
© Raimund Seidel

Path Compression and 
Making the

Inverse Ackermann Function
Appear Natural(ly)

Raimund Seidel

Universität des Saarlandes



© Raimund Seidel

Theorem:

Any sequence of m Union, Find operations
in a universe of n elements that uses 
linking by rank and path compression
takes time at most

O( m·αααα(m,n) +n )

Bob Tarjan 1975



© Raimund Seidel

Theorem:

Any sequence of m Union, Find operations
in a universe of n elements that uses 
linking by rank and path compression
takes time at most

O( m·αααα(m,n) +n )

Bob Tarjan 1975

where αααα(m,n) is the “Functional Inverse” 
of the Ackermann Function.



© Raimund Seidel

What is this αααα(m,n)  ??



© Raimund Seidel

What is this αααα(m,n)  ??

Why does this αααα(m,n)
appear in the analysis of

path compression ??



© Raimund Seidel

What is this αααα(m,n)  ??



© Raimund Seidel



© Raimund Seidel



© Raimund Seidel

This definition of αααα(m,n)
is not particularly enlightening.



© Raimund Seidel

Why does this αααα(m,n)
appear in the analysis of

path compression ??



© Raimund Seidel

Union Find with Path Compressions



© Raimund Seidel

Union Find with Path Compressions
Maintain partition of S = { 1,2,L,n}

under operations

1 
2

5

9

8
4

3  
6

7



© Raimund Seidel

Union Find with Path Compressions
Maintain partition of S = { 1,2,L,n}

under operations

1 
2

5

9

8
4

3  
6

7

Union( 2 , 4 )

1 
2

5

9

8
4

3  
6

7



© Raimund Seidel

Union Find with Path Compressions
Maintain partition of S = { 1,2,L,n}

under operations

1 
2

5

9

8
4

3  
6

7

Union( 2 , 4 )

1 
2

5

9

8
4

3  
6

7

Find( 3 ) = 6 (representative element)



© Raimund Seidel

Implementation 

* forest FFFF of rooted trees with node set S
* one tree for each group in current partition
* root of tree is representative of the group

2 4 6 5 9

1      8       3

7

2 4 6 5 9

1      8       3

7



© Raimund Seidel

Implementation 

* forest FFFF of rooted trees with node set S
* one tree for each group in current partition
* root of tree is representative of the group

2 4 6 5 9

1      8       3

7

2 4 6 5 9

1      8       3

7

Union( 2 , 4 )

4 6 5 9

2      8      3

1               7
“Linking”



© Raimund Seidel

Implementation 

* forest FFFF of rooted trees with node set S
* one tree for each group in current partition
* root of tree is representative of the group

2 4 6 5 9

1      8       3

7

2 4 6 5 9

1      8       3

7

Union( 2 , 4 )

4 6 5 9

2      8      3

1               7
“Linking”

Find( x )       follow path from x to root                                 “path follwoing”



© Raimund Seidel

Heuristic 1:   “linking by rank”

• each node x carries integer rk(x)

• initially rk(x) = 0

• as soon as x is NOT a root, rk(x) stays unchanged

• for Union( x , y ) make node with smaller rank
child of the other
in case of tie, increment one of the

ranksx4 y7

x4 y4

y7
x4

y5
x4



© Raimund Seidel

Heuristic 2:   Path compression

when performin a Find( x ) operation make
all nodes in the “findpath” children of the root

3

2      5      1

7     9      6

11      29

4

23     15

3

2      5      6      11      4      1

7      9         29           23     15   

Find( 4 )



© Raimund Seidel

sequence of Union and Find operation

Explicit cost model:

cost( op ) = # times some node gets a new parent

Time for Union(x , y)  =  O(1)  =  O(cost( Union(x,y) ))

Time for Find( x )   =  O( # of nodes on findpath )

=  O( 2 + cost( Find(x) )   )



© Raimund Seidel

For analysis assume all Unions are performed 
first, but Find-paths are only followed (and 
compressed) to correct node.



© Raimund Seidel

For analysis assume all Unions are performed 
first, but Find-paths are only followed (and 
compressed) to correct node.



