level RBM is thus trained to maximize
∑

x,h1

P̂ (x)Q(h1|x) log P (h1) (54)

with respect toP (h1). This is the maximum-likelihood criterion for a model that sees examplesh1 obtained
as marginal samples from the joint distribution̂P (x)Q(h1|x). If there was no constraint onP (h1), the
maximizer of the above training criterion would be its “empirical” or target distribution

P ∗(h1) =
∑

x

P̂ (x)Q(h1|x). (55)

If we keep the first-level RBM fixed, then the second-level RBMcould therefore be trained as follows:
samplex from the training set, then sampleh1 ∼ Q(h1|x), and consider thath as a training sample for the
second-level RBM.
The same argument can be made to justify adding a third layer,etc. We obtain the greedy layer-wise training
procedure outlined in Section 10. In practice the requirement that layer sizes alternate is not satisfied, and
consequently neither is it common practice to initialize the newly added RBM with the transpose of the
weights at the previous layer (Hinton et al., 2006; Bengio etal., 2007), although it would be interesting to
verify experimentally (in the case where the size constraint is imposed) whether the initialization with the
transpose of the previous layer helps to speed up training.
Note that as we continue training the second RBM (and this includes adding extra layers), there is no guaran-
tee thatlog P (x) (in average over the training set) will monotonically increase. As our lower bound continu-
ous to increase, the actual log-likelihood could start decreasing. Let us examine more closely how this could
happen. It would require the KL term to decrease as the secondRBM continues to be trained. However, this
is unlikely in general: as the DBN’sP (h1) deviates more and more from the first RBM’s marginalQ(h1) on
h

1, it is likely that the posteriorsP (h1|x) (from the DBN) andQ(h1|x) (from the RBM) deviate more and
more (sinceP (h1|x) ∝ P (x|h1)P (h1)), making the KL term in eq. 53 increase. As the training likelihood
for the second RBM increases,P (h1) moves smoothly fromQ(h1) towardsP ∗(h1). Consequently, it seems
very plausible that continued training of the second RBM is going to increase the DBN’s likelihood (not just
initially) and by transitivity, adding more layers will also likely increase the DBN’s likelihood.
Another argument to explain why the greedy procedure works is the following (Hinton, NIPS’2007 tutorial).
The training distribution for the second RBM (samplesh

1 from P ∗(h1)) looks more like data generated by
an RBM than the original training distribution̂P (x). This is becauseP ∗(h1) was obtained by applying one
sub-step of an RBM Gibbs chain on examples fromP̂ (x), and we know that applying many Gibbs steps
would yield data from that RBM.
Unfortunately, when we train an RBM that will not be the top-level level of a DBN, we are not taking into
account the fact that more capacity will be added later to improve the prior on the hidden units. Le Roux and
Bengio (2008) have proposed considering alternatives to Contrastive Divergence for training RBMs destined
to initialize intermediate layers of a DBN. The idea is to consider thatP (h) will be modeled with a very high
capacity model (the higher levels of the DBN). In the limit case of infinite capacity, one can write down what
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that optimalP (h) will be: it is simply the stochastic transformation of the empirical distribution through the
stochastic mappingQ(h|x) of the first RBM (or previous RBMs). Plugging this back into the expression
for log P (x), one finds that a good criterion for training the first RBM is the KL divergence between the
data distribution and the distribution of the stochastic reconstruction vectors after one step of the Gibbs
chain. Experiments (Le Roux & Bengio, 2008) confirm that thiscriterion yields better optimization of the
DBN (initialized with this RBM). Unfortunately, this criterion is not tractable since it involves summing
over all configurations of the hidden vectorh. Tractable approximations of it might be considered. Another
interesting alternative, explored in the next section, is to directly work on joint optimization of all the layers
of a DBN.

