Path Compression and Making the Inverse Ackermann Function Appear Natural(ly)

Raimund Seidel

Universität des Saarlandes

Bob Tarjan 1975

Theorem:

Any sequence of m Union, Find operations in a universe of n elements that uses linking by rank and path compression takes time at most

 $O(m \cdot \alpha(m,n) + n)$

Bob Tarjan 1975

Theorem:

Any sequence of m Union, Find operations in a universe of n elements that uses linking by rank and path compression takes time at most

 $O(m \cdot \alpha(m,n) + n)$

where $\alpha(m,n)$ is the "Functional Inverse" of the Ackermann Function.

What is this $\alpha(m,n)$??

What is this $\alpha(m,n)$??

Why does this α(m,n) appear in the analysis of path compression ??

What is this $\alpha(m,n)$??

🕹 Ackermann function - Wikipedia, the free encyclopedia - Mozilla Firefox
Datei Bearbeiten Ansicht Gehe Lesezeichen Extras Hilfe
💠 • 🔗 🛞 😭 W http://en.wikipedia.org/wiki/Ackerman's_function 🔽 💿 Go 💽
📄 LS 📄 FR Inf 📄 Uni 📅 AG Kurt 🏧 MPI 📅 Talks 📄 DBLP \phantom W Wikipedia
A two-parameter variation of the inverse Ackermann function can be
defined as follows:
$\alpha(m,n) = \min\{i \ge 1 : A(i, \lfloor m/n \rfloor) \ge \log_2 n\}.$
This function arises in more precise analyses of the algorithms
mentioned above, and gives a more refined time bound. In the
disjoint-set data structure, <i>m</i> represents the number of operations while <i>n</i>
represents the number of elements; in the minimum spanning tree
algorithm, <i>m</i> represents the number of edges while <i>n</i> represents the
number of vertices. Several slightly different definitions of $\alpha(m, n)$ exist:
for example, $\log_2 n$ is sometimes replaced by n and the floor function is
sometimes replaced by a ceiling
sometimes replaced by a centry.
Fertig

This definition of $\alpha(m,n)$ is not particularly enlightening.

Why does this α(m,n) appear in the analysis of path compression ??

Union Find with Path Compressions

Union Find with Path Compressions Maintain partition of $S = \{1, 2, \dots, n\}$

under operations

Union Find with Path Compressions Maintain partition of $S = \{1, 2, \dots, n\}$

under operations

Union(<u>2</u>, <u>4</u>)

Union Find with Path Compressions Maintain partition of $S = \{1, 2, \dots, n\}$

under operations

Union(<u>2</u>, <u>4</u>)

Find(3) = <u>6</u> (representative element)

COMPUT

Implementation

* forest F of rooted trees with node set S
* one tree for each group in current partition
* root of tree is representative of the group

Implementation

* forest F of rooted trees with node set S
* one tree for each group in current partition
* root of tree is representative of the group

Implementation

* forest F of rooted trees with node set S
* one tree for each group in current partition
* root of tree is representative of the group

Find(x) follow path from x to root

"path follwoing"

Heuristic 1: "linking by rank"

- each node x carries integer rk(x)
- initially rk(x) = 0
- as soon as x is NOT a root, rk(x) stays unchanged
- for Union(× , y) make node with smaller rank child of the other in case of tie, increment one of the

ranks

Heuristic 2: Path compression

when performin a Find(x) operation make all nodes in the "findpath" children of the root

sequence of Union and Find operation

Explicit cost model:

cost(op) = # times some node gets a new parent

Time for Union(x, y) = O(1) = O(cost(Union(x,y)))Time for Find(x) = O(# of nodes on findpath)= O(2 + cost(Find(x)))

For analysis assume all Unions are performed first, but Find-paths are only followed (and compressed) to correct node.

For analysis assume all Unions are performed first, but Find-paths are only followed (and compressed) to correct node.

General path compression in forest ${\mathcal F}$

General path compression in forest ${\mathcal F}$

General path compression in forest \mathcal{F}

Problem formulation

- \mathcal{F} forest on node set X
- C sequence of compress operations on \mathcal{F} |C| = # of true compress operations in C

 $cost(C) = \sum(cost of individual operations)$

How large can cost(C) be at most, in terms of |X| and |C|?

Idea:

For the analysis try "divide and conquer."

Idea:

For the analysis try "divide and conquer."

Question:

How do you "divide"?

Dissection of a forest \mathcal{F} with node set X:

partition of X into "top part" X_t and "bottom part" X_b

so that top part X_{t} is "upwards closed",

i.e. $x \in X_{+} \Rightarrow$ every ancestor of x is in X_{+} also

Dissection of a forest \mathcal{F} with node set X : partition of X into "top part" X_{t} and "bottom part" X_{b} so that top part X_{t} is "upwards closed",

i.e. $x \in X_+ \Rightarrow$ every ancestor of x is in X_+ also

Dissection of a forest F with node set X : partition of X into "top part" X_t and "bottom part" X_b

so that top part X_{+} is "upwards closed",

i.e. $x \in X_{+} \Rightarrow$ every ancestor of x is in X_{+} also

Main Lemma:

C ... sequence of operations on \mathcal{F} with node set X X_{t} , X_{b} dissection for \mathcal{F} inducing subforests \mathcal{F}_{t} , \mathcal{F}_{b}

Main Lemma:

C ... sequence of operations on \mathcal{F} with node set X X_{t} , X_{b} dissection for \mathcal{F} inducing subforests \mathcal{F}_{t} , \mathcal{F}_{b}

$$\Rightarrow \exists \text{ compression sequences} \\ C_{b} \text{ for } \mathcal{F}_{b} \text{ and } C_{t} \text{ for } \mathcal{F}_{t} \\ \text{ with } \end{cases}$$

$$|C_{b}| + |C_{\dagger}| \leq |C|$$

and

$$cost(C) \leq cost(C_b) + cost(C_t) + |X_b| + |C_t|$$

Proof: 1) How to get C_b and C_t from C:

Proof: 1) How to get C_b and C_t from C:

compression paths from C

Proof: 1) How to get C_b and C_t from C:

compression paths from C

Proof: 1) How to get C_b and C_t from C:

compression paths from C

"rootpath compress"

"rootpath compress"

 $cost(compress(x, \infty)) = # of nodes that get a new parent$

Proof:

$$|C_{b}| + |C_{\dagger}| \leq |C|$$

compression paths from C

$cost(C) \leq cost(C_b) + cost(C_t) + |X_b| + |C_t|$

$cost(C) \leq cost(C_b) + cost(C_t) + |X_b| + |C_t|$

© Raimund Seidel

cost(C)

COMPUTER SCIENCE

$cost(C) \leq cost(C_b) + cost(C_t) + X_b + C_t $		
cost(C)		
green node gets new green parent:	accounted by cost(C _t)	
brown node gets new brown parent:	accounted by <pre>cost(Cb)</pre>	

$cost(C) \leq cost(C_{b}) + cost(C_{t}) + |X_{b}| + |C_{t}|$ cost(C)green node gets new green parent: accounted by $cost(C_{+})$ accounted by $cost(C_{b})$ brown node gets new brown parent: accounted by $|X_{\rm b}|$ brown node gets new green parent: for the first time

$cost(C) \leq cost(C_{b}) + cost(C_{t}) + |X_{b}| + |C_{t}|$ cost(C)accounted by $cost(C_{+})$ green node gets new green parent: accounted by $cost(C_{b})$ brown node gets new brown parent: accounted by $|X_b|$ brown node gets new green parent: - #roots(\mathcal{F}_{h}) for the first time

$cost(C) \leq cost(C_b) + cost(C_t) + |X_b| - #roots(\mathcal{F}_b) + |C_t|$

cost(C)	
green node gets new green parent:	accounted by cost(C _t)
brown node gets new brown parent:	accounted by <pre>cost(Cb)</pre>
brown node gets new green parent: for the first time	accounted by $ X_b $ - $\#roots(\mathcal{F}_b)$

$cost(C) \leq cost(C_b) + cost(C_t) + |X_b| - #roots(\mathcal{F}_b) + |C_t|$

	\wedge
cost(C)	
green node gets new green parent:	accounted by <pre>cost(C_t)</pre>
brown node gets new brown parent:	accounted by <pre>cost(Cb)</pre>
brown node gets new green parent: for the first time	accounted by $ X_b $ - $\#roots(\mathcal{F}_b)$
brown node gets new green parent: again	accounted by C _t

COMPUTER SCIENCE

Main Lemma':

C ... sequence of operations on \mathcal{F} with node set X X_{t} , X_{b} dissection for \mathcal{F} inducing subforests \mathcal{F}_{t} , \mathcal{F}_{b}

$$\Rightarrow \exists \text{ compression sequences} \\ C_{b} \text{ for } \mathcal{F}_{b} \text{ and } C_{t} \text{ for } \mathcal{F}_{t} \\ \text{ with } \end{cases}$$

$$|C_{b}| + |C_{\dagger}| \leq |C|$$

and

$$\begin{array}{l} \mathsf{cost(C)} \leq \mathsf{cost(C_b)} + \mathsf{cost(C_t)} \\ + |\mathsf{X_b}| - \#\mathsf{roots}(\mathcal{F_b}) + |C_t| \end{array}$$

f(m,n) ... maximum cost of any compression
 sequence C with |C|=m in an arbitrary
 forest with n nodes.

Claim: $f(m,n) \leq (m+n) \cdot \log_2 n$

Claim: $f(m,n) \leq (m+n) \cdot \log_2 n$

Claim: $f(m,n) \leq (m+n) \cdot \log_2 n$

C compression sequence

|C|=m

C compression sequence

|C|=m

Claim: $f(m,n) \leq (m+n) \cdot \log_2 n$

$$|X_{t}| = |X_{b}| = n/2$$

 $\begin{array}{ll} \text{Main Lemma} \Rightarrow \exists C_{t}, C_{b} & |C_{b}| + |C_{t}| \leq |C| \\ m_{b} + m_{t} \leq m \end{array}$

 $cost(C) \le cost(C_b) + cost(C_t) + |X_b| + |C_t|$

Claim: $f(m,n) \leq (m+n) \cdot \log_2 n$

© Raimund Seidel

COMPUTER SCIENCE

Corollary:

Any sequence of m Union, Find operations in a universe of n elements that uses arbitrary linking and path compression takes time at most

$O((m+n) \cdot \log n)$

Corollary:

Any sequence of m Union, Find operations in a universe of n elements that uses arbitrary linking and path compression takes time at most

$O((m+n) \cdot \log n)$

By choosing a dissection that is "unbalanced" in relation to m/n one can prove a better bound of

 $O((m+n) \cdot \log_{[m/n]+1} n)$

Corollary:

Any sequence of m Union, Find operations in a universe of n elements that uses arbitrary linking and path compression takes time at most

$O((m+n) \cdot \log n)$

By choosing a dissection that is "unbalanced" in relation to m/n one can prove a better bound of

 $O((m+n) \cdot \log_{[m/n]+1} n)$

Proof: exercise

$f:\mathbb{N}\to\mathbb{R}$

Brief digression

$$\mathsf{f}:\mathbb{N} \to \mathbb{R}$$

Brief digression

$$f^{*}(n) = \begin{cases} 0 & \text{if } n \leq 1 \\ 1 + f^{*}(f(n)) & \text{if } n > 1 \end{cases}$$

$$\mathsf{f}:\mathbb{N} \to \mathbb{R}$$

Brief digression

$$f^*(n) = \begin{cases} 0 & \text{if } n \leq 1 \\ 1 + f^*(f(n)) & \text{if } n > 1 \end{cases}$$

$$f^{*}(n) = \min \{ k \mid \underbrace{f(f(\dots, f(n))) \leq 1}_{k \text{ times}} \}$$

$$\mathsf{f}:\mathbb{N} \to \mathbb{R}$$

$$f^{*}(n) = \begin{cases} 0 & \text{if } n \leq 1 \\ 1 + f^{*}(f(n)) & \text{if } n > 1 \end{cases}$$

$$f^{*}(n) = \min \{ k \mid \underbrace{f(f(\dots, f(n))) \leq 1}_{k \text{ times}} \}$$

Examples for f*:

f*(n) **f(n)** n-1 n-1 n-2 n/2n/c n-c n/2 $\log_2 n$ n/c log_cn \sqrt{n} log log n log*n log n

Brief digression

```
Def: \mathcal{F} forest, x node in \mathcal{F}
r(x) = height of subtree rooted at x
( r(leaf) = 0 )
\mathcal{F} is a rank forest, if
for every node x
for every i with 0 \le i < r(x),
there is a child y<sub>i</sub> of x with r(y<sub>i</sub>)=i.
```



```
Def: \mathcal{F} forest, x node in \mathcal{F}

r(x) = height of subtree rooted at x

( r(leaf) = 0 )

\mathcal{F} is a rank forest, if

for every node x

for every i with 0 \le i < r(x),

there is a child y<sub>i</sub> of x with r(y_i)=i.
```

Note: Union by rank produces rank forests!

Note: Union by rank produces rank forests!

Lemma: $r(x)=r \Rightarrow x$ has at least r children.

Note: Union by rank produces rank forests!

Lemma: $r(x)=r \Rightarrow x$ has at least r children and at least 2^r descendants.

Inheritance Lemma:

 \mathcal{F} rank forest with maximum rank r and node set X

$$\begin{array}{lll} \mathbf{s} \in \mathbb{N} &: & \mathsf{X}_{>\mathsf{s}} = \{ \ \mathsf{x} \in \mathsf{X} \ \mid \ \mathsf{r}(\mathsf{x}) > \mathsf{s} \ \} \\ & & \mathsf{X}_{\leq \mathsf{s}} = \{ \ \mathsf{x} \in \mathsf{X} \ \mid \ \mathsf{r}(\mathsf{x}) \leq \mathsf{s} \ \} \end{array}$$

Inheritance Lemma:

 \mathcal{F} rank forest with maximum rank r and node set X

 $\mathbf{s} \in \mathbb{N}$: $X_{>s} = \{ x \in X \mid r(x) > s \}$ $\begin{array}{ll} X_{>s} = \{ x \in X \mid r(x) > s \} & \mathcal{F}_{>s} \\ X_{<s} = \{ x \in X \mid r(x) \le s \} & \mathcal{F}_{<s} \end{array} \text{ induced forests} \end{array}$

- i) $X_{<s}$, $X_{>s}$ is a dissection for \mathcal{F} ii) $\mathcal{F}_{<s}$ is a rank forest with maximum rank < s
- iii) $\mathcal{F}_{>s}$ is a rank forest with maximum rank < r-s-1

Inheritance Lemma:

 \mathcal{F} rank forest with maximum rank r and node set X

 $s \in \mathbb{N}$: $X_{s} = \{ x \in X \mid r(x) > s \}$ $\begin{array}{ll} X_{>s} = \{ x \in X \mid r(x) > s \} & \mathcal{F}_{>s} \\ X_{<s} = \{ x \in X \mid r(x) \le s \} & \mathcal{F}_{<s} \end{array} \text{ induced forests} \end{array}$

i) $X_{<s}$, $X_{>s}$ is a dissection for \mathcal{F} ii) $\mathcal{F}_{<s}$ is a rank forest with maximum rank < siii) $\mathcal{F}_{><}$ is a rank forest with maximum rank < r-s-1

Inheritance Lemma:

 \mathcal{F} rank forest with maximum rank r and node set X

 $\mathbf{s} \in \mathbb{N}$: $X_{>s} = \{ x \in X \mid r(x) > s \}$ $\begin{array}{ll} X_{>s} = \{ x \in X \mid r(x) > s \} & \mathcal{F}_{>s} \\ X_{<s} = \{ x \in X \mid r(x) \le s \} & \mathcal{F}_{<s} \end{array} \text{ induced forests} \end{array}$

i) $X_{<s}$, $X_{>s}$ is a dissection for \mathcal{F} ii) $\mathcal{F}_{<s}$ is a rank forest with maximum r-s-1 rank < sS iii) \mathcal{F}_{sc} is a rank forest with maximum rank < r-s-1

Proofs: exercise

f(m,n,r) = maximum cost of any compression
 sequence C, with |C|=m, in rank
 forest F with n nodes and
 maximum rank r.

f(m,n,r) = maximum cost of any compression
 sequence C, with |C|=m, in rank
 forest F with n nodes and
 maximum rank r.

Trivial bounds:

 $f(m,n,r) \leq (r-1) \cdot n$ $f(m,n,r) \leq (r-1) \cdot m$

f(m,n,r) = maximum cost of any compression
 sequence C, with |C|=m, in rank
 forest F with n nodes and
 maximum rank r.

Trivial bounds: f(m,n,r) ≤ (r-1)·n

 $f(m,n,r) \leq (r-1) \cdot m$

 $f(m,n,r) \le m + (r-2) \cdot n$

$$r \left\{ \begin{array}{c} \mathcal{F}_{t} \\ \mathcal{F}_{b} \end{array} \right\} r - s - 1 < r \qquad |X_{\geq s}| = n_{t} \qquad |C_{t}| = m_{t} \\ |X_{\leq s}| = n_{b} = n - n_{t} \qquad |C_{b}| = m_{b} \\ \end{array}$$

$$r \left\{ \begin{array}{c} \mathcal{F}_{t} \\ \mathcal{F}_{b} \end{array} \right\} r - s - 1 < r \qquad |X_{s}| = n_{t} \qquad |C_{t}| = m_{t} \\ |X_{s}| = n_{b} = n - n_{t} \qquad |C_{b}| = m_{b} \\ \end{array}$$

 \leq f(m_t,n_t,r-s-1) +

$$r \left\{ \begin{array}{c} \mathcal{F}_{t} \\ \mathcal{F}_{b} \end{array} \right\} r - s - 1 < r \qquad |X_{s}| = n_{t} \qquad |C_{t}| = m_{t} \\ |X_{s}| = n_{b} = n - n_{t} \qquad |C_{b}| = m_{b} \\ \end{array}$$

 \leq f(m_t,n_t,r-s-1) + f(m_b,n_b,s) +

$$r \left\{ \begin{array}{c} \mathcal{F}_{t} \\ \mathcal{F}_{b} \end{array} \right\} r - s - 1 < r \qquad |X_{s}| = n_{t} \qquad |C_{t}| = m_{t} \\ |X_{s}| = n_{b} = n - n_{t} \qquad |C_{b}| = m_{b} \\ \end{array}$$

$$\leq f(m_{t},n_{t},r-s-1) + f(m_{b},n_{b},s) + n-n_{t} -$$

$$r \left\{ \begin{array}{c} \mathcal{F}_{t} \\ \mathcal{F}_{b} \end{array} \right\} r - s - 1 < r \qquad |X_{s}| = n_{t} \qquad |C_{t}| = m_{t} \\ |X_{s}| = n_{b} = n - n_{t} \qquad |C_{b}| = m_{b} \\ \end{array}$$

$$\leq f(m_{t},n_{t},r-s-1) + f(m_{b},n_{b},s) + n-n_{t} - (s+1)\cdot n_{t} +$$

$$r \left\{ \begin{array}{c} \mathcal{F}_{t} \\ \mathcal{F}_{b} \end{array} \right\} r - s - 1 < r \qquad |X_{s}| = n_{t} \qquad |C_{t}| = m_{t} \\ |X_{s}| = n_{b} = n - n_{t} \qquad |C_{b}| = m_{b} \\ \end{array}$$

$$\leq f(m_{t},n_{t},r-s-1) + f(m_{b},n_{b},s) + n-n_{t} - (s+1)\cdot n_{t} +$$

Each node in \mathcal{F}_{t} has at least s+1 children in \mathcal{F}_{b} , and they must all be different roots of \mathcal{F}_{b} .

$$r \left\{ \begin{array}{c} \mathcal{F}_{t} \\ \mathcal{F}_{b} \end{array} \right\} r - s - 1 < r \qquad |X_{\geq s}| = n_{t} \qquad |C_{t}| = m_{t} \\ |X_{\leq s}| = n_{b} = n - n_{t} \qquad |C_{b}| = m_{b} \\ \end{array}$$

$$\leq f(m_{+},n_{+},r-s-1) + f(m_{b},n_{b},s) + n-n_{+} - (s+1)\cdot n_{+} + m_{+}$$

Each node in \mathcal{F}_{t} has at least s+1 children in \mathcal{F}_{b} , and they must all be different roots of \mathcal{F}_{b} .

$$r \left\{ \begin{array}{c} \mathcal{F}_{t} \\ \mathcal{F}_{b} \end{array} \right\} r - s - 1 < r \qquad |X_{>s}| = n_{t} \qquad |C_{t}| = m_{t} \\ |X_{\leq s}| = n_{b} = n - n_{t} \qquad |C_{b}| = m_{b} \\ \end{array}$$

$$\leq f(m_{+},n_{+},r-s-1) + f(m_{b},n_{b},s) + n-n_{+} - (s+1)\cdot n_{+} + m_{+}$$

Each node in \mathcal{F}_{+} has at least s+1 children in \mathcal{F}_{b} , and they must all be different roots of \mathcal{F}_{b} .