© Raimund Seidel

General path compression in forest FFFF

x

a

b

y

compress( x, y )



© Raimund Seidel

General path compression in forest FFFF

x

a

b

y

xab

y

compress( x, y )



© Raimund Seidel

General path compression in forest FFFF

x

a

b

y

xab

y

compress( x, y )

cost( compress( x,y ) ) =  # of nodes that get a 
new parent



© Raimund Seidel

Problem formulation

FFFF forest on node set X

C sequence of compress operations on FFFF

|C| = # of true compress operations in C

cost( C ) =  ∑( cost of individual operations )

How large can cost( C ) be at most,
in terms of |X| and |C| ?



© Raimund Seidel

Idea:

For the analysis try “divide and conquer.”



© Raimund Seidel

Idea:

For the analysis try “divide and conquer.”

Question:

How do you “divide” ?



© Raimund Seidel

Dissection of a forest FFFF with node set X :

partition of X into “top part” Xt
and “bottom part” Xb

so that top part Xt is “upwards closed”,

i.e. x∈Xt ⇒ every ancestor of x is in Xt also



© Raimund Seidel

Dissection of a forest FFFF with node set X :

partition of X into “top part” Xt
and “bottom part” Xb

so that top part Xt is “upwards closed”,

i.e. x∈Xt ⇒ every ancestor of x is in Xt also



© Raimund Seidel

Dissection of a forest FFFF with node set X :

partition of X into “top part” Xt
and “bottom part” Xb

so that top part Xt is “upwards closed”,

i.e. x∈Xt ⇒ every ancestor of x is in Xt also

Note:  Xt, Xb dissection for FFFF
F F F F ’ obtained from FFFF by
sequence of path compressions

Xt, Xb is
dissection for FFFF ’⇒



© Raimund Seidel

Main Lemma:
C ... sequence of operations on FFFF with node set X
Xt, Xb dissection for FFFF inducing subforests FFFFt, FFFFb



© Raimund Seidel

Main Lemma:
C ... sequence of operations on FFFF with node set X
Xt, Xb dissection for FFFF inducing subforests FFFFt, FFFFb

⇒ ∃ compression sequences 
Cb for FFFFb and Ct for FFFFt
with

cost( C )  cost( Cb ) + cost( Ct ) + |Xb| + |Ct|

|Cb| + |Ct|  |C|

and



© Raimund Seidel

Proof:   1) How to get Cb and Ct from C:



© Raimund Seidel

Proof:   1) How to get Cb and Ct from C:

compression paths from C

y

x

y

x
into Ct

case 1:



© Raimund Seidel

Proof:   1) How to get Cb and Ct from C:

compression paths from C

y

x

y

x

y

x

y

x

into Ct

into Cb

case 1:

case 2:



© Raimund Seidel

Proof:   1) How to get Cb and Ct from C:

compression paths from C

y

x

y

x

y

x’

x

y

x

y

x

y

x’

∞∞∞∞

x

into Ct

into Cb

into Ct

into Cb

case 1:

case 2:

case 3:



© Raimund Seidel

compress( x, ∞∞∞∞ )

“rootpath compress”

X

x A

a B

b C

c

C

c

B

b

A

a

X

x



© Raimund Seidel

compress( x, ∞∞∞∞ )

cost( compress( x, ∞∞∞∞ ) ) =  # of nodes that get a 
new parent

=   0

“rootpath compress”

X

x A

a B

b C

c

C

c

B

b

A

a

X

x



© Raimund Seidel

Proof:

compression paths from C

y

x

y

x

y

x’

x

y

x

y

x

y

x’

∞∞∞∞

x

into Ct

into Cb

into Ct

into Cb

case 1:

case 2:

case 3:

|Cb| + |Ct|  |C|



© Raimund Seidel

cost( C )  cost( Cb ) + cost( Ct ) + |Xb| + |Ct|



© Raimund Seidel

cost( C )  cost( Cb ) + cost( Ct ) + |Xb| + |Ct|

cost( C )



