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Abstract. We consider the problem of detecting a cycle in a directed graph that grows by arc
insertions, and the related problems of maintaining a topological order and the strong components of
such a graph. For these problems we give two algorithms, one suited to sparse graphs, the other to
dense graphs. The former takes O(min{m1/2, n2/3}m) time to insert m arcs into an n-vertex graph;
the latter takes O(n2 log n) time. Our sparse algorithm is substantially simpler than a previous
O(m3/2)-time algorithm; it is also faster on graphs of sufficient density. The time bound of our
dense algorithm beats the previously best time bound of O(n5/2) for dense graphs. Our algorithms
rely for their efficiency on vertex numberings weakly consistent with topological order: we allow ties.
Bounds on the size of the numbers give bounds on running time.

Key words. topological ordering, cycle detection, strongly connected components, incremental
data structure

AMS subject classifications. 68P05, 68Q25, 68R10, 68W05, 68W40, 05C20, 05C38, 05C85

1. Introduction. Perhaps the most basic algorithmic problem pertaining to di-
rected graphs is cycle detection. We consider an incremental version of this problem:
given an initially empty graph that grows by on-line arc insertions, report the first
insertion that creates a cycle. We also consider two related problems, that of main-
taining a topological order of an acyclic graph as arcs are inserted, and maintaining
the strong components of such a graph.

We use the following terminology. We denote a list by square brackets around
its elements; “[ ]” denotes the empty list. We denote list catenation by “&”. In a
directed graph, we denote an arc from v to w by (v, w). We disallow multiple arcs
and loops (arcs of the form (v, v)). We assume that the set of vertices is fixed and
known in advance, although our results extend to handle on-line vertex insertions.
We denote by n and m the number of vertices and arcs, respectively. We assume
that m is known in advance; our results extend to handle the alternative. To simplify
expressions for bounds we assume n > 1 and m = Ω(n); both are true if there are no
isolated vertices. If (v, w) is an arc, v is a predecessor of w, and w is a successor

of v. The size size(w) of a vertex w is the number of vertices v such that there is
a path from v to w. Two vertices, two arcs, or a vertex and an arc are related if
they are on a common path, mutually related if they are on a common cycle (not
necessarily simple), and unrelated if they are not on a common path. Relatedness is
a symmetric relation. The strong components of a directed graph are the subgraphs
induced by the maximal subsets of mutually related vertices.
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The O(n2 log n) algorithm for dense graphs previously appeared in [6], but the other algorithm
and strong-component extensions are new to this paper.
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A DAG is a directed acyclic graph. A topological order of a DAG is a total
order < on the vertices such that if (v, w) is an arc, v < w. A topological number-

ing of a DAG is a numbering of the vertices from 1 through n such that increasing
numeric order is a topological order. A weak topological numbering of a DAG is
a numbering of the vertices such that if (v, w) is an arc, v is numbered less than w.
A pseudo topological numbering of a DAG is a numbering of the vertices such
that if (v, w) is an arc, v is numbered no greater than w. In either a weak or pseudo
topological numbering, the vertex numbers can be arbitrary, and several vertices can
have the same number. A topological numbering is a weak topological numbering; a
weak topological numbering is a pseudo topological numbering.

There has been much recent work on incremental cycle detection, topological or-
dering, and strong component maintenance [1, 2, 3, 4, 8, 9, 12, 13, 16, 17, 18, 21, 22].
For a thorough discussion of this work see [9]; here we discuss the heretofore best re-
sults and others related to our work. A classic result of graph theory is that a directed
graph is acyclic if and only if it has a topological order [25]; a more recent generaliza-
tion is that the strong components of a directed graph can be ordered topologically
(so that every arc lies within a component or leads from a smaller component to a
larger one) [10]. For static graphs, there are two O(m)-time algorithms to find a cycle
or a topological order: repeated deletion of vertices with no predecessors [11, 14, 15]
and depth-first search [26]: the reverse postorder [27] defined by such a search is a
topological order if the graph is acyclic. Depth-first search extends to find the strong
components and a topological order of them in O(m) time [26]

For the problems of incremental cycle detection, topological ordering, and strong
component maintenance, there are two known fastest algorithms, one suited to sparse
graphs, the other suited to dense graphs. Both are due to Haeupler et al. [8, 9].
Henceforth we denote the coauthors of these papers by HKMST. The HKMST sparse
algorithm takes O(m3/2) time for m arc additions; the HKMST dense algorithm takes
O(n5/2) time. Both of these algorithms use two-way search; each is a faster version
of an older algorithm. These algorithms, and the older ones on which they are based,
bound the total running time by counting the number of arc pairs or vertex pairs
that become related as a result of arc insertions. The HKMST sparse algorithm uses
a complicated dynamic list data structure [5, 7] to represent a topological order, and
it uses either linear-time selection or random sampling to guide the searches. There
are examples on which the algorithm takes Ω(nm1/2) time, so its time bound is tight
for sparse graphs. The time bound of the HKMST dense algorithm is not known to
be tight, but there are examples on which it takes Ω(n22

√
2 lg n) time [9].

Our approach to incremental cycle detection and the related problems is different.
We maintain a pseudo or weak topological numbering and use it to facilitate cycle
detection. Our algorithms pay for cycle-detecting searches by increasing the numbers
of appropriate vertices; a bound on the numbers gives a bound on the running time.
One insight is that the size function is a weak topological numbering. Unfortunately,
maintaining this function as arcs are inserted seems to be expensive. But we are
able to maintain in O(n2 log n) time a weak topological numbering that is a lower
bound on size. This gives an incremental cycle detection algorithm with the same
running time, substantially improving the time bound of the HKMST dense algorithm.
Our algorithm uses one-way rather than two-way search. For sparse graphs, we use
a pseudo topological numbering. This idea yields a very simple algorithm with a
running time of O(min{m1/2, n2/3}m). Our algorithm is substantially simpler than
the HKMST sparse algorithm and asymptotically faster on sufficiently dense graphs.
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The O(n2 log n) algorithm appeared previously in [6], but the other algorithm is new
to this paper.

The remainder of our paper consists of four sections. Section 2 describes our
cycle-detection algorithm for sparse graphs. Section 3 describes our cycle-detection
algorithm for dense graphs. Section 4 describes several simple extensions of the algo-
rithms. Section 5 extends the algorithms to maintain the strong components of the
graph as arcs are inserted instead of stopping as soon as a cycle exists. The extensions
in Sections 4 and 5 preserve the asymptotic time bounds of the algorithms. Section 6
contains concluding remarks.

2. A Two-Way-Search Algorithm for Sparse Graphs. Our algorithm for
sparse graphs uses two-way search to look for cycles. Unlike the entirely symmetric
forward and backward searches in the HKMST sparse algorithm, the two searches in
our algorithm have different functions. Also unlike the HKMST sparse algorithm, our
algorithm avoids the use of a dynamic list data structure, and it does not use selection
or random sampling: all of its data structures are very simple, as is the algorithm
itself.

We maintain a pseudo topological numbering. This numbering partitions the
vertices into levels. Each backward search proceeds entirely within a level. If the
search takes too long, we stop it and increase the level of a vertex. This bounds
the backward search time. Each forward search traverses only arcs that lead to a
lower level, and it increases the level of each vertex visited. An overall bound on such
increases gives a bound on the time of all the forward searches.