11.3 Joint Unsupervised Training of All the Layers

We discuss here how one could train the whole DBN with respectto the unsupervised log-likelihood. The
log-likelihood decomposition in eq. 53

log P (x) = KL(Q(h|x)||P (h|x)) + HQ(h|x) +
∑

h

Q(h|x) (log P (h) + log P (x|h)) . (56)

can be used not only to justify the greedy training algorithm, but also to justify learning algorithms in which
all the layers of a DBN are simultaneously updated, maybe after a greedy layerwise initialization phase.
The top level of the DBN would be trained as an RBM, i.e., choosing P (h) to maximize∑

h Q(h|x) log P (h), whereh is the penultimate layer of the DBN, and the top level RBM represents the
joint distribution between the penultimate and top layer ofthe DBN.
Instead of keeping the lower levels fixed, if we want to improve them while taking into account the particulars
of higher levels, we can return to eq. 53 and compute an estimate of the gradient of the log-likelihood with
respect toP (x|h) andQ(h|x). To simplify the exposition we only consider the case of a 2-level DBN, but
the same principle can be easily generalized to any number oflevels.
The gradient of the entropy ofQ(h|x) is easy to estimate stochastically, using one or more samples of
h ∼ Q(h|x). Consider a parameterθ that influencesQ(h|x). Using first ∂y

∂x = y ∂ log y
∂x , and Lemma 7.2 in

the second line,

∂HQ(h|x)

∂θ
= −

∑

h

Q(h|x)
∂ log Q(h|x)

∂θ
−
∑

h

Q(h|x) log Q(h|x)
∂ log Q(h|x)

∂θ

= −
∑

h

Q(h|x) log Q(h|x)
∂ log Q(h|x)

∂θ
. (57)

A stochastic gradient with respect to a parameterθ of the first level that influencesP (x|h) is also easy to
obtain, using a similar derivation:

∂
∑

h Q(h|x) log P (x|h)

∂θ
=

∑

h

Q(h|x)
∂ log P (h|x)

∂θ
+
∑

h

Q(h|x) log P (h|x)
∂ log Q(h|x)

∂θ
(58)

In both cases, we samplex from the training set andh ∼ Q(h|x) and use the gradientslog Q(h|x)∂ log Q(h|x)
∂θ

and ∂ log P (h|x)
∂θ + log P (h|x)∂ log Q(h|x)

∂θ . Note that these estimators could have high variance because
log Q(h|x) and log P (h|x) could be arbitrarily large. In fact their variance might grow linearly with the
dimension of the hidden vector.
The gradient of the KL divergence is more problematic, because we do not have a simple expression for
P (h|x). The KL term in eq. 53 could potentially be ignored since it ispositive and we would be optimizing
a lower bound on the log-likelihood. Instead, an approximation has been used in thewake-sleep algo-
rithm for sigmoid belief networks (Hinton et al., 1995). The idea is to minimize the other KL divergence,
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KL(P (h|x)||Q(h|x)). Indeed if we sample from the DBN, we obtain an(h, x) tuple fromP (x, h) that can
be used as target forQ(h|x). Again using Lemma 7.2 and∂y

∂x = y ∂ log y
∂x ,

∂KL(P (h|x)||Q(h|x))

∂θ
=

∑

h

P (h|x)

(
log

P (h|x)

Q(h|x)

∂ log P (h|x)

∂θ
+

∂ log P (h|x)

∂θ
−

∂ log Q(h|x)

∂θ

)

=
∑

h

P (h|x)

(
log

P (h|x)

Q(h|x)

∂ log P (h|x)

∂θ
−

∂ log Q(h|x)

∂θ

)
. (59)

As before, we can obtain a stochastic estimator, but thelog P (h|x)
Q(h|x)

∂ log P (h|x)
∂θ term might have high variance.

In the wake-sleep algorithm (Hinton et al., 1995) and its contrastive version for DBNs (Hinton et al., 2006),
the parameters ofQ(h|x) and the parameters ofP (x|h) are decoupled. In the context of a DBN, for all levels
except the top one, there is no reason to believe that the optimal “generative weights” (those used inP (x|h))
have to be equal (transposed) to the “recognition weights” (those used inQ(h|x)). The wake-sleep algorithm
provides an update rule for both. We know that the true posterior P (h|x) does not necessarily factorize
(cannot be written as

∏
i P (hi|x)) whereasQ(h|x) does factorize. The algorithm proceeds in two phases: the

wake phase and the sleep phase. In thewake phase, we start from a training samplex and compute samples
from the approximate posteriors given by theQ(hk|hk−1)’s at each level (starting fromh0 = x). These
samples(h0,h1, . . .h`−1) provide fully observed training data for updating theP (hk−1|hk) generative
distributions, i.e, a stochastic step in the direction of the following gradient is performed