© Raimund Seidel

cost( C )  cost( Cb ) + cost( Ct ) + |Xb| + |Ct|

green node gets new green parent:    accounted by cost(Ct)

cost( C )



© Raimund Seidel

cost( C )  cost( Cb ) + cost( Ct ) + |Xb| + |Ct|

green node gets new green parent:    accounted by cost(Ct)

brown node gets new brown parent:     accounted by cost(Cb)

cost( C )



© Raimund Seidel

cost( C )  cost( Cb ) + cost( Ct ) + |Xb| + |Ct|

green node gets new green parent:    accounted by cost(Ct)

brown node gets new brown parent:     accounted by cost(Cb)

brown node gets new green parent:      accounted by |Xb|
for the first time

cost( C )



© Raimund Seidel

cost( C )  cost( Cb ) + cost( Ct ) + |Xb| + |Ct|

green node gets new green parent:    accounted by cost(Ct)

brown node gets new brown parent:     accounted by cost(Cb)

brown node gets new green parent:      accounted by |Xb|
for the first time               - #roots( FFFFb )

cost( C )



© Raimund Seidel

cost(C)  cost(Cb) + cost(Ct) + |Xb| - #roots(FFFFb) + |Ct|

green node gets new green parent:    accounted by cost(Ct)

brown node gets new brown parent:     accounted by cost(Cb)

brown node gets new green parent:      accounted by |Xb|
for the first time               - #roots( FFFFb )

cost( C )



© Raimund Seidel

cost(C)  cost(Cb) + cost(Ct) + |Xb| - #roots(FFFFb) + |Ct|

green node gets new green parent:    accounted by cost(Ct)

brown node gets new brown parent:     accounted by cost(Cb)

brown node gets new green parent:      accounted by |Xb|
for the first time               - #roots( FFFFb )

brown node gets new green parent:      accounted by |Ct|
again

cost( C )



© Raimund Seidel

Main Lemma’:
C ... sequence of operations on FFFF with node set X
Xt, Xb dissection for FFFF inducing subforests FFFFt, FFFFb

⇒ ∃ compression sequences 
Cb for FFFFb and Ct for FFFFt
with

cost( C )  cost( Cb ) + cost( Ct )
+ |Xb| - #roots(FFFFb) +  |Ct|

|Cb| + |Ct|  |C|

and



© Raimund Seidel

f(m,n) ... maximum cost of any compression
sequence C with |C|=m in an arbitrary
forest with n nodes.

Claim:  f(m,n)  (m+n)·log2n



© Raimund Seidel

Claim:  f(m,n)  (m+n)·log2n



© Raimund Seidel

Claim:  f(m,n)  (m+n)·log2n

Proof:

Xforest FFFF
|X|=n

C compression sequence     |C|=m



© Raimund Seidel

Claim:  f(m,n)  (m+n)·log2n

Proof:

X
Xb

Xtforest FFFF
|X|=n

FFFFb

FFFFt |Xt|=|Xb|=n/2

C compression sequence     |C|=m



© Raimund Seidel

Claim:  f(m,n)  (m+n)·log2n

Proof:

X
Xb

Xtforest FFFF
|X|=n

FFFFb

FFFFt |Xt|=|Xb|=n/2

C compression sequence     |C|=m

Main Lemma ⇒ ∃ Ct, Cb |Cb|+|Ct|  |C|

cost( C )   cost( Cb ) +   cost( Ct ) + |Xb| + |Ct|

mb +  mt  m



© Raimund Seidel

Claim:  f(m,n)  (m+n)·log2n

Proof:

X
Xb

Xtforest FFFF
|X|=n

FFFFb

FFFFt |Xt|=|Xb|=n/2

C compression sequence     |C|=m

Main Lemma ⇒ ∃ Ct, Cb |Cb|+|Ct|  |C|

cost( C )   cost( Cb ) +   cost( Ct ) + |Xb| + |Ct|

mb +  mt  m

Induction:       (mb+n/2)log n/2 +  (mt+n/2)log n/2 +  n/2 +   mt



© Raimund Seidel

Claim:  f(m,n)  (m+n)·log2n

Proof:

X
Xb

Xtforest FFFF
|X|=n

FFFFb

FFFFt |Xt|=|Xb|=n/2

C compression sequence     |C|=m

Main Lemma ⇒ ∃ Ct, Cb |Cb|+|Ct|  |C|

cost( C )   cost( Cb ) +   cost( Ct ) + |Xb| + |Ct|

mb +  mt  m

Induction:       (mb+n/2)log n/2 +  (mt+n/2)log n/2 +  n/2 +   mt

 (mb+mt+n/2+n/2)log n/2 +   n + m



© Raimund Seidel

Claim:  f(m,n)  (m+n)·log2n

Proof:

X
Xb

Xtforest FFFF
|X|=n

FFFFb

FFFFt |Xt|=|Xb|=n/2

C compression sequence     |C|=m

Main Lemma ⇒ ∃ Ct, Cb |Cb|+|Ct|  |C|

cost( C )   cost( Cb ) +   cost( Ct ) + |Xb| + |Ct|

mb +  mt  m

Induction:       (mb+n/2)log n/2 +  (mt+n/2)log n/2 +  n/2 +   mt

 (mb+mt+n/2+n/2)log n/2 +   n + m

 (m+n)·log2n/2  + (m+n)  =  (m+n)·log2n



© Raimund Seidel

Corollary:
Any sequence of m Union, Find operations
in a universe of n elements that uses
arbitrary linking and path compression
takes time at most

O( (m+n)·log n)



© Raimund Seidel

Corollary:
Any sequence of m Union, Find operations
in a universe of n elements that uses
arbitrary linking and path compression
takes time at most

O( (m+n)·log n)

By choosing a dissection that is “unbalanced”
in relation to m/n one can prove a better
bound of

O( (m+n)·log⌈m/n⌉+1 n)



© Raimund Seidel

Corollary:
Any sequence of m Union, Find operations
in a universe of n elements that uses
arbitrary linking and path compression
takes time at most

O( (m+n)·log n)

By choosing a dissection that is “unbalanced”
in relation to m/n one can prove a better
bound of

O( (m+n)·log⌈m/n⌉+1 n)

Proof:  exercise



© Raimund Seidel

Path compression and union by rank



© Raimund Seidel

f : N → R Brief digression



© Raimund Seidel

0                          if n  1

1 + f*( f(n) )          if n > 1
f*(n) = 

f : N → R Brief digression



© Raimund Seidel

0                          if n  1

1 + f*( f(n) )          if n > 1
f*(n) = 

f*(n) = min { k | f(f( LL f(n)L)  1 }
k times

f : N → R Brief digression



© Raimund Seidel

0                          if n  1

1 + f*( f(n) )          if n > 1
f*(n) = 

f*(n) = min { k | f(f( LL f(n)L)  1 }
k times

Properties:     f a “nice” compaction, i.e. f(n)<n-1
⇒ f* a “nice” compaction and

f*  “much smaller” than f

f : N → R Brief digression



© Raimund Seidel

Examples for  f* :

f(n) f*(n)

n-1 n-1

n-2 n/2

n-c n/c

n/2 log2n

n/c logcn

n log log n

log n log*n

Brief digression



© Raimund Seidel

Path compression and union by rank

Def:  FFFF forest,  x node in FFFF
r(x) = height of subtree rooted at x

(   r(leaf) = 0 )

FFFF is a rank forest, if 

for every node x
for every i with 0i<r(x),

there is a child yi of x with r(yi)=i .



© Raimund Seidel

Path compression and union by rank

Def:  FFFF forest,  x node in FFFF
r(x) = height of subtree rooted at x

(   r(leaf) = 0 )

FFFF is a rank forest, if 

for every node x
for every i with 0i<r(x),

there is a child yi of x with r(yi)=i .

Note:  Union by rank produces rank forests !



© Raimund Seidel

Path compression and union by rank

Def:  FFFF forest,  x node in FFFF
r(x) = height of subtree rooted at x

(   r(leaf) = 0 )

FFFF is a rank forest, if 

for every node x
for every i with 0i<r(x),

there is a child yi of x with r(yi)=i .