Here are the details. Each vertex v has a positive integer level k(v). The levels
are a pseudo topological order. For each vertex v, we maintain the set out(v) of
outgoing arcs (v, w) (to facilitate forward search) and the set in(v) of incoming arcs
(u, v) such that k(u) = k(v) (to facilitate backward search). Initially k(v) = 1 for
all vertices, and all incident arc sets are empty. Let ∆ = min

{

m1/2, n2/3
}

. The
algorithm for adding a new arc (v, w) consists of the following four steps:

Step 1 (test order): If k(v) < k(w), go to Step 4 (the levels remain a pseudo
topological numbering).

Step 2 (search backward): Using the incoming arc sets, search backward from v,
visiting only vertices on the same level, until one of the following occurs: w is visited,
at least ∆ arcs are traversed, or no backward arcs remain to be traversed. Let B
be the set of visited vertices. If w is visited, stop and report a cycle. If the search
completes without traversing at least ∆ arcs and k(w) = k(v), go to Step 4 (the levels
remain a pseudo topological ordering). If the search completes without traversing at
least ∆ arcs and k(w) < k(v), set k(w) = k(v). If the search traverses at least ∆ arcs,
set k(w) = k(v)+ 1 and B = {v}. In either of the last two cases (those in which k(w)
increases), set in(w) = {} and continue to Step 3.

Step 3 (search forward): Using the outgoing arc sets, search forward from w,
following outgoing edges only from vertices whose level increases, until a vertex in B
is visited or no forward arcs remain to be traversed. The forward search updates the
incoming arc sets as vertex levels increase. Specifically, when traversing a forward
arc (x, y), if y ∈ B, stop and report a cycle. If k(x) = k(y), add (x, y) to in(y). If
k(x) > k(y), set k(y) = k(x), set in(y) = {(x, y)}, and add all arcs in out(y) to those
to be traversed.
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Step 4 (insert arc): Add (v, w) to out(v). If k(v) = k(w), add (v, w) to in(w).

Theorem 2.1. While the graph remains acyclic, the levels are a pseudo topolog-

ical numbering and the incident arc sets are correct. The algorithm stops and reports

a cycle if and only if the last arc insertion creates a cycle.

Proof. We prove the theorem by induction on the number of arc insertions. The
theorem holds before any arcs are inserted. Suppose the theorem holds just before the
insertion of arc (v, w). If there is a path from w to v, then all vertices on it, including
w, have level at most k(v), since levels are a pseudo topological numbering. Thus if
k(v) < k(w), there is no path from w to v, the addition of (v, w) does not create a
cycle, the levels remain a pseudo topological numbering after the insertion of (v, w),
the algorithm correctly updates the arc sets in Step 4, and the theorem holds after
(v, w) is added.

Suppose on the other hand that k(v) ≥ k(w). If the algorithm visits w during the
backward search, or visits some vertex in B during the forward search, then there is
a path from w to v. This path forms a cycle with arc (v, w). Thus, if the algorithm
stops and reports a cycle, there is one.

Suppose the insertion of (v, w) creates a cycle. Then there is a path P from w to
v before the insertion of (w, v). If k(v) = k(w), then all vertices on the path from w
to v have level k(v). Either the search backward from v visits w and reports a cycle,
or the search stops before visiting w, which it can only do after traversing at least ∆
arcs. In this case, it increases the level of w to k(v) + 1 and begins a forward search.
We claim that the forward search stops and reports a cycle. Suppose not. Then there
must be an untraversed arc on P . Let (x, y) be the first such arc on P . Then x 6= w,
since all arcs out of w are traversed. When x is first visited, its level is less than k(w),
so the visit causes (x, y) to be traversed eventually. This contradiction establishes the
claim.

Suppose on the other hand that k(w) < k(v). If the backward search traverses
at least ∆ arcs, then it increases the level of w to k(v) + 1, and the forward search
stops and reports a cycle by the argument in the previous paragraph. Suppose the
backward search finishes before traversing at least ∆ arcs. Let B be the set of vertices
visited by the backward search. After the backward search, the level of w increases to
k(v). The first part of P is a path from w through zero or more vertices of level less
than k(v) to a vertex in B. An argument like that in the previous paragraph shows
that the forward search will traverse every arc on this path, visit a vertex in B, and
report a cycle, unless it stops and reports another cycle before this happens. Thus, if
the insertion of (v, w) creates a cycle, the algorithm stops and reports one.

Suppose the insertion of (v, w) does not create a cycle. If the backward search
finishes before traversing at least ∆ arcs and k(v) = k(w), then no vertex increases in
level, the levels remain a pseudo topological numbering, and the algorithm correctly
updates the incident arc sets in Step 4. If the backward search finishes before travers-
ing at least ∆ arcs but k(v) > k(w), or if the backward search traverses at least ∆
arcs, then w and possibly other vertices increase in level, to k(v) in the former case,
to k(v) + 1 in the latter. Let F be the set of vertices whose level increases. If (x, y) is
an arc with x ∈ F , then the forward search traverses (x, y), after which k(x) ≤ k(y).
It follows that after the forward search, the levels are a pseudo topological numbering.

Step 4 adds (v, w) to out(v), and to in(w) if k(v) = k(w), thus correctly updating
the incident arc sets to reflect the insertion of (v, w). All that remains is to show that
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the algorithm correctly updates the incoming arc sets to reflect increases in vertex
levels. Let (x, y) be an arc other than (v, w) such that x or y increases in level. If y
increases in level but x does not, then k(x) < k(y) after the insertion of (v, w), the
increase in k(y) deletes (x, y) from in(y) if it were there, and (x, y) is not traversed
by the forward search, so it is not later added to in(y). If x increases in level, (x, y)
is traversed by the forward search. If y does not increase in level, then (x, y) is not
in in(y) before the insertion of (v, w) and is added to in(y) by the traversal of (x, y)
if and only if the new level of x is that of y. If y increases in level as a result of the
traversal of (x, y), then the traversal correctly adds (x, y) to in(y). If y increases in
level as a result of some other event, then the increase deletes (x, y) from in(y) if it
were there; the traversal of (x, y) correctly adds (x, y) to in(y). Thus, the algorithm
correctly maintains the incoming arc sets.

Lemma 2.2. No vertex level exceeds min
{

m1/2, n2/3
}

+ 2.
Proof. Fix a topological order just before the last arc insertion. Let k > 1 be a

level assigned before the last arc insertion, and let w be the lowest vertex in the fixed
topological order assigned level k. For w to be assigned level k, the insertion of an
arc (v, w) must cause a backward search from v that traverses at least ∆ arcs both
ends of which are on level k− 1. All the ends of these arcs must still be on level k− 1
just before the last insertion. Thus these sets of arcs are distinct for each k, as are
their sets of ends. Since there are only m arcs, there are most m/∆ distinct values
of k. Also, for each k there must be at least

√
∆ distinct arc ends, since there are

no loops or multiple arcs. Since there are only n vertices, there are at most n/
√

∆

distinct values of k. It follows that no vertex level exceeds min
{

m/∆, n/
√

∆
}

+ 2,

which gives the lemma.

The space required by the algorithm is Θ(m). The next two theorems show that
the worst-case time for m arc insertions is Θ(∆m).

Theorem 2.3. The algorithm takes O(min
{

m1/2, n2/3
}

m) time for m arc in-

sertions.