∑

h1,...,h`−1

Q(h`−1|h`−2) . . .Q(h1|x)
`−1∏

k=1

∂ log P (hk−1|hk)

∂θ
. (60)

An update of the top-level RBM is also performed in the wake phase, withh`−1 as observation for its visible
vector. In thesleep phase, we generate a full observation(h0,h1,h`−1) from the model: we first sample
h

`−1 from the top-level RBM, and then sample eachh
k according toP (hk|hk+1). This is then used as

fully observed training data for the recognition conditionalsQ(hk|hk−1), by making a stochastic step in the
direction of the following gradient:

∑

h0,...,h`−1

P (h`−1)P (h`−2|h`−1) . . . P (h0|h1)

`−1∏

k=1

∂ log Q(hk|hk−1)

∂θ
. (61)

With respect to the log-likelihood gradient decompositionthat we have been describing in this section,
the approximations performed with the wake-sleep algorithm are thus the following: (a) approximate the
gradient with respect toKL(Q(h|x)||P (h|x)) by the gradient with respect toKL(P (h|x)||Q(h|x)), and
(b) approximate

∑

h

P (h|x) log
P (h|x)

Q(h|x)

∂ log P (h|x)

∂θ
−
∑

h

Q(h|x) log
P (h|x)

Q(h|x)

∂ log Q(h|x)

∂θ
≈ 0 (62)

which might be reasonable as long asQ(h|x) is a good approximation ofP (h|x). Experiments suggest that
the wake-sleep algorithm can be used (albeit slowly) to fine-tune a DBN and improve both the generative
model and its ability to classify correctly (Hinton et al., 2006).

12 Global Optimization Strategies

Although deep architectures promise a more efficient representation of a distribution, and hence better gen-
eralization, they appear to come at the price of a more difficult optimization problem, as discussed earlier
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in Section 5. Here, we draw connections between existing work and approaches that could help to deal this
difficult optimization problem, based on the principle ofcontinuation methods(Allgower & Georg, 1980).
Although they provide no guarantee to obtain the global optimum, these methods have been particularly
useful in computational chemistry to find approximate solutions of difficult optimization problems involving
the configurations of molecules (Coleman & Wu, 1994; More & Wu, 1996; Wu, 1997). The basic idea is
to first solve a smoothed version of the problem and graduallyconsider less smoothing, with the intuition
that a smooth version of the problem reveals the global picture. On defines a single-parameter family of cost
functionsCλ(θ) such thatC0 can be optimized easily (maybe convex inθ), while C1 is the criterion that we
actually wish to minimize. One first minimizesC0(θ) and then gradually increasesλ while keepingθ at a
local minimum ofCλ(θ). Typically C0 is a highly smoothed version ofC1, so thatθ gradually moves into
the basin of attraction of the dominant (if not global) minimum ofC1.

12.1 Greedy Layerwise Training of DBNs as a Continuation Method

The greedy layerwise training algorithm for DBNs describedin Section 10 can be viewed as an approximate
continuation method, as follows. First of all recall (Section 11.1) that an RBM (and in particular the top-level
RBM of a DBN) can be unfolded into an infinite directed graphical model with tied parameters. At each
step of the greedy layerwise procedure, we untie the parameters of the top-level RBM from the parameters
of penultimate level. So one can view the layerwise procedure as follows. The model structure remains the
same, an infinite chain of sigmoidal belief layers, but we change the constraint on the parameters at each
step of the layerwise procedure. Initially all the layers are tied. After training the first RBM (i.e. optimizing
under this constraint), we untie the first level parameters from the rest. After training the second RBM (i.e.
optimizing under this slightly relaxed constraint), we untie the second level parameters from the rest, etc.
Instead of a continuum of training criteria, we have a discrete sequence of (presumably) gradually more
difficult optimization problems. By making the process greedy we fix the parameters of the firstk levels
after they have been trained and only optimize the(k + 1)-th, i.e. train an RBM.
It would not be difficult to transform this layerwise approach into a continuation method by introducing a
continuous parameterγk at each stepd of adding a level to the DBN, such that whenγk = 0 the parameters
of the(k+1)-th level (and above) are still tied to those of thek-th, whereas whenγk = 1, they are completely
free of that constraint. But even in its current, discrete version, this analysis suggests an explanation for the
good performance of the layerwise training approach in terms of reaching better optima, as evidenced in
comparative experiments against the traditional optimization techniques in which all the levels are trained
together (Bengio et al., 2007).