 $f(m,n,r) \leq f(m_{+},n_{+},r-s-1) + f(m_{b},n_{b},s) + n - (s+2)\cdot n_{+} + m_{+}$

$f(m,n,r) \leq f(m_{+},n_{+},r-s-1) + f(m_{b},n_{b},s) + n - (s+2)\cdot n_{+} + m_{+}$

$$\begin{array}{ll} n_{t} + n_{b} = n \\ m_{t} + m_{b} \leq m \end{array} \quad 0 \leq s < r \end{array}$$

$f(m,n,r) \leq f(m_{+},n_{+},r-s-1) + f(m_{b},n_{b},s) + n - (s+2) \cdot n_{+} + m_{+}$

$$\begin{array}{ll} n_{t} + n_{b} = n \\ m_{t} + m_{b} \leq m \end{array} \quad 0 \leq s < r \end{array}$$

Assume: $f(M,N,R) \le k \cdot M + N \cdot g(R)$

$f(m,n,r) \leq f(m_{+},n_{+},r-s-1) + f(m_{b},n_{b},s) + n - (s+2)\cdot n_{+} + m_{+}$

Assume: $f(M,N,R) \leq k \cdot M + N \cdot g(R)$

 $\begin{aligned} f(m,n,r) &\leq k \cdot m_{t} + n_{t} \cdot g(r - s - 1) + f(m_{b},n_{b},s) + n - (s + 2) \cdot n_{t} + m_{t} \\ &\leq k \cdot m_{t} + n_{t} \cdot g(r) + f(m_{b},n_{b},s) + n - s \cdot n_{t} + m_{t} \end{aligned}$

$f(m,n,r) \leq f(m_{+},n_{+},r-s-1) + f(m_{b},n_{b},s) + n - (s+2)\cdot n_{+} + m_{+}$

Assume: $f(M,N,R) \leq k \cdot M + N \cdot g(R)$

$$\begin{aligned} f(m,n,r) &\leq k \cdot m_{\dagger} + n_{\dagger} \cdot g(r-s-1) + f(m_{b},n_{b},s) + n - (s+2) \cdot n_{\dagger} + m_{\dagger} \\ &\leq k \cdot m_{\dagger} + n_{\dagger} \cdot g(r) + f(m_{b},n_{b},s) + n - s \cdot n_{\dagger} + m_{\dagger} \end{aligned}$$

choose s = g(r)

$f(m,n,r) \leq f(m_{+},n_{+},r-s-1) + f(m_{b},n_{b},s) + n - (s+2) \cdot n_{+} + m_{+}$

Assume: $f(M,N,R) \leq k \cdot M + N \cdot g(R)$

$$\begin{aligned} f(m,n,r) &\leq k \cdot m_{\dagger} + n_{\dagger} \cdot g(r-s-1) + f(m_{b},n_{b},s) + n - (s+2) \cdot n_{\dagger} + m_{\dagger} \\ &\leq k \cdot m_{\dagger} + n_{\dagger} \cdot g(r) + f(m_{b},n_{b},s) + n - s \cdot n_{\dagger} + m_{\dagger} \end{aligned}$$

choose
$$s = g(r)$$

 $f(m,n,r) \le (k+1) \cdot m_{t} + f(m_{b},n_{b},s) + n$
 $\le (k+1) \cdot m_{t} + f(m_{b},n,s) + n$

s = g(r)

$f(m,n,r) \le (k+1) \cdot m_{t} + f(m_{b},n,s) + n$

s = g(r) $f(m,n,r) \le (k+1) \cdot m_{t} + f(m_{b},n,s) + n$ $-(k+1) \cdot (m_{b}+m_{t})$

$$s = g(r)$$

 $f(m,n,r) \le (k+1) \cdot m_{t} + f(m_{b},n,s) + n - (k+1) \cdot (m_{b}+m_{t})$

$$s = g(r)$$

 $f(m,n,r) \le (k+1) \cdot m_{t} + f(m_{b},n,s) + n$
 $-(k+1) \cdot (m_{b}+m_{t})$

