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Abstract

We describe an efficient implementation of Edmonds’ algorithm for finding minimum directed

spanning trees in directed graphs.

1 Minimum Directed Spanning Trees

Let G = (V,E,w) be a weighted directed graph, where w : E → R is a cost (or weight) function

defined on its edges. Let r ∈ V . A directed spanning tree (DST) of G rooted at r, is a subgraph T

of G such that the undirected version of T is a tree and T contains a directed path from r to any

other vertex in V . The cost w(T ) of a directed spanning tree T is the sum of the costs of its edges,

i.e., w(T ) =
∑

e∈T w(e). A minimum directed spanning tree (MDST) rooted at r is a directed

spanning tree rooted at r of minimum cost. A directed graph contains a directed spanning tree

rooted at r if and only if all vertices in G are reachable from r. This condition can be easily tested

in linear time.

The proof of the following lemma is trivial as is left as an exercise.

Lemma 1.1 The following conditions are equivalent:

(i) T is a directed spanning tree of G rooted at r.

(ii) The indegree of r in T is 0, the indegree of every other vertex of G in T is 1, and T is acyclic,

i.e., contains no directed cycles.

(iii) The indegree of r in T is 0, the indegree of every other vertex of G in T is 1, and there are

directed paths in T from r to all other vertices.
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A vertex u is a descendant of v in T if and only if there is a directed path from v to u in T . As an

immediately corollary of Lemma 1.1 we get:

Corollary 1.2 Let T be a directed spanning tree of T rooted at r. Let (u, v) ∈ E be an edge not

in T , such that v 6= r and u is not a descendant of v in T . Let (u′, v) be the (unique) edge in T

entering v. Then, T ∪ {(u, v)} \ {(u, v′)} is also a directed spanning tree of G rooted at r.

2 Closely related problems

In the formulation of the MDST problem given above, the root r was specified. We can also consider

the version of MDST problem in which the root is not specified, in which case we have to find the

root r for which the cost of the minimum directed spanning tree rooted at r is minimized. It is not

difficult, however, to devise linear time reductions between the MDST problems with a specified or

an unspecified root. We leave that as an exercise.

Instead of wanting a minimum spanning tree, we can also ask for a maximum spanning tree. We

can easily do that by negating all the costs.

Historically, most MDST algorithms were presented as algorithms for finding optimum branchings.

A branching B ⊆ E of G = (V,E) is an acyclic subset of edges in which the indegree of each vertex

is at most 1. We leave it again as an exercise to give simple linear time reductions from the MDST

problem to the problem of finding a branching of minimum/maximum total weight.

3 Differences between the directed and undirected cases

In undirected graphs, every edge is part of some spanning tree. In directed graphs, not all edges

are part of DSTs. Edges that are not contained in any DST are said to be useless. The simplest

example of useless edges are edges that enter the root r. Other edges may also be useless.

Directed versions of the cut and cycle rules that were so instrumental in devising algorithms for

finding minimum spanning trees in undirected graphs are no longer valid, even if we assume that

all edges are useful. (Finding counterexamples is again left as an exercise.) We thus need to use a

new technique to finding MDSTs.

4 Edmonds’ algorithm

We now sketch the basic algorithmic approach for solving the MDST problem suggested by Edmonds

[Edm67], and independently by Bock [Boc71] and Chin and Liu [CL65].

Let G = (V,E,w) be a weighted directed graph, let r ∈ V , and assume that G = (V,E) has a DST

rooted at r. Let F be a set of n − 1 edges obtained by selecting the cheapest edge in G entering
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each vertex v 6= r. If we are really lucky, F is acyclic. By Lemma 1.1, F is a DST, in which case it

is also a MDST. Unfortunately, F may, of course, contain cycles.

Let C be a cycle, not containing r, composed of cheapest entering edges. Obviously, a MDST

cannot contain all edges of C. We can show, however, that there is a MDST that contains all edges

of C, except one.

Lemma 4.1 Let G = (V,E,w) be a weighted directed graph and let r ∈ V . Let C be a directed

cycle in G, not containing r, composed of cheapest entering edges. Then, there is a MDST of G

rooted at r that contains all the edges of C except one.

Proof: Let T be a MDST of G rooted at r. Let v1 be a vertex on C such that the path from r

to v1 in T does not pass through any other vertices of C. (There must be at least one such vertex,

i.e., one of the vertices of C that are closest to r in T .) Let v1, v2, . . . , vk be the vertices of C in

the order in which they appear on the cycle. If (v1, v2), (v2, v3), . . . , (vk−1, vk) ∈ T , we are done.