Proof. Each backward search takes O(∆) = O(min
{

m1/2, n2/3
}

) time. The
time spent adding and removing arcs from incidence sets is O(1) per arc added or
removed. An arc can be added or removed only when it is inserted into the graph
or when the level of one of its ends increases. By Lemma 2.2, this can happen at
most O(min

{

m1/2, n2/3
}

) times per arc. The time for a forward search is O(1) plus
O(1) per arc (x, y) such that x increases in level as the result of the arc insertion that
triggers the search. By Lemma 2.2, this happens O(min

{

m1/2, n2/3
}

) times per arc.

Theorem 2.4. For any n and m with m ≤ n(n− 1)/2, there exists a sequence of

m arc insertions causing the algorithm to run in Ω(min
{

m1/2, n2/3
}

m) total time.

Proof. Assume without loss of generality that m ≥ 2n and n is sufficiently large.
Let the vertices be 1 through n, numbered in the initial topological order. We first
add arcs (i, j) with i < j to construct a number of cliques of consecutive vertices.
When adding these arcs, we add them in decreasing order on i, so that each backward
search visits no arcs and causes no vertex to increase in level. An r-clique of vertices
k through k+r−1 is formed by adding arc (i, j) for i, j such that k ≤ i < j ≤ k+r−1.
An r-clique consists of r vertices and r(r − 1)/2 arcs.
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Let r1 = ⌊√m/2⌋. Construct an r1-clique of the first r1 vertices. This is the
main clique . The main clique contains at most n/2 vertices and at most m/4 arcs.

Let r2 =
⌈√

∆ + 1
⌉

. Starting with vertex r1 + 1, construct r2-cliques on disjoint sets

of consecutive vertices, until running out of vertices or until ⌊m/2⌋ arcs have been
added, including those added to make the main clique. Each of the r2-cliques is an
anchor clique . The number of arcs in each anchor clique is O(∆) and at least ∆.
Number the anchor cliques from 1 though k. Then k = Θ(∆). So far all vertices have
level 1.

Next, for j from 1 through k− 1, add arcs from the last vertex of anchor clique j
to each vertex of anchor clique j + 1. Add these arcs in decreasing topological order
with respect to the end of the arc that is in anchor clique j + 1. There are at most
n/2 ≤ m/4 such arc additions. Each addition of an arc from the last vertex of anchor
clique 1 to a vertex w in anchor clique 2 triggers a backward search that traverses at
least ∆ arcs and causes the level of w to increase from 1 to 2. Each forward search
visits only a single vertex. Once all arcs from anchor clique 1 are added, all vertices
in anchor clique 2 have level 2. Addition of the arcs from the last vertex of anchor
clique 2 to the vertices in anchor clique 3 moves all vertices in anchor clique 3 to level
3. After all the arcs between anchor cliques are added, every vertex in anchor clique
j is on level j. The number of arcs added to obtain these level increases is at most
n/2 ≤ m/4.

Finally, for each anchor clique from 2 through k add an arc from its first vertex in
topological order to the first vertex in the main clique. There are at most n/2 ≤ m/4
such arc additions. Each addition triggers a backward search that visits only one
vertex, followed by a forward search that traverses all the arcs in the main clique and
increases the level of all vertices in the main clique by one. These forward searches
do Θ(∆m) arc traversals altogether. At most m arcs are added during the entire
construction.

We can extend the algorithm to maintain a weak topological numbering by break-
ing ties within levels in a way consistent with a topological order. To do this we assign
each vertex v an integer index i(v) as well as a level, and combine the level and in-
dex of a vertex into a single number. To update the indices efficiently, we make the
backward and forward searches depth-first.

Here are the details. Let a = b = nm+1. Initialize k(v) = 1 and i(v) = a for each
vertex v. The algorithm maintains the invariant that the numbering bk(v) + i(v) is a
weak topological numbering. Variable a counts down and is used to update indices.
The algorithm for adding a new arc (v, w) consists of the following five steps:

Step 1 (test order): If bk(v) + i(v) < bk(w) + i(w), go to Step 5 (the numbering
remains a weak topological numbering).

Step 2 (search backward): Using the incoming arc sets, do a depth-first search
backward from v, visiting only vertices on the same level, until visiting w, traversing
at least ∆ arcs, or running out of arcs to traverse. Let B be a list of the visited
vertices in postorder with respect to the search (thus a vertex appears later in B than
all of its predecessors). If w is visited, stop and report a cycle. If the search stops
without traversing at least ∆ arcs and k(w) = k(v), set L = B and go to Step 4 (the
levels remain a pseudo topological ordering). If the search stops without traversing
at least ∆ arcs and k(w) < k(v), set k(w) = k(v). If the search traverses at least ∆
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arcs, set k(w) = k(v) + 1 and B = [v]. In either of the last two cases (where k(w)
increases), set in(w) = {} and continue to Step 3.

Step 3 (search forward): Using the outgoing arc sets, do a depth-first search
forward from w, following outgoing edges only from vertices whose level increases,
stopping early if a vertex in B is visited. Let F be a list of the vertices whose level
increases in reverse postorder with respect to the search (thus a vertex appears earlier
in F than all of its successors). When traversing a forward arc (x, y), if y = v or
y ∈ B, stop and report a cycle. If k(x) = k(y), add (x, y) to in(y). If k(x) > k(y),
set k(y) = k(x), set in(y) = {(x, y)}, and traverse all arcs in out(y). If the forward
search finishes without detecting a cycle, set L = F if k(v) < k(w) or L = B&F if
k(v) = k(w), and continue to Step 4.

Step 4 (update indices): While L is non-empty, set a = a−1, delete the last vertex
x on L, and set i(x) = a.

Step 5 (insert arc): Add (v, w) to out(v). If k(v) = k(w), add (v, w) to in(w).

Theorem 2.5. While the graph remains acyclic, the vertex numbering is a weak

topological numbering and the incident arc sets are correct. The extended algorithm

stops and reports a cycle if and only if the last arc insertion creates a cycle.

Proof. The set L in Step 4 contains at most n vertices, since each vertex can
be on B or F but not both. Thus a remains positive over all m arc additions, and
k(v) < k(w) implies bk(v) + i(v) < bk(w) + i(w). The proof is the same as the
proof of Theorem 2.1, except that we must show that Step 4 guarantees that the
new numbering is a weak topological numbering after the arc addition. Suppose the
insertion of (v, w) triggers renumbering. After the renumbering, k(v) ≤ k(w). If
k(v) = k(w), then v ∈ B. Whether or not a forward search occurs, if k(v) = k(w)
then v gets a new index smaller than that of w. Thus, bk(v) + i(v) < bk(w) + i(w).
Let (x, y) be an arc other than (v, w). After the renumbering, k(x) ≤ k(y) by the
proof of Theorem 2.1. Suppose k(x) = k(y). If y ∈ L, x must be in L, so i(y) < i(x)
after the renumbering: B is in postorder with respect to the backward search, if F is
defined it is in reverse postorder with respect to the forward search, and no arc leads
from F to B. If x but not y is in L, then i(x) < i(y) after the renumbering since every
new index is smaller than every old index. If neither x nor y is in L, then neither is
renumbered. It follows that the new numbering is a weak topological order.