12.2 Controlling Temperature

Even optimizing the log-likelihood of a single RBM might be adifficult optimization problem. It turns out
that the use of stochastic gradient (such as the one obtainedfrom CD-k) and small initial weights is again
close to a continuation method, and could easily be turned into one. Consider the family of optimization
problems corresponding to theregularization path(Hastie, Rosset, Tibshirani, & Zhu, 2004) for an RBM,
e.g., with`1 or `2 regularization of the parameters, the family of training criteria parametrized byλ ∈ (0, 1]:

Cλ(θ) = −
∑

i

log Pθ(xi)− ||θ||
2 log λ. (63)

Whenλ → 0, we haveθ → 0, and it can be shown that the RBM log-likelihood becomes convex in θ.
Whenλ → 1, there is no regularization (note that some intermediate value of λ might be better in terms of
generalization, if the training set is small). Note that controlling the magnitude of the biases and weights in
an RBM is equivalent to controlling thetemperature in a Boltzmann machine (a scaling coefficient for the
energy function). High temperature corresponds to a highlystochastic system, and at the limit a factorial
and uniform distribution over the input. Low temperature corresponds to a more deterministic system where
only a small subset of possible configurations are plausible.
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Interestingly, stochastic gradient descent starting fromsmall weights gradually allows the weights to increase
in magnitude, approximately following the regularizationpath.Early stoppingis a well-known and efficient
capacity control technique based on monitoring performance on a validation set during training and keeping
the best parameters in terms of validation set error. The mathematical connection between early stopping
and`2 regularization (along with margin) has already been established (Collobert & Bengio, 2004). There
is no guarantee that the local minimum associated with each value ofλ in eq. 63 is tracked by simply letting
the weights follow the stochastic gradient path. It would not be difficult to slightly change the stochastic
gradient algorithm to gradually increaseλ when the optimization is near enough a local minimum for the
current value ofλ. Note that the same technique might be extended for other difficult non-linear optimization
problems found in machine learning, such as training a deep supervised neural network. We want to start
from a globally optimal solution and gradually track local minima, starting from heavy regularization and
moving slowly to little or none.

12.3 Shaping: Training with a Curriculum

Humans need about two decades to be trained as fully functional adults of our society. That training is highly
organized, based on an education system and a curriculum which introduces different concepts at different
times, exploiting previously learned concepts to ease the learning of new abstractions. The idea of training
a learning machine with a curriculum can be traced back at least to (Elman, 1993). The basic idea is to
start small, learn easier aspects of the task or easier sub-tasks, and then gradually increase the difficulty
level. From the point of view of building representations, advocated here, the idea is to learn representations
that capture low-level abstractions first, and then exploitthem and compose them to learn slightly higher-
level abstractions necessary to explain more complex structure in the data. By choosing which examples to
present and in which order to present them to the learning system, one canguidetraining and remarkably
increase the speed at which learning can occur. This idea is routinely exploited inanimal trainingand is
calledshaping(Skinner, 1958; Peterson, 2004).
Shaping and the use of a curriculum can also be seen as continuation methods. For this purpose, consider
the learning problem of modeling the data coming from a training distributionP̂ . The idea is to reweight
the probability of sampling the examples from the distribution according to a given schedule, starting from
the “easiest” examples and moving gradually towards examples illustrating more abstract concepts. At point
t in the schedule, we train from distribution̂Pt, with P̂1 = P̂ andP̂0 chosen to be easy to learn. Like in
any continuation method, we move along the schedule when thelearner has reached a local minimum at
the current pointt in the schedule, i.e., when it has sufficiently mastered the previously presented examples
(sampled fromP̂t). By making small changes int correspond to smooth changes in the probability of
sampling examples in the training distribution, we can construct a continuous path starting from an easy
learning problem and ending in the desired training distribution.
There is a connection between the shaping/curriculum idea and the greedy layer-wise idea. In both cases we
want to exploit the notion that a high level abstraction can more conveniently be learned once appropriate
lower-level abstractions have been learned. In the case of the layer-wise approach, this is achieved by
gradually adding more capacity in a way that builds upon previously learned concepts. In the case of the
curriculum, we control the training examples so as to make sure that the simpler concepts have actually been
learned before showing many examples of the more advanced concepts. Showing complicated illustrations
of the more advanced concepts is likely to be generally a waste of time, as suggested by the difficulty for
humans to grasp a new idea if they do not first understand the concepts necessary to express that new idea
compactly.
With the curriculum idea we introduce a teacher, in additionto the learner and the training distribution or
environment. The teacher can use two sources of informationto decide on the schedule: (a) prior knowledge
about a sequence of concepts that can more easily be learned when presented in that order, and (b) monitoring
of the learner’s progress to decide when to move on to new material from the curriculum. The teacher has
to select a level of difficulty for new examples which is a compromise between “too easy” (the learner will
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not need to change its model to account for these examples) and “too hard” (the learner cannot make an
incremental change that can account for these examples so they will most likely be treated as outliers or
special cases, i.e. not helping generalization).