Suppose, therefore, that (v1, v2), (v2, v3), . . . , (vi−1, vi) ∈ T while (vi, vi+1) 6∈ T , for some i < k. Let

(u, vi+1) ∈ T be the edge entering vi+1 in T . The ancestors of vi in T are the vertices on the path

from r to v1 in T and the vertices v1, v2, . . . , vi−1 on C. Thus, vi is not a descendant of vi+1. By

Corollary 1.2, T ′ = T ∪ {(vi, vi+1)} \ {u, vi+1)} is also a spanning tree rooted at r. As (vi, vi+1) is a

cheapest edge entering vi+1, we get that w(vi, vi+1) ≤ w(u, vi+1), and hence w(T ′) ≤ w(T ). Thus,

T ′ is also a MDST rooted at r. Continuing in this way, we can construct a MDST rooted at r that

contains all the edges of C expect (vk, v1). 2

Suppose that C is a cycle of cheapest entering edges. We now know that there is an MDST

that contains all the edges of C, except one. But which one? Which edge of C should we throw

away? Edmonds [Edm67] suggests an elegant solution to this problem. We contract the cycle C,

appropriately modify the cost of the edges that enter C in the contracted graph, and then recursively

find an MDST T̄ rooted at r in the contracted graph. If the edge ē ∈ T̄ that enters C in Ḡ is derived

from an edge e = (u, v) that enters C at v, we convert T̄ into an MDST of G by adding to it all

the edges of C except the edge of C entering v. We show below that T is then an MDST of G. We

next formalize this approach and prove its correctness.

Let C be a cycle of G and let Ḡ = G/C be the graph obtained from G by contracting C. Formally,

if C is composed of the edges (v1, v2), (v2, v3), . . . , (vk−1, vk), (vk, v1), then the vertex set of Ḡ is

V ∪ {c} \ {v1, v2, . . . , vk}, i.e., the vertices v1, v2, . . . , vk of the cycle are replaced by the super-

vertex c. The edge set of Ḡ is Ē = {ē 6= (c, c) | e ∈ E}, where if e = (u, v), then ē = (ū, v̄), where

ū = u, if u 6= C, and ū = c, if u ∈ C. (Note that self-loops (c, c), if formed, are removed. Parallel

edges are kept.) By a slight abuse of notation, we identify each edge of Ē with the edge of E that

gave rise to it, and thus assume that Ē ⊆ E.

There is a natural one-to-one correspondence between DSTs of G rooted at r that contain all edges

of C, except one, and DSTs of Ḡ rooted at r. If T is a DST of G rooted at r and T ∩C = C \ {e},
then it is easy to see that T̄ = T \ (C \ {e}) is a DST of Ḡ rooted at r. Conversely, if T̄ is a DST
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of Ḡ rooted at r, we can expand it into a DST exp(T̄ ) of G as follows. Let e ∈ Ē be the edge in T̄

that enters c. (Recall that according to our convention, the edges of T̄ are also edges of the original

graph G.) If e = (u, v), where v ∈ C, let e′ = (u′, v) be the edge of C that enters v. We let

exp(T̄ ) = T̄ ∪ (C \ {e′}) ,

i.e., exp(T̄ ) is obtained by adding all the edges of C, except e′, to T̄ . It is again easy to check that

exp(T̄ ) is a DST of G rooted at r and it clearly contains all edges of C, except one. It is also easy

to check that if T̄ is the DST in Ḡ corresponding to a DST T in G that contains all the edges of C

except one, then exp(T̄ ) = T .

If e = (u, v) ∈ E enters C, we let eC = (u′, v) be the edge of C that enters v. We next define a new

cost function w̄ : E → R on the edges of G, and hence also on the edges of Ḡ as follows:

w̄(e) =

{
w(e)− w(eC) if e enters C,

w(e) otherwise.

Lemma 4.2 Let G = (V,E,w) be a weighted directed graph. Let r ∈ V . Let C be a directed cycle

in G. Let T be a DST of G rooted at r such that |T ∩ C| = |C| − 1, i.e., T contains all the edges

of C, except one, and let T̄ be the DST in Ḡ = G/C corresponding to T . Then,

w̄(T̄ ) = w(T )− w(C) .

Proof: Suppose that T ∩ C = C \ {e}. Then, T̄ = T \ (C \ {e}). Let e′ be the edge of T that

enters C. (Note that e and e′ enter the same vertex of C.) Then,

w̄(T̄ ) = (w(T )− w(C \ {e}))− w(e)

= w(T )− w(C) .