3. A One-Way-Search Algorithm for Dense Graphs. The two-way-search
algorithm becomes less and less efficient as the graph density increases. For sufficiently
dense graphs, the one-way search algorithm we present in this section is better: it
takes O(n2 log n) time for any number (up to n(n−1)) of arc insertions. The algorithm
maintains for each vertex v a level k(v) that is a weak topological numbering satisfying
k(v) ≤ size(v). The algorithm pays for its searches by increasing vertex levels, using
the following lemma to maintain k(v) ≤ size(v) for all v.

Lemma 3.1. In an acyclic graph, if a vertex v has j predecessors, each of size at

least s, then size(v) ≥ s + j.
Proof. Order the vertices of the graph in topological order and let u be the

smallest predecessor of v. Then size(v) ≥ size(u) + j ≥ s + j. Here “+j” counts v
and the j − 1 predecessors of v other than u.
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The algorithm uses Lemma 3.1 on a hierarchy of scales. For each vertex v, in
addition to a level k(v), it maintains a bound bi(v) and a count ci(v) for each integer
i, 0 ≤ i ≤ ⌊lg n⌋, where lg is the base-2 logarithm. Initially k(v) = 1 for all v, and
bi(v) = ci(v) = 0 for all v and i. To represent the graph, for each vertex v the
algorithm stores the set of outgoing arcs (v, w) in a heap (priority queue) out(v), each
arc having a priority that is at most k(w). (This priority is either k(w) or a previous
value of k(w).) Initially all such heaps are empty.

The arc insertion algorithm maintains a set of arcs A to be traversed, initially
empty. To insert an arc (v, w), add (v, w) to A and repeat the following step until a
cycle is detected or A is empty:

Traversal Step:

1 delete some arc (x, y) from A
2 if y = v
3 then stop the algorithm and report a cycle
4 if k(x) ≥ k(y)
5 then k(y)← k(x) + 1
6 else // k(x) < k(y)
7 i← ⌊lg(k(y)− k(x))⌋
8 ci(y)← ci(y) + 1
9 if ci(y) = 3 · 2i+1

10 then ci(y)← 0
11 k(y)← max

{

k(y), bi(y) + 3 · 2i
}

12 bi(y)← k(y)− 2i+1.
13 delete from out(y) all arcs with priority at most k(y) and add these arcs to A.
14 add (x, y) to out(x) with priority k(y).

In a traversal step, an arc (y, z) that is deleted from out(y) may have k(z) > k(y),
because k(z) may have increased since (y, z) was last inserted into out(y). Subsequent
traversal of such an arc may not increase k(z). It is to pay for such traversals that we
need the mechanism of bounds and counts.

We implement each heap out(v) as an array of buckets indexed from 1 through n,
with bucket i containing the arcs with priority i. We also maintain the smallest index
of a nonempty bucket in the heap. This index never decreases, so the total time to
increment it over all deletions from the heap is O(n). The time to insert an arc into
a heap is O(1). The time to delete a set of arcs from a bucket is O(1) per arc deleted.
The time for heap operations is thus O(1) per arc traversal plus O(n) per heap. Since
there are n heaps, this time totals O(1) per arc traversal plus O(n2).

The space needed by the algorithm is O(nlogn + m) for the labels, bounds, and
counts, and O(n2) for the n heaps. Storing the heaps in hash tables reduces their
total space to O(m) but makes the algorithm randomized. By using a two-level data
structure [29] to store each heap, the space for the heaps can be reduced to O(n1.5+m)
without using randomization. This bound is O(m) if m/n = Ω(n1/2); if not, the sparse
algorithm of Section 2 is faster.

To analyze the algorithm, we begin by bounding the total number of arc traver-
sals, thereby showing that the algorithm terminates. Then we prove its correctness.
Finally, we bound the running time.

Lemma 3.2. While the graph remains acyclic, the insertion algorithm maintains
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k(v) ≤ size(v) for every vertex v.

Proof. The proof is by induction on the number of arc insertions. The inequality
holds initially. Suppose it holds just before the insertion of an arc (v, w) that does not
create a cycle. Consider a traversal step during the insertion that deletes (x, y) from
A and increases k(y). If k(y) increases to k(x) + 1, size(y) ≥ 1 + size(x) ≥ 1 + k(x),
maintaining the inequality for y. The more interesting case is when ci(y) = 3 · 2i+1

and k(y) increases to bi(y) + 3 · 2i. Each of the increases to ci(y) since it was last
zero corresponds to the traversal of an arc (z, y). When ci(y) was last zero, bi(y) =
max

{

0, k(y)− 2i+1
}

. Since k(y) cannot decrease, bi(y) ≤ k(z) ≤ size(z) when this

traversal of (z, y) occurs, since at this time k(y) − k(z) < min
{

k(y), 2i+1
}

. We
consider two cases. If there were at least 3 · 2i traversals of distinct arcs (z, y) since
ci(y) was last zero, then size(y) ≥ bi(y)+3 ·2i by Lemma 3.1, and the increase in k(y)
maintains the inequality for y. If not, by the pigeonhole principle there were at least
three traversals of a single arc (z, y) since ci(y) was last zero. When each traversal
happens, k(y)− k(z) ≥ 2i, but each of the second and third traversals cannot happen
until k(z) increases to at least the value of k(y) at the previous traversal. This implies
that when the third traversal happens, k(y) ≥ bi(y) + 3 · 2i, so k(y) will not in fact
increase as a result of this traversal.

Lemma 3.3. If a new arc (v, w) creates a cycle, the insertion algorithm maintains

k(v) ≤ size(v) + n, where sizes are before the addition of (v, w).

Proof. Before the addition of (v, w), k(v) ≤ size(v) for every vertex v, by
Lemma 3.2. Traversal of the arc (v, w) can increase k(v) by at most n, so the desired
inequality holds after this traversal. Every subsequent traversal is of an arc other than
(v, w): to traverse (v, w), an arc into v must be traversed, which results in reporting
of a cycle. Thus the subsequent traversals are of arcs in the acyclic graph before the
addition of (v, w). The proof of Lemma 3.2 extends to prove that these traversals
maintain the desired inequality: Lemma 3.1 holds if the size function is replaced by
the size plus any constant, in particular by the size plus n.

Lemma 3.4. The total number of arc traversals for m arc additions is O(n2 log n).

Proof. By Lemmas 3.2 and 3.3, every label k(v), and hence every bound bi(v),
remains below 2n. Every arc traversal increases a vertex level or increases a count.
The number of level increases is O(n2). Consider a count ci(v). Each time ci(v) is
reset to zero from 3 · 2i+1, bi(v) increases by at least 2i. Since bi(v) ≤ 2n, the total
amount by which ci(v) can decrease as a result of being reset is at most 12n. Since
ci(v) starts at zero and cannot exceed 4n, the total number of times ci(v) increases
is at most 16n. Summing over all counts for all vertices gives a bound of O(n2 log n)
on the number of count increases and hence on the number of arc traversals.

Theorem 3.5. If the insertion of an arc (v, w) creates a cycle, the insertion

algorithm stops and reports a cycle. If not, the insertion algorithm maintains the

invariant that k is a weak topological numbering.

Proof. By Lemma 3.4 the algorithm terminates. A straightforward induction
shows that every arc (x, y) traversed by the insertion algorithm is such that x is
reachable from v, so if the algorithm stops and reports a cycle, there is one. Suppose
the insertion of (v, w) creates a cycle. Before the insertion of (v, w), k is a weak
topological numbering, so the path from w to v existing before the addition of (v, w)
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has vertices in strictly increasing order. Thus v has the largest level on the path. A
straightforward induction shows that the algorithm will eventually traverse every arc
on the path and report a cycle, unless it reports another cycle first.