13 Other Comments

13.1 Deep + Distributed does not include only Neural

Although much of this paper has focused on deep neural net architectures, the idea of exploring learning
algorithms for deep architectures should be explored beyond the neural net framework. For example, it
would be interesting to consider extensions of decision tree and boosting algorithms to multiple levels, as
hinted at the end of Section 3.3.
Kernel-learning algorithms suggest another path which should be explored, since a feature space that cap-
tures the abstractions relevant to the distribution of interest would be just the right space in which to apply
the kernel machinery. Research in this direction should consider ways in which the learned kernel would
have the ability to generalize non-locally, to avoid the curse of dimensionality issues raised in Section 3.1
when trying to learn a highly-varying function.

13.2 Why Sparse Representations and Not Dimensionality Reduction

We argue here that if one is going to have fixed-size representations (as in the brain), then sparse rep-
resentations are more efficient to allow for varying number of bits per example. According to learning
theory (Vapnik, 1995; Li & Vitanyi, 1997), to obtain good generalization it is enough that the total number
of bits needed to encode thewhole training setbe small, compared to the size of the training set. In many
domains of interest different examples have different information content. This is why for example an image
compression algorithm normally uses a different number of bits for different images (even if they all have
the same dimensions).
On the other hand, dimensionality reduction algorithms, whether linear such as PCA and ICA, or non-linear
such as LLE and Isomap, map each example to the same low-dimensional space. In light of the above
argument, it would be more efficient to map each example to a variable-length representation. To simplify
the argument, assume this representation is a binary vector. If we are required to map each example to a
fixed-length representation, a good solution would be to choose that representation to have enough degrees
of freedom to represent the vast majority of the examples, while at the same allowing to compress that fixed-
length bit vector to a smaller variable-size code for most ofthe examples. We now have two representations:
the fixed-length one, which we might use as input to make predictions and make decisions, and a smaller,
variable-size one, which can in principle be obtained from the fixed-length one through a compression step.
For example, if the bits in our fixed-length representation vector have a high probability of being 0 (i.e. a
sparsity condition), then for most examples it is easy to compress the fixed-length vector (in average by the
amount of sparsity).
Another argument in favor of sparsity is that the fixed-length representation is going to be used as input for
further processing, so that it should be easy to interpret. Ahighly compressed encoding is usually completely
entangled, so that no subset of bits in the code can really be interpreted unless all the other bits are taken into
account. Instead, we would like our fixed-length sparse representation to have the property that individual
bits or small subsets of these bits can be interpreted, i.e.,correspond to meaningful aspects of the input, and
capture factors of variation in the data. For example, with aspeech signal as input, if some bits encode the
speaker characteristics and other bits encode generic features of the phoneme being pronounced, we have
disentangled some of the factors of variation in the data, and some subset of the factors might be sufficient
for some particular prediction tasks.
Another way to justify sparsity of the representation was proposed in Ranzato et al. (2008). This view actu-
ally explains how one could get good models even though the partition function is not explicitly maximized,
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or only maximized approximately, as long as other constraints (such as sparsity) are used on the learned rep-
resentation. Suppose that the representation learned by anautoassociator is sparse, then the autoassociator
cannot reconstruct well every possible input pattern. To minimize the average reconstruction error on the
training set, the autoassociator then has to find a representation which captures statistical regularities of the
data distribution. First of all, Ranzato et al. (2008) connect the free energy with a form of reconstruction
error (when one replaces summing over hidden unit configurations by maximizing over them). Minimizing
reconstruction error on the training set therefore amountsto minimizing free energy, i.e., maximizing the
numerator in eq. 13. Since the denominator (the partition function) is just a sum of the numerator over all
possible input configurations, we would like to make reconstruction error high for most input configurations.
This can be achieved if the encoder (which maps an input to itsrepresentation) is constrained in such a way
that it cannot represent well most of the possible input patterns (i.e., the reconstruction error is high for
most possible input patterns). One approach is to impose a sparsity penalty on the representation Ranzato
et al. (2008), which can be incorporated in the training criterion. In this way, the term of the log-likelihood
gradient associated with the partition function is completely avoided, and replaced by a sparsity penalty on
the hidden unit code. Interestingly, this idea could potentially be used to improve RBM training, which only
uses anapproximateestimator of the gradient of the log of the partition function. If we add a penalty sparsity
to the hidden representation, we may compensate for the weaknesses of that approximation, by making sure
we increase the free energy of most possible input configuations, and not only of the reconstructed neighbors
of the input example that are obtained in the negative phase of Contrastive Divergence.