Note that w(C \ {e}) is subtracted as the edges of C \ {e} are removed from T to form T̄ . The cost

w(e) is subtracted as w̄(e′) = w(e′)− w(e). For all other edges e′′ ∈ T̄ we have w̄(e′′) = w(e′′). 2

We now have

Theorem 4.3 Let G = (V,E,w) be a weighted directed graph. Let r ∈ V . Let C be a directed

cycle, not containing r, composed of cheapest entering edges. Let Ḡ = G/C and w̄ : E → R be as

defined above, and let T̄ be a MDST of Ḡ with respect to w̄ rooted at r. Then exp(T̄ ) is a MDST

of G rooted at r.

Proof: We know, by Lemma 4.1, that there is a MDST T ∗ rooted at r that contains all edges

of C, except one. Let T ∗ be the DST corresponding to T ∗ in Ḡ. Let T = exp(T̄ ). By Lemma 4.2

we have w̄(T̄ ) = w(T ) − w(C) and w̄(T ∗) = w(T ∗) − w(C). As T̄ is an MDST in Ḡ, we get that

w̄(T̄ ) ≤ w̄(T ∗). Thus w(T ) ≤ w(T ∗) and T is also a MDST rooted at r. 2
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This suggests the following algorithm for finding a MDST, which is essentially the algorithm devised

by Edmonds [Edm67]. Choose cheapest entering edges of vertices other than the root until either

a DST is formed, in which case it is a MDST, or until a cycle C is formed. If a cycle C is formed,

contract it and adjust the edge costs appropriately. Find an MDST in the contracted graph and

expand it into a MDST of the original graph.

5 Efficient implementation

We next present an efficient implementation of Edmonds’ algorithm [Edm67] that runs in O(m log n)

time. The implementation presented is mainly based on an implementation suggested by Tarjan

[Tar77], incorporating also some ideas of Camerini et al. [CFM79, CFM80] and Gabow et al.

[GGST86], and some new ideas. Gabow et al. [GGST86] went on to obtain a more efficient O(m+

n log n) time implementation which we will not cover in detail in class.

We assume, for simplicity, that the input graph G = (V,E,w) is strongly connected. If not, we can

easily make it so by adding O(n) edges of sufficiently high cost.

5.1 High level description

The generic algorithm of the previous section maintains a set F of cheapest entering edges. Ini-

tially F is empty. At each step, the algorithm chooses an arbitrary vertex v 6= r which does not

yet have an incoming edge in F , finds a cheapest edge (u, v) ∈ E entering v, and adds (u, v) to F .

If F is still acyclic, the algorithm proceeds. Otherwise, the cycle C formed in F is found and

contracted and the process continues. The process ends when F is DST of the contracted graph.

The contractions should then be expanded, in reverse order, i.e., the most recent contraction first.

In the worst-case, the algorithm may need to perform Ω(n) nested contractions.

In the efficient implementation of this section, the set F of cheapest entering edges always forms a

path v0 ← v1 ← · · · ← vk, where each vi is either an original vertex of the graph or a super-vertex

obtained by contracting a cycle of (super-)vertices. (Formally, the path is composed of the edges

(vk, vk−1), . . . , (v1, v0).) Initially v0 = a, where a is an arbitrary vertex of the graph. In each step,

the algorithm finds the cheapest edge vk ← u entering vk. If u is not one of v0, . . . , vk−1, the path

is extended by letting vk+1 = u. If u = vi, a cycle vi ← · · · ← vk ← vi is found. The cycle is

contracted, forming a new super-vertex c. The (super-)vertices vi, . . . , vk are then replaced by c.

This contraction phase continues until the whole graph is contracted into a single super-vertex.

The root r does not play a special role in the contraction phase. In particular, the cheapest edge

entering r is eventually chosen and r eventually participates in a contracted cycle. (Recall our

assumption that G is strongly connected.)

There are two reasons for ignoring the identity of r during the contraction phase, as done above.

The first is that it allows us to maintain the invariant that the selected cheapest incoming edges

form a path. Otherwise, we would not be able to continue when r is added to the path. The
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Function MDST(G = (V,E,w), r)

contract(G)

return expand(r)

Figure 1: Algorithm for finding MDSTs.

second is that the same contraction phase can now be used to find an MDST from any root. As

the expansion phase requires only O(n) time, we can thus find MDSTs from k specified roots in

O(m log n+ kn).

The whole algorithm, as shown in Figure 1, is thus composed of a contraction phase contract(G),

which does not depend on r, followed by an expansion phase expand(r) that does depend on r.

Many implementation details need to be filled. We need to explain how we implement the con-

tractions performed by the algorithm, how we appropriately adjust the edge weights following a

contraction, how we efficiently find a cheapest edge entering a given (super-)vertex, and how we

determine whether an added edge closes a cycle. Finally we need to explain how the contractions

are undone in the expansion phase.