Suppose addition of an arc (v, w) does not create a cycle. Before the addition, k
is a weak topological numbering. The algorithm maintains the invariant that every
arc (x, y) such that k(x) ≥ k(y) is either on A or is the arc being processed. Thus
once A is empty, k is a weak topological numbering.

Theorem 3.6. The algorithm runs in O(n2 log n) total time.

Proof. The running time is O(1) per arc traversal plus O(n2). This is O(n2 log n)
by Lemma 3.4.

The following result shows that the bound in Theorem 3.6 is tight.

Theorem 3.7. For any sufficiently large n, there exists a sequence of Θ(n2) arc

insertions that causes the algorithm to do Ω(n2 log n) arc traversals.

Proof. Without loss of generality, suppose n = (7/2)r − 3, where r ≥ 23 is
a power of 2. The graph we construct consists of three categories of vertices: (1)
vertices u1, u2, . . . , ur, (2) sets of vertices S0, S1, . . . , Slg(r)−2 with |Sj | = 3 · 2j+1 (so
∑

j |Sj | = 3(r/2− 1)), and (3) a set of vertices T with |T | = r. Initially there are no
arcs in the graph, and all levels are 1.

First, add arcs (ui, ui+1) in order for 1 ≤ i < r. After these arc additions,
k(ui) = i. These levels are invariant over the remainder of the arc insertions — we
use these vertices as anchors to increase the levels of all the other vertices. In fact, the
only time the level of any other vertex v ∈ (

⋃

j Sj) ∪ T will increase is when adding
an arc (ui, v).

The arc insertions proceed in phases ranging from 2 to r. In phase i, first insert
arc (ui−1, t) for all t ∈ T , thereby increasing k(t) to i. Next, consider each j for which
there exists a constant c ≥ 3 such that i = c2j , i.e., i is a sufficiently large multiple
of 2j . There are two cases here, described in more detail shortly. If c = 3, insert arcs
from Sj to T , not causing a level increase to t. If c > 3, the algorithm traverses the
arcs from Sj to T again, but without causing any level increases to t ∈ T . Moreover,
the only time any cj(t) or bj(t) changes, for j > 0, is when the algorithm traverses an
arc from Sj to t ∈ T .

Case 1 (add arcs from Sj to T ): If i = 3 · 2j for some j, add arcs (u2j+1−1, sj) for
all sj ∈ Sj , causing k(sj) to increase to 2j+1. Also add arcs (sj , t) for all sj ∈ Sj and
t ∈ T . Observe that before these arc additions ⌊lg(k(t)− k(sj))⌋ =

⌊

lg(2j+1 − 2j)
⌋

=
j. Moreover, cj(t) = 0 and bj(t) = 0. For each t, when the last arc insertion occurs,
cj(t) increases to 3 · 2j+1. We have, however, that k(t) = 3 · 2j+1 > bj + 3 · 2j ,
and hence k(t) does not increase. The counter cj(t) is subsequently reset to 0 and
bj(t) = k(t) − 2j+1 = k(sj) − 2j . Finally, the priority of each of these arcs (sj , t) is
updated to 3 · 2j in out(sj).

Case 2 (follow arcs from Sj to T ): Otherwise, i = c2j , for c > 3. Since i > 3 · 2j ,
the arcs (sj , t) already exist. Before this step, we have k(sj) = k(t) − 2j+1, for
each sj ∈ Sj . Moreover, we have bj(t) = k(sj) − 2j = k(t) − 3 · 2j . Insert arcs
(ui−2j−1, sj), for all sj ∈ Sj . Such an arc insertion causes k(sj) to increase to the
next multiple of 2j . After the update, we have k(sj) equal to the priority of each
arc (sj , t) in out(sj), and hence the algorithm traverses each of the outgoing arcs.
Moreover, lg(k(t) − k(sj)) = lg(i − 2j) = j, and hence the counter cj is affected.
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For each t, the counter cj(t) again reaches 3 · 2j+1. Since bj(t) = k(t) − 3 · 2j , the
level of t again does not increase. The counter cj(t) is subsequently reset to 0, each
bj(t) = k(t) − 2j+1 = k(sj) − 2j , and the priority of each of the arcs (sj , t) is set to
k(t) in out(sj).

In both cases, whenever the phase number i is a large enough multiple of 2j , the
algorithm traverses all arcs (sj , t) such that sj ∈ Sj and t ∈ T . Consider a fixed j.
There are |Sj |·|T | = 3·2j+1r such arcs. Summing over all r/2j−2 phases during which
the phase number is a large enough multiple of 2j , there are (3 · 2j+1r)(r/2j − 2) =
Ω(r2) = Ω(n2) arc traversals from vertices in Sj to vertices in T . Summing over all
lg(r)− 2 = Θ(log n) values of j yields a total of Ω(n2 log n) arc traversals.

The proof of Theorem 3.7 extends to give a slightly more general result: for any
1 ≤ k ≤ lg n, there is a sequence of Θ(2kn) arc insertions causing the algorithm to
do Θ(n2k) arc traversals. To prove this, omit from the proof of Theorem 3.7 the sets
Sj with j > k. The generalization implies that Θ(n) arcs are enough to make the
algorithm take Ω(n2) time, and Θ(n1+ǫ) arcs, for any constant ǫ > 0, are enough to
make the algorithm take Ω(n2 log n) time.

4. Simple Extensions. In this section we extend our sparse and dense algo-
rithms to provide some additional capabilities possessed by previous algorithms. All
the extensions are simple and preserve the asymptotic time bounds of the unextended
algorithms.

Our first extension eliminates ties of vertex numbers. To eliminate ties in the
extended sparse algorithm of Section 2 (which maintains a weak topological number-
ing), we set b = nm+n+1 (instead of b = nm+1), and we initially assign the vertices
distinct indices from nm + 1 to nm + n + 1 (instead of initializing all indices to 1).
Then all indices remain distinct between 1 and nm + n + 1, so all vertex numbers
remain distinct. We can eliminate ties in the dense algorithm Section 3 in the same
way: set b = nm + n + 1, set a = nm + 1, give each vertex v a distinct index i(v)
between nm+1 and nm+n+1 inclusive, and define the number of v to be bk(v)+i(v);
when a vertex v increases in level, decrement a and set i(v) = a.

This way of breaking ties is more complicated than necessary for the dense al-
gorithm (we could just set b = n and give the vertices fixed distinct indices between
1 and n inclusive), but it facilitates our second extension, which maintains a doubly
linked list of the vertices in increasing lexicographic order by level and index, and
hence in a topological order. The method works for either the sparse or dense algo-
rithm. We maintain a pointer to the first vertex on the list. We also maintain, for
each level j, a pointer to the first vertex of level j or higher, if any. When a vertex
decreases in index, it becomes the new first vertex in its current level, which may be
the same or higher than its old level. Moving a vertex and making all needed pointer
changes takes time proportional to one plus the amount by which the vertex level
increases, and hence does not affect the asymptotic running time. When moving a
group of vertices whose indices change as a result of an arc insertion, we move them
in decreasing order by new index, which is the same as the order in which the new
indices are assigned.