13.3 Other Reasons Why Unsupervised Learning is Crucial

One of the claims of this paper is that powerful unsupervisedor semi-supervised learning is a crucial com-
ponent in building successful learning algorithms for deeparchitectures aimed at AI. We briefly cover the
arguments in favor of this hypothesis here:

• Unknown future tasks: if a learning agent does not know what future learning tasks it will have to
deal with in the future, but it knows that the task will be defined with respect to a world (i.e. random
variables) that it can observe now, it would appear very rational to collect as much information as
possible about this world so as to learn what makes it tick.

• Once a good high-level representation is learned, other learning tasks (e.g., supervised or reinforce-
ment learning) could be much easier. We know for example thatkernel machines can be very powerful
if using an appropriate kernel, i.e. an appropriate featurespace. Similarly, we know powerful rein-
forcement learning algorithms which have guarantees in thecase where the actions are essentially
obtained through linear combination of appropriate features. We do not know what the appropriate
representation should be, but one would be reassured if it captured the salient factors of variation in
the input data, and disentangles them.

• Layer-wise unsupervised learning: this was argued in Section 5.3. Much of the learning could be done
using information available locally in one layer or sub-layer of the architecture, thus avoiding the
hypothesized problems with supervised gradients propagating through long chains with large fan-in
elements.

• Connected to the two previous points is the idea that unsupervised learning could put the parameters
of a supervised or reinforcement learning machine in a region from which gradient descent (local op-
timization) would yield good solutions. This has been verified empirically in cases studied in Bengio
et al. (2007).

• Less prone to overfitting: it has been argued (Hinton, 2006) that unsupervised learning is less prone
to overfitting than supervised learning. The intuition is the following. When doing discriminant
classification, one only needs to learn a function whose variations matter near the decision boundary.
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A very small subset of the input variations might be relevantto uncover the proper classification.
On the other hand, unsupervised learning tries to capture all the variations in the input. Therefore it
requires a lot more capacity, or equivalently, is less proneto overfitting at equal capacity and equal
number of training examples. Unsupervised learning can be used to initialize or regularize in the
context of supervised learning systems.

• The extra constraints imposed on the optimization by requiring the model to capture not only the input-
to-target dependency but also the statistical regularities of the input distribution might be helpful in
avoiding some local minima (those that do not correspond to good modeling of the input distribution).

14 Open Questions

Research on deep architectures is still young and many questions remain unanswered. The following are
potentially interesting.

1. Can the results pertaining to the role of computational depth in circuits be generalized beyond logic
gates and linear threshold units?

2. Is there a depth that is mostly sufficient for the computations necessary to achieve AI?

3. How can the theoretical results on depth of circuits with afixed size input be generalized to dynamical
circuits operating in time, with context and the possibility of recursive computation?