 $f(m,n,r) - (k+1) \cdot m \le f(m_b,n,s) - (k+1) \cdot m_b + n$

$$s = g(r)$$

 $f(m,n,r) \le (k+1) \cdot m_{t} + f(m_{b},n,s) + n - (k+1) \cdot (m_{b}+m_{t})$

 $f(m,n,r) - (k+1) \cdot m \le f(m_b,n,s) - (k+1) \cdot m_b + n$

$$\phi(m,n,r) \leq \phi(m_b,n,g(r)) + n$$

$$\begin{aligned} \mathbf{s} &= g(\mathbf{r}) & \underbrace{\mathbf{m}}_{f(\mathbf{m},\mathbf{n},\mathbf{r}) \leq (\mathbf{k}+1) \cdot \mathbf{m}_{t}} + f(\mathbf{m}_{b},\mathbf{n},\mathbf{s}) + \mathbf{n} & -(\mathbf{k}+1) \cdot (\mathbf{m}_{b}+\mathbf{m}_{t}) \\ f(\mathbf{m},\mathbf{n},\mathbf{r}) &\leq (\mathbf{k}+1) \cdot \mathbf{m}_{b} + \mathbf{n} \\ \phi(\mathbf{m},\mathbf{n},\mathbf{r}) &\leq \phi(\mathbf{m}_{b},\mathbf{n},g(\mathbf{r})) & + \mathbf{n} \\ &\leq (\phi(\mathbf{m}_{bb},\mathbf{n},g(g(\mathbf{r}))) + \mathbf{n}) + \mathbf{n} \end{aligned}$$

$$s = g(r)$$

$$f(m,n,r) \le (k+1) \cdot m_{t} + f(m_{b},n,s) + n - (k+1) \cdot (m_{b}+m_{t})$$

$$f(m,n,r) - (k+1) \cdot m \le f(m_{b},n,s) - (k+1) \cdot m_{b} + n$$

 $\phi(m,n,r) \leq \phi(m_b,n,g(r)) + n$

$$\leq (\phi(m_{bb},n,g(g(r))) + n) + n$$

 $\leq ((\phi(m_{bbb},n,g(g(g(r)))) + n) + n) + n)$

$$\begin{aligned} s &= g(r) & m \\ f(m,n,r) &\leq (k+1) \cdot m_{+} + f(m_{b},n,s) + n & -(k+1) \cdot (m_{b}+m_{+}) \end{aligned}$$

$$\begin{aligned} f(m,n,r) &- (k+1) \cdot m &\leq f(m_{b},n,s) - (k+1) \cdot m_{b} + n \\ \phi(m,n,r) &\leq \phi(m_{b},n,g(r)) &+ n \\ &\leq (\phi(m_{bb},n,g(g(r))) + n) + n \\ &\leq ((\phi(m_{bbb},n,g(g(g(r)))) + n) + n) + n) + n \end{aligned}$$

$$\begin{aligned} \phi(m,n,r) &\leq n \cdot g^{*}(r) \end{aligned}$$

$$s = g(r)$$

$$f(m,n,r) \leq (k+1) \cdot m_{t} + f(m_{b},n,s) + n | -(k+1) \cdot (m_{b}+m_{t})$$

$$f(m,n,r) - (k+1) \cdot m \leq f(m_{b},n,s) - (k+1) \cdot m_{b} + n$$

$$\phi(m,n,r) \leq \phi(m_{b},n,g(r)) + n$$

$$\leq (\phi(m_{bb},n,g(g(r))) + n) + n$$

$$\leq ((\phi(m_{bbb},n,g(g(g(r)))) + n) + n) + n)$$

$$\phi(m,n,r) \leq n \cdot g^{*}(r)$$

$$f(m,n,r) \leq (k+1) \cdot m + n \cdot g^{*}(r)$$
© Raimund Seidel

Shifting Lemma:

$\begin{array}{ll} \mbox{If } f(m,n,r) \leq k \cdot m + n \cdot g(r) \\ \mbox{then also} & f(m,n,r) \leq (k+1) \cdot m + n \cdot g^*(r) \end{array} \\ \end{array}$

Shifting Lemma:

If
$$f(m,n,r) \le k \cdot m + n \cdot g(r)$$

then also $f(m,n,r) \le (k+1) \cdot m + n \cdot g^*(r)$

Shifting Corollary:

 $\begin{array}{ll} \mbox{If } f(m,n,r) \leq k \cdot m + n \cdot g(r) & i \\ \mbox{then also } f(m,n,r) \leq (k+i) \cdot m + n \cdot g^{** \dots *}(r) \\ \mbox{for any } i \geq 0 \end{array}$

Trivial bound: $f(m,n,r) \le n \cdot (r-1)$

Trivial bound: $f(m,n,r) \le n \cdot (r-1)$ = $0 \cdot m + n \cdot (r-1)$

If $f(m,n,r) \leq k \cdot m + n \cdot g(r)$ then also $f(m,n,r) \leq (k+i) \cdot m + n \cdot g^{**...*}(r)$ for any $i \geq 0$

Trivial bound: $f(m,n,r) \le n \cdot (r-1)$ = $0 \cdot m + n \cdot (r-1)$

SAARLAND UNIVERSITY

Trivial bound: $f(m,n,r) \le m + n \cdot (r-2)$

Trivial bound: $f(m,n,r) \le m + n \cdot (r-2)$ = $1 \cdot m + n \cdot (r-2)$

Trivial bound: $f(m,n,r) \le m + n \cdot (r-2)$ = $1 \cdot m + n \cdot (r-2)$

g(r) = r-2

Trivial bound: $f(m,n,r) \le m + n \cdot (r-2)$ = $1 \cdot m + n \cdot (r-2)$

g(r) = r-2 g*(r)= r/2

If $f(m,n,r) \leq k \cdot m + n \cdot g(r)$ then also $f(m,n,r) \leq (k+i) \cdot m + n \cdot g^{**...*}(r)$ for any $i \geq 0$