Our third extension explicitly returns a cycle when one is discovered, rather than
just reporting that one exists. We augment each search to grow a spanning tree
represented by parent pointers as each search proceeds. In the sparse algorithm,
the backward search generates an in-tree rooted at v containing all visited vertices;
the forward search generates an out-tree rooted at w containing all vertices whose
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level increases. If the backward search causes k(w) to increase to k(v) + 1 and B
to become empty, the forward search may visit vertices previously visited by the
backward search. Each such vertex acquires a new parent when the forward search
visits it for the first time. When the algorithm stops and reports a cycle, a cycle
can be obtained explicitly by following parent pointers. Specifically, if the backward
search traverses an arc (w, y), following parent pointers from y gives a path from y to
v, which forms a cycle with (v, w) and (w, y). If the forward search traverses an arc
(x, y) with y = v or y in B, traversing parent pointers from x and from y gives a path
from w to x and a path from y to v, which form a cycle with (x, y) and (v, w). In the
dense algorithm, there is only one tree, an out-tree rooted at v, containing v and all
vertices whose level increases. Vertex v has one child, w. If the search traverses an
arc (x, v), following parent pointers from x gives a path from v through (v, w) to x,
which forms a cycle with (x, v).

Our fourth extension is to handle vertex insertions and to allow n and m to be
unknown in advance. We maintain n and m as vertex and arc insertions occur. In
the unextended sparse algorithm we give each new vertex an initial level of 1, and we
update ∆ each time n or m increases. In the unextended dense algorithm, we also
give each new vertex an initial level of 1, and each time ⌊lg n⌋ increases, we add a
corresponding new set of bounds and constants. If we want to add indices to either
algorithm, we maintain distinct indices as well as a doubly linked list of the vertices
in increasing lexicographic order by level and index. Until the first arc is inserted, we
give new vertices initial indices in increasing order starting from 1. When the first
arc is inserted, we initialize b = 8n3 + 2n + 1, a = 8n3 + n + 1, and give the vertices
distinct indices between 8n3 + n + 1 and 8n3 + 2n + 1 inclusive. Subsequently, when
a new vertex v is inserted we decrement a and set i(v) = a. Each time n doubles, we
re-initialize a and b and assign new vertex indices from 8n3 + n + 1 to 8n3 + 2n + 1
inclusive, in increasing order with respect to the current list order. The extra overhead
for re-initializing indices is O(n).

5. Maintenance of Strong Components. A less straightforward extension
of our algorithms is to the maintenance of strong components. This has been done
for some of the earlier algorithms by previous authors. Pearce [19] and Pearce and
Kelly [20] sketched how to extend their incremental topological ordering algorithm
and that of Marchetti-Spaccamela et al. [17] to maintain strong components; HKMST
showed in detail how to extend their algorithms. Here we describe how to extend ours.

Our strong-components algorithms maintain a representation of the condensa-

tion of the graph, which is the graph formed by contracting each strong component
to a single vertex. We represent each vertex in the condensation by a unique canon-

ical vertex in the corresponding component. We maintain the vertex sets of the
components using a disjoint set data structure [28], which supports two operations:

Find(x): Given a vertex x, return the canonical vertex of the set containing x.

Link(x, y): Given two different canonical vertices x and y, unite the sets contain-
ing them into a single set whose canonical vertex is x. This operation destroys the
old sets containing x and y.

Initially each vertex is a canonical vertex in its own singleton set. With an appro-
priate implementation of the set operations, the time for any sequence of intermixed
Link and Find operations is O(n log n) plus O(1) per operation [28]. In our strong-
components algorithms the number of set operations is O(1) per arc examined, so
the time for the set operations does not increase the asymptotic time bounds for
maintaining strong components.
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We maintain the arcs in their original form and use Find to transform them into
arcs of the condensation: if (x, y) is an original arc, the corresponding arc of the
condensation is (Find(x),Find(y)). Although the original graph contains no loops
or multiple arcs, the condensation may contain such arcs. Such arcs can be ignored
or deleted, since they do not affect the strong components or the possible topological
orders of the components.

Each of our strong components algorithms runs the corresponding cycle-detection
algorithm on the condensation. If an arc addition creates a new component, the
algorithm does an extra depth-first search to find the vertices in the new component.
Let G be an acyclic graph, and suppose the addition of arc (u, z) creates a cycle. Then
the strong component containing (u, z) contains exactly the vertices on simple paths
from z to u. We can find all such vertices by marking u and then doing a depth-first
search forward from z. When retreating along an arc (x, y) during the search, we mark
x if y is marked. When the search reaches u, we need not search recursively from u,
but there is no harm in doing so. Once the search finishes, the marked vertices are
those in the component. It is straightforward to verify by induction that this method
correctly marks all vertices on simple paths from z to u. Equivalently, we can do a
backward depth-first search from u.

5.1. Strong Components of Sparse Graphs. Our sparse strong-components
algorithm maintains for each component a level, a set of arcs (x, y) such that x is in the
component, and a set of arcs (x, y) such that y is in the component and the components
containing x and y are on the same level. We store the level and the incident arc sets
with the canonical vertex of the component. The levels are a pseudo topological
numbering of the components: if (x, y) is an arc, then k(Find(x)) ≤ k(Find(y)).
Initially every vertex is in its own component, all components are on level 1, all the
incident arc sets are empty, and all vertices are unmarked (not in a new component).

The algorithm for adding a new arc begins by running the sparse cycle-detection
algorithm on the existing condensation, but it does not stop when it detects a cycle,
it merely sets a bit indicating that a cycle exists. The backward search continues
until it traverse ∆ arcs or runs out of arcs to traverse; the forward search, if it occurs,
continues until it traverses all arcs from vertices whose level increases. Once cycle
detection is complete, the updated levels are a pseudo topological ordering of the
current graph, which consists of the old condensation and the new arc; if the new arc
(v, w) creates a new component, Find(v) and Find(w) are now on the same level,
and a cycle has been detected. In this case, the algorithm does an extra depth-first
search backward from Find(v), visiting only canonical vertices within the level of
Find(v) and marking all canonical vertices in the new component. It then forms the
new component by doing appropriate link operations.

Here are the details. The algorithm for adding a new arc (v, w) consists of five
steps below. It sets the boolean variable cycle, initially false, to true when it
detects a cycle. During the backward search in Step 2, it deletes loops and multiple
arcs instead of traversing them. To facilitate the latter deletions, it uses a bit matrix
M indexed by pairs of vertices. Initially M is identically zero.

Step 1 (test order): Set u = Find(v) and z = Find(w). If k(u) < k(z), go to Step
4 (the levels remain a pseudo topological numbering).

Step 2 (search backward): Using the incoming arc sets, search backward from u,
visiting only canonical vertices on the same level as u. Given a candidate arc (x, y)
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for traversal, if Find(x) = Find(y) or M(Find(x),Find(y)) = 1, delete (x, y) from
out(x) and from in(y); otherwise, traverse (x, y) as follows: if Find(x) = z then set
cycle = true; otherwise, if Find(x) is unvisited, mark x visited and add all arcs in
in(Find(x)) to those to be traversed. Continue the search until at least ∆ arcs are
traversed or no backward arcs remain to be traversed. Reset all 1 entries in M to
0. Let B be the set of visited canonical vertices. If the search traverses fewer than
∆ arcs and k(z) = k(u), go to Step 4 (no forward search is needed). If the search
traverses fewer than ∆ arcs and k(z) < k(u), set k(z) = k(u). If the search traverses
at least ∆ arcs, set k(z) = k(u) + 1 and B = {u}. In either of the last two cases
(those in which k(z) increases), set in(z) = {} and continue to Step 3.