Note:  Union by rank produces rank forests !
Lemma: r(x)=r ⇒ x has at least r children.



© Raimund Seidel

Path compression and union by rank

Def:  FFFF forest,  x node in FFFF
r(x) = height of subtree rooted at x

(   r(leaf) = 0 )

FFFF is a rank forest, if 

for every node x
for every i with 0i<r(x),

there is a child yi of x with r(yi)=i .

Note:  Union by rank produces rank forests !
Lemma: r(x)=r ⇒ x has at least r children

and at least 2r descendants.



© Raimund Seidel

Inheritance Lemma:
FFFF rank forest with maximum rank r and node set X

s∈N:    X>s = { x∈X | r(x)>s }         FFFF>s

Xs = { x∈X | r(x)s }        FFFFs
induced forests



© Raimund Seidel

Inheritance Lemma:
FFFF rank forest with maximum rank r and node set X

s∈N:    X>s = { x∈X | r(x)>s }         FFFF>s

Xs = { x∈X | r(x)s }        FFFFs
induced forests

i) Xs , X>s is a dissection for FFFF

ii) FFFFs is a rank forest with maximum
rank  s

iii) FFFF>s is a rank forest with maximum
rank  r-s-1



© Raimund Seidel

Inheritance Lemma:
FFFF rank forest with maximum rank r and node set X

s∈N:    X>s = { x∈X | r(x)>s }         FFFF>s

Xs = { x∈X | r(x)s }        FFFFs
induced forests

FFFFt

FFFFb

i) Xs , X>s is a dissection for FFFF

ii) FFFFs is a rank forest with maximum
rank  s

iii) FFFF>s is a rank forest with maximum
rank  r-s-1 

s

r-s-1



© Raimund Seidel

Inheritance Lemma:
FFFF rank forest with maximum rank r and node set X

s∈N:    X>s = { x∈X | r(x)>s }         FFFF>s

Xs = { x∈X | r(x)s }        FFFFs
induced forests

FFFFt

FFFFb

i) Xs , X>s is a dissection for FFFF

ii) FFFFs is a rank forest with maximum
rank  s

iii) FFFF>s is a rank forest with maximum
rank  r-s-1 

s

r-s-1

Proofs:  exercise



© Raimund Seidel

f(m,n,r) =  maximum cost of any compression
sequence C, with |C|=m, in rank
forest FFFF with n nodes and
maximum rank r.



© Raimund Seidel

f(m,n,r) =  maximum cost of any compression
sequence C, with |C|=m, in rank
forest FFFF with n nodes and
maximum rank r.

Trivial bounds:

f(m,n,r)  (r-1)·n

f(m,n,r)  (r-1)·m



© Raimund Seidel

f(m,n,r) =  maximum cost of any compression
sequence C, with |C|=m, in rank
forest FFFF with n nodes and
maximum rank r.

Trivial bounds:

f(m,n,r)  (r-1)·n

f(m,n,r)  (r-1)·m

f(m,n,r)  m + (r-2)·n



© Raimund Seidel

FFFFt

FFFFb

r
s                 |X s| = nb = n-nt        |Cb| = mb

r-s-1 < r      |X>s| = nt                        |Ct| = mt

cost( C )  cost( Ct ) +  cost( Cb )  + |Xb| - #rts(FFFFb) + |Ct|



© Raimund Seidel

FFFFt

FFFFb

r
s                 |X s| = nb = n-nt        |Cb| = mb

r-s-1 < r      |X>s| = nt                        |Ct| = mt

cost( C )  cost( Ct ) +  cost( Cb )  + |Xb| - #rts(FFFFb) + |Ct|

 f(mt,nt,r-s-1) +  



© Raimund Seidel

FFFFt

FFFFb

r
s                 |X s| = nb = n-nt        |Cb| = mb

r-s-1 < r      |X>s| = nt                        |Ct| = mt

cost( C )  cost( Ct ) +  cost( Cb )  + |Xb| - #rts(FFFFb) + |Ct|

 f(mt,nt,r-s-1) +  f(mb,nb,s)  + 



© Raimund Seidel

FFFFt

FFFFb

r
s                 |X s| = nb = n-nt        |Cb| = mb

r-s-1 < r      |X>s| = nt                        |Ct| = mt

cost( C )  cost( Ct ) +  cost( Cb )  + |Xb| - #rts(FFFFb) + |Ct|

 f(mt,nt,r-s-1) +  f(mb,nb,s)  + n-nt –



© Raimund Seidel

FFFFt

FFFFb

r
s                 |X s| = nb = n-nt        |Cb| = mb

r-s-1 < r      |X>s| = nt                        |Ct| = mt

cost( C )  cost( Ct ) +  cost( Cb )  + |Xb| - #rts(FFFFb) + |Ct|

 f(mt,nt,r-s-1) +  f(mb,nb,s)  + n-nt – (s+1)·nt + 



© Raimund Seidel

FFFFt

FFFFb

r
s                 |X s| = nb = n-nt        |Cb| = mb

r-s-1 < r      |X>s| = nt                        |Ct| = mt

cost( C )  cost( Ct ) +  cost( Cb )  + |Xb| - #rts(FFFFb) + |Ct|

 f(mt,nt,r-s-1) +  f(mb,nb,s)  + n-nt – (s+1)·nt +

Each node in FFFFt has at least s+1 children in FFFFb , 
and they must all be different roots of FFFFb .



© Raimund Seidel

FFFFt

FFFFb

r
s                 |X s| = nb = n-nt        |Cb| = mb

r-s-1 < r      |X>s| = nt                        |Ct| = mt

cost( C )  cost( Ct ) +  cost( Cb )  + |Xb| - #rts(FFFFb) + |Ct|

 f(mt,nt,r-s-1) +  f(mb,nb,s)  + n-nt – (s+1)·nt + mt

Each node in FFFFt has at least s+1 children in FFFFb , 
and they must all be different roots of FFFFb .



© Raimund Seidel

FFFFt

FFFFb

r
s                 |X s| = nb = n-nt        |Cb| = mb

r-s-1 < r      |X>s| = nt                        |Ct| = mt

cost( C )  cost( Ct ) +  cost( Cb )  + |Xb| - #rts(FFFFb) + |Ct|

 f(mt,nt,r-s-1) +  f(mb,nb,s)  + n-nt – (s+1)·nt + mt

Each node in FFFFt has at least s+1 children in FFFFb , 
and they must all be different roots of FFFFb .

f(m,n,r)  f(mt,nt,r-s-1) +  f(mb,nb,s)  + n – (s+2)·nt + mt



© Raimund Seidel

f(m,n,r)  f(mt,nt,r-s-1) +  f(mb,nb,s)  + n – (s+2)·nt + mt

nt + nb =  n    
mt + mb  m 0 s < r



© Raimund Seidel

f(m,n,r)  f(mt,nt,r-s-1) +  f(mb,nb,s)  + n – (s+2)·nt + mt

nt + nb =  n    
mt + mb  m 0 s < r

Assume:  f(M,N,R)  k·M + N·g(R) 



© Raimund Seidel

f(m,n,r)  f(mt,nt,r-s-1) +  f(mb,nb,s)  + n – (s+2)·nt + mt

nt + nb =  n    
mt + mb  m 0 s < r

f(m,n,r)  k·mt + nt·g(r-s-1) + f(mb,nb,s) + n – (s+2)·nt + mt

 k·mt + nt·g(r) +  f(mb,nb,s) + n – s·nt + mt

Assume:  f(M,N,R)  k·M + N·g(R) 



© Raimund Seidel

f(m,n,r)  f(mt,nt,r-s-1) +  f(mb,nb,s)  + n – (s+2)·nt + mt

nt + nb =  n    
mt + mb  m 0 s < r

f(m,n,r)  k·mt + nt·g(r-s-1) + f(mb,nb,s) + n – (s+2)·nt + mt

 k·mt + nt·g(r) +  f(mb,nb,s) + n – s·nt + mt

choose  s = g(r)

Assume:  f(M,N,R)  k·M + N·g(R) 