Trivial bound: $f(m,n,r) \le m + n \cdot (r-2)$ = $1 \cdot m + n \cdot (r-2)$

g(r) = r-2 $g^{*}(r) = r/2$ $f(m,n,r) \le 2 \cdot m + n \cdot (r/2)$

If $f(m,n,r) \leq k \cdot m + n \cdot g(r)$ then also $f(m,n,r) \leq (k+i) \cdot m + n \cdot g^{**...*}(r)$ for any $i \geq 0$

Trivial bound: $f(m,n,r) \le m + n \cdot (r-2)$ = $1 \cdot m + n \cdot (r-2)$

$$g(r) = r-2$$

 $g^{*}(r) = r/2$
 $f(m,n,r) \le 2 \cdot m + n \cdot (r/2)$
 $g^{**}(r) = \log r$

Trivial bound: $f(m,n,r) \le m + n \cdot (r-2)$ = $1 \cdot m + n \cdot (r-2)$

$$\begin{array}{ll} g(r) = r-2 & & \\ g^{*}(r) = r/2 & & f(m,n,r) \leq 2 \cdot m + n \cdot (r/2) \\ g^{**}(r) = \log r & & f(m,n,r) \leq 3 \cdot m + n \cdot \log r \end{array}$$

We know bound: $f(m,n,r) \leq 3 \cdot m + n \cdot \log r$

If $f(m,n,r) \leq k \cdot m + n \cdot g(r)$ then also $f(m,n,r) \leq (k+i) \cdot m + n \cdot g^{**...*}(r)$ for any $i \geq 0$

We know bound: $f(m,n,r) \leq 3 \cdot m + n \cdot \log r$

Therefore for any $i \ge 0$: $f(m,n,r) \le (3+i) \cdot m + n \cdot \log^{**...*}(r)$

For any
$$i \ge 0$$
: $f(m,n,r) \le (3+i) \cdot m + n \cdot \log^{**...*}(r)$

For any
$$i \ge 0$$
: $f(m,n,r) \le (3+i) \cdot m + n \cdot \log^{**...*}(r)$

Choice of i:

For any
$$i \ge 0$$
: $f(m,n,r) \le (3+i)\cdot m + n \cdot \log^{**...*}(r)$

Choice of i: Define $\alpha(r) = \min\{i \mid \log^{**...*}(r) \leq i\}$

For any
$$i \ge 0$$
: $f(m,n,r) \le (3+i)\cdot m + n \cdot \log^{**...*}(r)$

Choice of i :

Define
$$\alpha(r) = \min\{i \mid \log^{**...*}(r) \leq i\}$$

Here is your definition of the Inverse Ackermann Function !!

For any
$$i \ge 0$$
: $f(m,n,r) \le (3+i)\cdot m + n \cdot \log^{**...*}(r)$

Choice of i: Define $\alpha(\mathbf{r}) = \min\{i \mid \log^{**...*}(\mathbf{r}) \leq i\}$

 $f(m,n,r) \leq (m+n)(3+\alpha(r))$

For any
$$i \ge 0$$
: $f(m,n,r) \le (3+i)\cdot m + n \cdot \log^{**...*}(r)$

Choice of i: Define $\alpha(\mathbf{r}) = \min\{i \mid \log^{**...*}(\mathbf{r}) \leq i\}$

 $f(m,n,r) \leq (m+n)(3+\alpha(r))$

 \leq (m+n)(3+ α (log n))

For any
$$i \ge 0$$
: $f(m,n,r) \le (3+i) \cdot m + n \cdot \log^{**...*}(r)$

Choice of i:

For any
$$i \ge 0$$
: $f(m,n,r) \le (3+i)\cdot m + n \cdot \log^{**...*}(r)$

Choice of i: For $t \ge 1$ define $\alpha_t(r) = \min\{i \mid \log^{**...*}(r) \le t\}$

For any
$$i \ge 0$$
: $f(m,n,r) \le (3+i)\cdot m + n \cdot \log^{**...*}(r)$

Choice of i: For $t \ge 1$ define $\alpha_t(r) = \min\{i \mid \log^{**...*}(r) \le t\}$

Here is a parametrized definition of the Inverse Ackermann Function !!