Step 3 (search forward): Using the outgoing arc sets, search forward from z,
following outgoing arcs only from canonical vertices whose level increases. The forward
search updates the incoming arc sets as vertex levels increase. Specifically, when
traversing a forward arc (x, y), if Find(y) ∈ B, set cycle = true. If k(Find(y)) =
k(z), add (x, y) to in(Find(y)). If k(Find(y)) < k(z), set k(Find(y)) = k(z), set
in(Find(y)) = {(x, y)}, and add all arcs in out(Find(y)) to those to be traversed.

Step 4 (form component): If cycle = false go to Step 5. Otherwise, proceed
as follows. Set cycle = false. Mark z. Using the incoming arc sets, do a backward
depth-first search from u, visiting only canonical vertices on the same level as u. When
traversing a backward arc (x, y), if Find(x) is marked, mark Find(y). Otherwise, if
Find(x) is unvisited, visit Find(x) and recursively search backward from Find(x);
once the recursive search finishes, if Find(x) is marked, mark Find(y). Once the
search from u finishes, for each marked vertex x 6= z, do Link(z, x), set out(z) =
out(z) ∪ out(x), set in(z) = in(z) ∪ in(x), and unmark x. Finally, unmark z.

Step 5 (add arc): Add (v, w) to out(u). If k(u) = k(z), add (v, w) to in(z).

In the proofs to follow we denote levels just before and just after the insertion of
an arc (v, w) by unprimed and primed values, respectively.

Theorem 5.1. The sparse strong-components algorithm is correct. That is, it

correctly maintains the strong components, all the data structures, and the following

invariant on the levels: if (x, y) is an arc, then k(Find(x)) ≤ k(Find(y)).

Proof. The proof is by induction on the number of arc insertions. Initially all
the data structures are correct. It is straightforward to verify that the algorithm
correctly maintains them, assuming that it correctly maintains the strong components
and the desired invariant on levels. Suppose the strong components are correct and
the invariant holds before the insertion of an arc (v, w). The first three steps of
the algorithm do the same thing as the first three steps of the unextended algorithm,
except that they operate on the condensation instead of the original graph, and they do
not stop when a cycle is detected but merely set cycle = true. It follows that if adding
(v, w) does not create a now component, then after the addition the components are
correct and the invariant holds.

Suppose on the other hand that adding (v, w) does create a new component. By
the proof of Theorem 2.1, the algorithm will definitely set cycle = true. If a forward
search does not occur, no levels change and k(u) = k(z). If a forward search does
occur, then z increases in level, and all canonical vertices reachable from z, including
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u, have level at least that of z once the forward search finishes. It follows that at
the beginning of Step 4, k(Find(x)) ≤ k(Find(y)) for every original arc (x, y), and
k(u) = k(z). This means that the new component formed by the addition of (v, w)
contains only canonical vertices on the same level as u and z, and the search in Step
4 will correctly find the vertices in the new component and correctly update the data
structures.

To bound the running time of the algorithm, we need to prove an analogue of
Lemma 2.2. This requires some definitions. We call an arc (x, y) live if x and y are
in different strong components and dead otherwise. A newly inserted arc that forms
a new component is dead immediately. The level of a live arc (x, y) is k(Find(x)).
The level of a dead arc is its highest level when it was live; an arc that was never live
has no level. We identify each component with its vertex set; an arc insertion either
does not change the components or combines two or more components into one. A
component is live if it corresponds to a vertex of the current condensation and dead

otherwise. The level of a live component is the level of its canonical vertex; the level
of a dead component is its highest level when it was live. A vertex and a component
are related if there is a path that contains the vertex and a vertex in the component.
The number of components, live and dead, is at most 2n− 1.

Lemma 5.2. No vertex level exceeds min
{

m1/2, 2n2/3
}

+ 1 in the sparse strong-

components algorithm.

Proof. We claim that for any level k > 1 and any level j < k, any canonical vertex
of level k is related to at least ∆ arcs of level j and at least

√
∆ components of level j.

We prove the claim by induction on the number of arc insertions. The claim holds
vacuously before the first insertion. Suppose it holds before the insertion of an arc
(v, w). Let u = Find(v) and z = Find(w) before the insertion. A vertex is reachable
from z after the insertion if and only if it is reachable from z before the insertion. The
insertion increases the level only of z and possibly of some vertices and components
reachable from z. It follows that the claim holds after the insertion for any canonical
vertex not reachable from z.

Consider a vertex y that is reachable from z and is canonical after the insertion.
Since levels are a pseudo topological numbering of the components, k′(y) ≥ k′(z).
For j such that k′(z) ≤ j < k′(y), y is related to at least ∆ arcs of level j and

√
∆

components of level j before the insertion. None of these arcs or components changes
level as a result of the insertion, so the claim holds after the insertion for y and level j.
Since any arc or component of level less than k′(z) that is related to z is also related
to y, the claim holds for y after the insertion if it holds for z.

After the insertion, z is reachable from u. Also, k(u) ≤ k′(z) ≤ k(u) + 1. The
claim holds for u before the insertion. Let (x, y) be an arc of level less than k(u)
that is related to u before the insertion. If x is reachable from z, (x, y) will be dead
after the insertion and hence its level will not change. Neither does its level change
if x is not reachable from z. Arc (x, y) is related to z after the insertion. Consider
a component of level less than k(u) that is related to u before the insertion. If the
component is reachable from z, it is dead after the insertion of (v, w) and hence does
not change level; if it is not reachable from z, it also does not change level. After the
insertion, the component is related to z. It follows that the claim holds for z and any
level j < k(u).

One case remains: j = k(u) < k′(z) = k(u) + 1. For the level of z to increase to



16 M. A. Bender et al.

k(u) + 1, the backward search must traverse at least ∆ arcs of level k(u) before the
insertion, each of which is related to z and on level k(u) after the insertion. The ends
of these arcs are in at least

√
∆ components of level k(u), each of which is related to

z and on level k(u) after the insertion. Thus the claim holds for z and level k(u) after
the insertion. This completes the proof of the claim.

The claim implies that for every level other than the maximum, there are at least
∆ different arcs and

√
∆ different components. Since there are only m arcs and at

most 2n−1 components, the maximum level is at most min
{

m/∆, 2n/
√

∆
}

+1. The

lemma follows.

Theorem 5.3. The sparse strong-components algorithm handles m arc insertions

in O(min
{

m1/2, n2/3
}

m) time.

Proof. The proof is like the proof of Theorem 2.3, using Lemma 5.2. The only
new issue is that we must bound the time spent doing the search in Step 4. Each
arc traversed in this search was either traversed in Step 2 or is an arc out of a vertex
whose level increases. The number of arc traversals of the former kind is at most
∆ per arc addition; the number of arc traversals of the latter kind is at most m
times the maximum level. The maximum level is O(∆) by Lemma 5.2. The time
per arc traversal is O(1), plus O(n log n) time over all arc examinations spent doing
disjoint-set operations.