4. Why is gradient-based training of deep neural networks from random initialization often unsuccessful?

5. Are RBMs trained by CD doing a good job of preserving the information in their input, and if not how
can that be fixed?

6. Is the presence of local minima an important issue in training RBMs?

7. Could we replace RBMs by algorithms that would be proficient at extracting good representations but
involving an easier optimization problem, perhaps even a convex one?

8. Should the number of Gibbs steps in Contrastive Divergence be adjusted during training?

9. Besides reconstruction error, are there other more appropriate ways to monitor progress during training
of RBMs? Equivalently, are there tractable approximationsof the partition function in RBMs?

10. Could RBMs and autoassociators be improved by imposing some form of sparsity penalty on the
representations they learn, and what would be good ways to doso?

11. Without increasing the number of hidden units, can the capacity of an RBM be increased using non-
parametric forms of its energy function?

12. Is there a probabilistic interpretation to models learned in stacked autoassociators?

13. How efficient is the greedy layer-wise algorithm for training Deep Belief Networks (in terms of max-
imizing the training data likelihood)? Is it too greedy?

14. Can we obtain low variance and low bias estimators of the log-likelihood gradient in Deep Belief
Networks, i.e., can we jointly train all the layers (with respect to the unsupervised objective)?

15. Can optimization strategies based on continuation methods deliver significantly improved training of
Deep Belief Networks?

16. Aren’t there other efficiently trainable deep architectures besides the Deep Belief Network model?
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17. Is a curriculum needed to learn the kinds of high-level abstractions that humans take years or decades
to learn?

18. Can the principles discovered to train deep architectures be applied or generalized to train recurrent
networks or dynamical belief networks, which learn to represent context and long-term dependencies?

19. Could we compute a tractable proxy for log-likelihood inDeep Belief Networks that could be used to
monitor their performance during training, even in the unsupervised case?

20. How can deep architectures be generalized to represent information that, by its nature, might seem not
easily representable by vectors, because of its variable size and structure (e.g. trees, graphs)?

21. Although Deep Belief Networks are in principle well suited for the semi-supervised setting, how
should their algorithms be adapted to this setting and how would they fare compared to existing semi-
supervised algorithms?

22. When labeled examples are available, how should supervised and unsupervised criteria be combined
to learn the model’s representations of the input?

23. Can we find analogs of the computations necessary for Contrastive Divergence and Deep Belief Net
learning in the brain?

24. Can decision tree ensembles be stacked to obtain and train a different type of deep architecture?

15 Conclusion

This paper started with a number of motivations: first to use learning to approach AI, then on the intuitive
plausibility of decomposing a problem into multiple levelsof computation and representation, followed
by theoretical results showing that a computational architecture that does not have enough of these levels
can require a huge number of computational elements, and a learning algorithm that relies only on local
generalization is unlikely to generalize well when trying to learn highly-varying functions.
Turning to architectures and algorithms, we first motivateddistributed representations of the data, in which
a huge number of possible configurations of abstract features of the input are possible, allowing a system to
compactly represent each example, while opening the door toa rich form of generalization. The discussion
then focused on the difficulty of optimizing deep architectures for learning multiple levels of distributed
representations. Although the reasons for the failure of standard gradient-based methods in this case remain
to be clarified, several algorithms have been introduced in recent years that demonstrate much better perfor-
mance than was previously possible with simple gradient-based optimization, and we have tried to focus on
the underlying principles behind their success.
The paper focussed on a particular family of algorithms, theDeep Belief Networks, and their component
elements, the Restricted Boltzmann Machine. We studied andconnected together estimators of the log-
likelihood gradient in Restricted Boltzmann machines, helping to justify the use of the Contrastive Diver-
gence update for training Restricted Boltzmann Machines. We highlighted an optimization principle that
has worked well for Deep Belief Networks and related algorithms such as Stacked Autoassociators, based
on a greedy, layerwise, unsupervised initialization of each level of the model. We found that this optimiza-
tion principle is actually an approximation of a more general optimization principle, exploited in so-called
continuation methods, in which a series of gradually more difficult optimization problems are solved. This
suggested new avenues for optimizing deep architectures, either by tracking solutions along a regulariza-
tion path, or by presenting the system with a sequence of selected examples illustrating gradually more
complicated concepts, in a way analogous to the way studentsor animals are trained.
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