For any
$$i \ge 0$$
: $f(m,n,r) \le (3+i)\cdot m + n \cdot \log^{**...*}(r)$

Choice of i: For t ≥ 1 define $\alpha_t(r) = \min\{i \mid log^{**...*}(r) \leq t\}$

 $f(m,n,r) \leq (3 + \alpha_{t}(r)) \cdot m + n \cdot t$

For any
$$i \ge 0$$
: $f(m,n,r) \le (3+i)\cdot m + n \cdot \log^{**...*}(r)$

Choice of i: For $t \ge 1$ define $\alpha_t(r) = \min\{i \mid \log^{**...*}(r) \le t\}$ $f(m,n,r) \le (3+\alpha_t(r))\cdot m + n \cdot t$ choose t = 1+m/n

For any
$$i \ge 0$$
: $f(m,n,r) \le (3+i)\cdot m + n \cdot \log^{**...*}(r)$

Choice of i: For $t \ge 1$ define $\alpha_t(r) = \min\{i \mid \log^{**...*}(r) \le t\}$ $f(m,n,r) \leq (3+\alpha_{+}(r))\cdot m + n\cdot t$ choose t = 1 + m/n $f(m,n,r) \le (4 + \alpha_{1+m/n}(r)) \cdot m + n$

For any
$$i \ge 0$$
: $f(m,n,r) \le (3+i)\cdot m + n \cdot \log^{**...*}(r)$

Choice of i: For $t \ge 1$ define $\alpha_t(r) = \min\{i \mid \log^{**...*}(r) \le t\}$ $f(m,n,r) \leq (3+\alpha_{+}(r)) \cdot m + n \cdot t$ choose t = 1 + m/n $f(m,n,r) \le (4 + \alpha_{1+m/n}(r)) \cdot m + n$ \leq (4+ $\alpha_{1+m/n}$ (log n))·m + n

Bob Tarjan 1975

Theorem:

Any sequence of m Union, Find operations in a universe of n elements that uses linking by rank and path compression takes time at most

 $O(m \cdot \alpha(m,n) + n)$

Bob Tarjan 1975

Theorem:

Any sequence of m Union, Find operations in a universe of n elements that uses linking by rank and path compression takes time at most

 $O(m \cdot \alpha(m,n) + n)$

$$f(m,n,r) \leq (4 + \alpha_{1+m/n}(\log n)) \cdot m + n$$

Bob Tarjan 1975

Theorem:

Any sequence of m Union, Find operations in a universe of n elements that uses linking by rank and path compression takes time at most

 $O(m \cdot \alpha(m,n) + n)$

$$f(m,n,r) \leq (4 + \alpha_{1+m/n}(\log n)) \cdot m + n$$

$$\alpha(m,n) = \alpha_{1+m/n}(\log n)$$

Shifting Lemma:

What to remember:

 $\begin{array}{ll} \mbox{If } f(m,n,r) \leq k \cdot m + n \cdot g(r) \\ \mbox{then also } f(m,n,r) \leq (k+1) \cdot m + n \cdot g^*(r) \end{array} \\ \end{array}$

Shifting Corollary:

If
$$f(m,n,r) \leq k \cdot m + n \cdot g(r)$$

then also $f(m,n,r) \leq (k+i) \cdot m + n \cdot g^{**...*}(r)$
for any $i \geq 0$

Definition of α : $\alpha(\mathbf{r}) = \min\{i \mid \log^{**...*}(\mathbf{r}) \leq i\}$

We used $f(m,n,r) \leq 1 \cdot m + n \cdot (r-2)$

We used $f(m,n,r) \leq 1 \cdot m + n \cdot (r-2)$ to get

We used $f(m,n,r) \leq 1 \cdot m + n \cdot (r-2)$ to get

Actually $f(m,n,r) \leq 1 \cdot m + n \cdot \log r$

We used $f(m,n,r) \leq 1 \cdot m + n \cdot (r-2)$ to get

Actually $f(m,n,r) \le 1 \cdot m + n \cdot \log r$ (Exercise)

We used $f(m,n,r) \leq 1 \cdot m + n \cdot (r-2)$ to get

Actually $f(m,n,r) \leq 1 \cdot m + n \cdot \log r$ (Exercise) and therefore

Actually $f(m,n,r) \le 1 \cdot m + n \cdot \log^* r$ and therefore

For any
$$i \ge 0$$
: $f(m,n,r) \le i \cdot m + n \cdot \log^{**...*}(r)$

(difficult

Exercise)

f(m,n,r) for small values of r

f(m,n,r) for small values of r

f(m,n,0) = 0 f(m,n,1) = 0 $f(m,n,2) \le m$

f(m,n,r) for small values of r

f(m,n,0) = 0 f(m,n,1) = 0 $f(m,n,2) \le m$

 $f(m,n,r) \le m + n$ for $r \le 8$, i.e. for n < 512

f(m,n,r) for small values of r

f(m,n,0) = 0 f(m,n,1) = 0 $f(m,n,2) \le m$

$$f(m,n,r) \le m + n$$
 for $r \le 8$, i.e. for $n < 512$

 $f(m,n,r) \le m + 2n$ for $r \le 202$, i.e. for $n < 2^{203}$

f(m,n,r) for small values of r

f(m,n,0) = 0 f(m,n,1) = 0 $f(m,n,2) \le m$

$$f(m,n,r) \le m + n$$
 for $r \le 8$, i.e. for $n < 512$

 $f(m,n,r) \le m + 2n$ for $r \le 202$, i.e. for $n < 2^{203}$

(difficult exercises)

Odds and Ends

Similar proof for $O(m \cdot \alpha(m,n) + n)$ bound also works for

- * linking by weight and path compression
- * linking by rank and generalized path compaction

Odds and Ends

Similar proof for $O(m \cdot \alpha(m,n) + n)$ bound also works for

- * linking by weight and path compression
- * linking by rank and generalized path compaction

Open problem:

simple top-down approach for proving lower bounds