The space required by the extended algorithm is O(n2), since the bit matrix M
requires O(n2) space (or less if bits are packed into words). If we store M in a hash
table, the space becomes O(m) but the algorithm becomes randomized. By using a
three-level data structure [29] to store M we can reduce the space to O(n4/3 + m)
without using randomization. We obtain a simpler algorithm with a time bound of
O(m3/2) by eliminating the deletion of multiple arcs, thus avoiding the need for M ,
and letting ∆ = m1/2. If we run this simpler algorithm until m > n4/3, then start
over with all vertices on level one and indexed in topological order and run the more-
complicated algorithm with M stored in a three-level data structure, we obtain a
deterministic algorithm running in O(min

{

m1/2, n2/3
}

m) time and O(m) space.

5.2. Strong Components of Dense Graphs. Our dense strong-components
algorithm does two searches per arc addition, the first to find the new component if
any, the second to update levels, bounds, and counts. The levels, bounds, counts, and
arc heaps are of components, not vertices. We store these values with the canonical
vertices of the components. Initially each vertex is in its own component, all levels are
one, all bounds and counts are zero, and all heaps are empty. The algorithm deletes
arcs with both ends in the same component, as well as the second and subsequent arcs
between the same pair of components. As in the sparse extension, to do the latter
it uses a bit matrix M indexed by pairs of vertices, initially identically zero. It also
marks vertices found to be in a new component; initially all vertices are unmarked.

To insert an arc (v, w), let u = Find(x) and z = Find(y). If k(u) < k(z), add
(v, w) to out(u) with priority k(z). If k(u) ≥ k(z) and u 6= z, do Steps 1–4 below. (If
u = z do nothing.)

Step 1 (find component): Set k(z) = k(u) + 1 and set A = {(v, w)}. Do a depth-
first search forward from z, visiting only canonical vertices of level less than k(z).
To do the search, remove arcs (x, y) from out(z) in non-decreasing order by priority
until out(z) is empty or the minimum priority of an arc in out(z) is at least k(z).
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Given an arc (x, y), proceed as follows. Add (x, y) to A. If Find(y) = u, mark u.
If k(Find(y)) < k(z), set k(Find(y)) = k(z) and search forward recursively from
Find(y); once the search finishes, if Find(y) is marked, mark Find(x).

Step 2 (form component): If z is marked, unite the components containing the
marked canonical vertices into a single new component whose canonical vertex is z
by doing appropriate Link operations. Form the new arc heap of z by melding the
heaps of the marked vertices, including z. Unmark all marked vertices.

Step 3 (update levels, bounds, and counts): Repeat the following until A is
empty:

Delete some arc (x, y) from A. If Find(x) 6= Find(y) and M(Find(x),Find(y)) =
0, proceed as follows. Set M(Find(x),Find(y)) = 1. If k(Find(x)) ≥ k(Find(y)),
increase k(Find(y)) to k(Find(x))+1; if not, set i = ⌊lg(k(Find(y))− k(Find(x)))⌋,
add one to ci(Find(y)), and if the counter reaches threshold ci(Find(y)) = 3 ∗ 2i+1,
set ci(Find(y)) = 0, set k(Find(y)) = max

{

k(Find(y)), bi(Find(y)) + 3 ∗ 2i
}

, and
set bi(Find(y)) = k(Find(y)) − 2i+1. Delete from out(Find(y)) each arc with pri-
ority at most k(Find(y)) and add it to A. Add (x, y) to out(Find(x)) with priority
k(Find(y)).

Step 4 (reset M): Reset each 1 in M to 0.

Theorem 5.4. The dense strong-components algorithm correctly maintains both

strong components and the inequality k(v) ≤ size(v) for every vertex v.

Proof. The proof is by induction on the number of arc insertions. The theorem
holds initially. Suppose it holds before the insertion of an arc (v, w). Let u = Find(v)
and z = Find(w) before the insertion, and consider vertex levels just before the
insertion. If u = z or k(u) < k(z), the theorem holds after the insertion. Suppose
u 6= z and k(u) ≥ k(z), so that Steps 1–4 are executed. Step 1 visits all vertices of
level less than k(u) + 1 reachable from z and increases their level to k(u) + 1. Since
z is reachable from u after the insertion of (v, w), all such vertices have size at least
k(u) + 1 after the insertion. Thus such increases in level maintain the inequality
between levels and sizes. If the insertion of (v, w) creates a new component, the
vertices in the component are exactly those on paths from z to u, all of which must
have level at most k(u) before the insertion. Thus Step 1 will visit and mark all
such vertices, including u, and Step 2 will correctly form the new component. Step
3 updates levels, bounds, and counts exactly as in the unextended algorithm except
that it operates on components, not vertices, and it traverses no arcs with both ends
in the same component and at most one arc between any pair of components. The
proof of Lemma 3.2 extends to show that Step 3 maintains the inequality between
levels and sizes. Thus the theorem holds after the insertion.

Theorem 5.5. The dense strong-components algorithm runs in O(n2 log n) total

time.

Proof. The proof of Lemma 3.4 extends to show that the extended dense algorithm
does O(n2 log n) arc traversals, from which the theorem follows.

The space required by the extended dense algorithm is O(n2), or O(n log n + m)
if the heaps and the matrix M are stored in hash tables.
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5.3. Topological Order. It is straightforward to apply the ideas from Sections
2 and 4 to extend the spare and dense strong-components algorithms to maintain a
weak topological numbering of the components and/or a list of the components in a
topological order. We leave this extension as an exercise.

6. Concluding Remarks. We have presented two algorithms for incremental
cycle detection and related problems, one for sparse graphs and one for dense graphs.
Their total running times are O(min

{

m1/2, n2/3
}

m) and O(n2 log n), respectively.

The sparse algorithm is faster for graphs whose density m/n is o(n1/3 log n); the
dense algorithm is faster for graphs of density ω(n1/3 log n). The O(n2/3m) bound of
the sparse algorithm is best only for graphs with density in the sliver from ω(n1/3) to
o(n1/3 log n). The HKMST paper gives a lower bound of Ω(nm1/2) for algorithms that
maintain an explicit list of the vertices in a topological order and do vertex updates
only within the so-called “affected region,” the set of vertices that are definitely out
of order when a new arc is added. Unlike previous algorithms, our algorithms do not
do updates completely within the affected region, yet they do not beat the HKMST
lower bound, and we have no reason to believe it can be beaten. On the other hand,
for graphs of intermediate density our bounds are far from O(nm1/2), and perhaps
improvements coming closer to this bound are possible.

Another interesting research direction is to investigate whether batch arc addi-
tions can be handled faster than single arc additions (other than by reverting to a
static algorithm if the batch is large enough). See [4, 23]. One may also ask whether
arc deletions, instead of or in addition to insertions, can be handled. Our cycle-
detection and topological-ordering algorithms remain correct if arcs can be deleted
as well as inserted, but the time bounds are no longer valid, and we have no inter-
esting bounds. Maintaining strong components as arcs are deleted, or as arcs are
inserted and deleted, is an even more challenging problem. See [24] and the references
contained therein.

Acknowledgment. The fourth author thanks Don Knuth who, during a presen-
tation of a previous version of the sparse cycle-detection algorithm, asked whether the
algorithm really needed to use indices in addition to levels. The simplified algorithm
presented in Section 2 demonstrates that the answer is no.
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