© Raimund Seidel

f(m,n,r)  f(mt,nt,r-s-1) +  f(mb,nb,s)  + n – (s+2)·nt + mt

nt + nb =  n    
mt + mb  m 0 s < r

f(m,n,r)  k·mt + nt·g(r-s-1) + f(mb,nb,s) + n – (s+2)·nt + mt

 k·mt + nt·g(r) +  f(mb,nb,s) + n – s·nt + mt

choose  s = g(r)
f(m,n,r)  (k+1)·mt + f(mb,nb,s) + n

 (k+1)·mt + f(mb,n,s) + n

Assume:  f(M,N,R)  k·M + N·g(R) 



© Raimund Seidel

s = g(r)

f(m,n,r)  (k+1)·mt + f(mb,n,s) + n



© Raimund Seidel

s = g(r)

f(m,n,r)  (k+1)·mt + f(mb,n,s) + n -(k+1)·(mb+mt)



© Raimund Seidel

s = g(r)

f(m,n,r)  (k+1)·mt + f(mb,n,s) + n -(k+1)·(mb+mt)

m



© Raimund Seidel

s = g(r)

f(m,n,r)  (k+1)·mt + f(mb,n,s) + n -(k+1)·(mb+mt)

f(m,n,r) – (k+1)·m  f(mb,n,s) – (k+1)·mb + n

m



© Raimund Seidel

s = g(r)

f(m,n,r)  (k+1)·mt + f(mb,n,s) + n -(k+1)·(mb+mt)

f(m,n,r) – (k+1)·m  f(mb,n,s) – (k+1)·mb + n

φ(m,n,r)  φ(mb,n,g(r)) + n

m



© Raimund Seidel

s = g(r)

f(m,n,r)  (k+1)·mt + f(mb,n,s) + n -(k+1)·(mb+mt)

f(m,n,r) – (k+1)·m  f(mb,n,s) – (k+1)·mb + n

φ(m,n,r)  φ(mb,n,g(r)) + n

m

 (φ(mbb,n,g(g(r))) + n) + n



© Raimund Seidel

s = g(r)

f(m,n,r)  (k+1)·mt + f(mb,n,s) + n -(k+1)·(mb+mt)

f(m,n,r) – (k+1)·m  f(mb,n,s) – (k+1)·mb + n

φ(m,n,r)  φ(mb,n,g(r)) + n

m

 (φ(mbb,n,g(g(r))) + n) + n

 ((φ(mbbb,n,g(g(g(r)))) + n) + n) + n



© Raimund Seidel

s = g(r)

f(m,n,r)  (k+1)·mt + f(mb,n,s) + n -(k+1)·(mb+mt)

f(m,n,r) – (k+1)·m  f(mb,n,s) – (k+1)·mb + n

φ(m,n,r)  φ(mb,n,g(r)) + n

m

 (φ(mbb,n,g(g(r))) + n) + n

 ((φ(mbbb,n,g(g(g(r)))) + n) + n) + n

φ(m,n,r)  n · g*(r)



© Raimund Seidel

s = g(r)

f(m,n,r)  (k+1)·mt + f(mb,n,s) + n -(k+1)·(mb+mt)

f(m,n,r) – (k+1)·m  f(mb,n,s) – (k+1)·mb + n

φ(m,n,r)  φ(mb,n,g(r)) + n

m

 (φ(mbb,n,g(g(r))) + n) + n

 ((φ(mbbb,n,g(g(g(r)))) + n) + n) + n

φ(m,n,r)  n · g*(r)

f(m,n,r)  (k+1)· m + n · g*(r)



© Raimund Seidel

Shifting Lemma:

If  f(m,n,r)  k·m + n·g(r) 

then also    f(m,n,r)  (k+1)·m + n·g*(r)



© Raimund Seidel

If  f(m,n,r)  k·m + n·g(r)

then also    f(m,n,r)  (k+i)·m + n·g**...*(r) 

for any i ≥ 0

Shifting Lemma:

If  f(m,n,r)  k·m + n·g(r)

then also    f(m,n,r)  (k+1)·m + n·g*(r)