The algorithm generates explicit objects that represent the super-vertices created during the con-

traction process, and maintains a contraction tree that records the nesting of the contraction per-

formed. This facilitates, of course, the expansion stage. Endpoint of edges are not updated, however,

when contractions are made, as that would be too costly. In particular, self-loops are not eliminated

and parallel edges are maintained. A union-find data structure is used to find the endpoints, in the

current version of contracted graph, of an edge (u, v) of the original graph.

For every (super-)vertex of the current graph we maintain a priority queue that holds all the edges

entering u in the graph. To find a cheapest edge entering a given (super-)vertex, we repeatedly

perform extract-min operations on its priority-queue until the returned edge is not a self-loop in

the current contracted graph. This turns our to the bottleneck step of the algorithm in terms of

complexity, giving it its O(m log n) running time. When several (super-)vertices are contracted to

form a new super-vertices, we meld their priority queues to form the priority queue of the new

super-vertex.

5.2 Detailed description of contraction phase

Pseudo-code of contract(G), which performs the contraction phase, is given in Figure 2. It begins

by a call to initialize, given in Figure 3 which performs the necessary initializations.

For every (super-)vertex u we maintain the following fields:

• in[u] - the selected incoming edge of u. During the contraction phase this is the cheapest edge

entering u. If no incoming edge was selected yet, then in[u] = null.
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Function Contract(G = (V,E,w))

initialize()

a← arbitrary vertex

while P [a] 6= ∅ do

(u, v)← extract-min(P [a])

b← find(u)

if a 6= b then

in[a]← (u, v)

prev[a]← b

if in[u] = null then // Path extended
a← b

else // New cycle formed

c← vertex()

while parent[a] = null do

parent[a]← c

const[a]← −w[in[a]]

insert(children[c], a)

P [c]← meld(P [c], P [a])

a← prev[a]

Figure 2: The contraction phase of the MDST algorithm.

Function initialize()

foreach u ∈ V do
init-vertex(u)

foreach (u, v) ∈ E do
insert(P [v], (u, v))

Function init-vertex(u)

in[u]← null

const[u]← 0

prev[u]← null

parent[u]← null

children[u]← null

P [u]← priority-queue()

Figure 3: Initializing the contraction phase.

• const[u] - a constant that should be added to the weight of all edges entering u to obtain the

adjusted cost of the edge in the contracted graph. Initially cost[u] = 0.

• prev[u] - the (super-)vertex preceding u in the path constructed by the algorithm. If u is not

yet in the path, or was just added to it, then prev[u] = null.

• parent[u] - The super-vertex into which u was contracted. If u was not contracted yet, then
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parent[u] = null.

• children[u] - A list of the (super-)vertices contacted to form u. If u is a vertex of the original

graph then children[u] is empty.

• P [u] - a priority queue that holds all the incoming edges of u.

initialize() starts by calling init-vertex(u), for every vertex u of the graph. init-vertex(u)

initializes the fields of u mentioned above. Next, initialize() inserts each edge (u, v) of the input

graph into the appropriate priority queue, i.e., P [v].

The contraction phase begins by selecting an arbitrary vertex a to form the first vertex of the

initial path. During the running of the algorithm, a would represent the first (super-)vertex on the

directed path constructed so far. (In the notation used in the high-level description above we have

a = vk.) As long as a still has incoming edges, i.e., P [a] 6= ∅, we try to extract the cheapest edge

entering a. As explained above, we do that by performing repeated extract-min(P [a]) operations

until the extracted edge is not a self-loop.

Let (u, v) be the edge returned by extract-min(P [a]). As a may be a super-vertex, we do not

necessarily have v = a. Recall that (u, v) is an edge in the original graph. Both its endpoints may

have already participated in contractions. There are now three cases, as depicted in Figure 4:

1. The edge (u, v) is a self-loop, in which case it should be ignored. (See upper drawing.)

2. The vertex u is not on the path, in which case the path is extended. (See middle drawing.)

(Note that if u does not belong to any of the (super-)vertices on the path, then u was not

contracted yet.)

3. Vertex u is part of a super-vertex b contained in the path. (Possibly b = u.) In this case a

cycle is formed and it needs to be contracted. (See lower drawing.)

How do we know which case applies? We first need to find the super-vertex b that currently

contains u. We would later use a union-find data structure to find b, but for the time being

consider the näıve implementation of find given in Figure 5. To find the top-most super-vertex

that contains u we simply follow parent pointers from u until we reach a super-parent whose parent

point is null. This vertex is then returned. We can thus find b using b← find(u).

If a = b, then (u, v) is a self-loop and the current iteration of the while loop is then. The next

iteration of the while loops extracts the next edge from P [a], as required.

If a 6= b, the algorithm lets in[a]← (u, v), to record that (u, v) is the cheapest edge entering a, and

prev[a] ← b to record that b would be the (super-)vertex preceding a in the path, or in the cycle

formed. (As explained, if the path is extended, then b = u.)

To distinguish between the second and third cases, we look at in[u]. If in[u] = null, then u is not

on the path, so the path has been extended. We let a← b, as b is the new first vertex on the path,
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Figure 4: The three cases encountered while trying to expand the path.

and proceed with the next iteration of the while loop. (Note that the condition in[u] = null here

could have been replaced by in[b] = null.)

If in[u] 6= null, then a new cycle is formed. We create a new super-vertex by the call c← vertex().

This call allocates c and initializes it by calling init-vertex(c). (The call to init-vertex(c) is

implicit and not shown in the pseudo-code.) For each (super-)vertex a in the cycle formed we set

parent[a] ← c, to record that c becomes the parent of a, and we insert a into children[c]. We

also set const[a] ← −w[in[a]] and meld P [a] into P [c]. We iterate over the (super-)vertices of the

cycle using the command a← prev[a]. Finally, we detect that we have gone full circle by checking

whether we got to a vertex with parent[a] 6= null.

A sample run of the contraction phase of the algorithm is given in Figure 6. The tree in the figure

is the contraction tree defined by the parent pointers of the (super-)vertices.

5.3 The expansion phase

Pseudo-code of expand, which performs the expansion phase, is given on the left of Figure 7. expand

uses a simple function called dismantle given on the right of Figure 7.
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Function find(u)

while parent[u] 6= null do
u← parent[u]

return u

Function weight(u, v)

w ← w[u, v]

while parent[v] 6= null do

w ← w + const[v]

v ← parent[v]

return u

Figure 5: Näıve implementation of find and weight.

in[α] = (β, α) in[a] = (γ, β)

in[β] = (α, β) in[b] = (β, δ)

in[γ] = (δ, γ) in[c] = (ι, η)

in[δ] = (ε, δ)

in[ε] = (γ, ε) in[A] = (ζ, β)

in[ζ] = (η.ζ)

in[η] = (θ, η)

in[θ] = (ι, θ)

in[ι] = (ε, ι)

Figure 6: A sample run of the contraction phase.

The first task of expand is to undo the contractions involving the root r. The super-vertices that

absorbed r can be easily found by following parent pointers from r until getting to the root of the

contraction tree. Suppose that u is super-vertex on this path. To undo the contraction of u we

simply need to reset to the parent pointers of all the children of u to null, letting these children know

they are now root super-vertices in the contraction forest. If we would like to undo the contractions

of r in the reverse chronological order, we need to perform these operations top down. However, it

is easy to see that the order of these operations does not matter, so we can simply do them bottom

up while tracing the path from r to the root of the contraction tree. We refer to this as dismantling
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Function expand(r)

R← ∅
dismantle(r)

while R 6= ∅ do

c← extract(R)

(u, v)← in[c]

in[v]← (u, v)

dismantle(v)

return {in[u] | u ∈ V \ {r}}

Function dismantle(u)

while parent[u] 6= null do

u← parent[u]

foreach v ∈ children[u] do

parent[v]← null

if children[v] 6= null then
insert(R, v)

Figure 7: The expansion phase of the MDST algorithm.

the path from r to the root of the contraction tree.

dismantle(u) dismantles the path from a vertex u to the root of its tree in the contraction forest, as

explained above. While doing so, it adds each super-vertex that becomes a root of the component

forest into a list R which is initially empty. Undoing the contractions of r can therefore be done by

calling dismantle(r).

For example, if in the example of Figure 6 we would like to find the MDST rooted at δ, undoing all

contractions involving δ, by calling dismantle(δ), yields the graph shown on the top of Figure 8.

After the call we have R = {a, c}.

We next have to undo the remaining contractions. The contraction forest may now be composed of

several trees. the order in which we work on these trees is not important. Recall that R contains

the roots of these trees. In each iteration we extract a super-vertex c from R. Let in[c] = (u, v).

Note that v is necessarily a descendant of c in the contraction forest. The edge (u, v) is the edge

entering v in the DST obtained by undoing the contractions, we thus let in[v] ← (u, v). We undo

all contractions involving v by calling dismantle(v).

Continuiung our running example, the resulting DST rooted at δ is shown at the bottom of Figure 8.
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