Shifting Corollary:

i



© Raimund Seidel

If  f(m,n,r)  k·m + n·g(r)

then also    f(m,n,r)  (k+i)·m + n·g**...*(r)

for any i ≥ 0

i



© Raimund Seidel

If  f(m,n,r)  k·m + n·g(r)

then also    f(m,n,r)  (k+i)·m + n·g**...*(r)

for any i ≥ 0

Trivial bound:   f(m,n,r)  n·(r-1)

i



© Raimund Seidel

If  f(m,n,r)  k·m + n·g(r)

then also    f(m,n,r)  (k+i)·m + n·g**...*(r)

for any i ≥ 0

Trivial bound:   f(m,n,r)  n·(r-1)

= 0·m + n·(r-1)

i



© Raimund Seidel

If  f(m,n,r)  k·m + n·g(r)

then also    f(m,n,r)  (k+i)·m + n·g**...*(r)

for any i ≥ 0

Trivial bound:   f(m,n,r)  n·(r-1)

= 0·m + n·(r-1)

g(r) = r-1

g*(r) = r-1

i



© Raimund Seidel

If  f(m,n,r)  k·m + n·g(r)

then also    f(m,n,r)  (k+i)·m + n·g**...*(r)

for any i ≥ 0

Trivial bound:   f(m,n,r)  m + n·(r-2)

i



© Raimund Seidel

If  f(m,n,r)  k·m + n·g(r)

then also    f(m,n,r)  (k+i)·m + n·g**...*(r)

for any i ≥ 0

Trivial bound:   f(m,n,r)  m + n·(r-2)

= 1·m + n·(r-2)

i



© Raimund Seidel

If  f(m,n,r)  k·m + n·g(r)

then also    f(m,n,r)  (k+i)·m + n·g**...*(r)

for any i ≥ 0

Trivial bound:   f(m,n,r)  m + n·(r-2)

= 1·m + n·(r-2)

g(r) = r-2

i



© Raimund Seidel

If  f(m,n,r)  k·m + n·g(r)

then also    f(m,n,r)  (k+i)·m + n·g**...*(r)

for any i ≥ 0

Trivial bound:   f(m,n,r)  m + n·(r-2)

= 1·m + n·(r-2)

g(r) = r-2

g*(r)= r/2               

i



© Raimund Seidel

If  f(m,n,r)  k·m + n·g(r)

then also    f(m,n,r)  (k+i)·m + n·g**...*(r)

for any i ≥ 0

Trivial bound:   f(m,n,r)  m + n·(r-2)

= 1·m + n·(r-2)

g(r) = r-2

g*(r)= r/2                f(m,n,r)  2·m + n·(r/2)

i



© Raimund Seidel

If  f(m,n,r)  k·m + n·g(r)

then also    f(m,n,r)  (k+i)·m + n·g**...*(r)

for any i ≥ 0

Trivial bound:   f(m,n,r)  m + n·(r-2)

= 1·m + n·(r-2)

g(r) = r-2

g*(r)= r/2                f(m,n,r)  2·m + n·(r/2)

g**(r) = log r            

i



© Raimund Seidel

If  f(m,n,r)  k·m + n·g(r)

then also    f(m,n,r)  (k+i)·m + n·g**...*(r)

for any i ≥ 0

Trivial bound:   f(m,n,r)  m + n·(r-2)

= 1·m + n·(r-2)

g(r) = r-2

g*(r)= r/2                f(m,n,r)  2·m + n·(r/2)

g**(r) = log r            f(m,n,r)  3·m + n·log r

i



© Raimund Seidel

If  f(m,n,r)  k·m + n·g(r)

then also    f(m,n,r)  (k+i)·m + n·g**...*(r)

for any i ≥ 0

i



© Raimund Seidel

If  f(m,n,r)  k·m + n·g(r)

then also    f(m,n,r)  (k+i)·m + n·g**...*(r)

for any i ≥ 0

We know bound:   f(m,n,r)  3·m + n·log r  

i



© Raimund Seidel

Therefore for any i≥ 0 :

f(m,n,r)  (3+i)·m + n·log**...*(r)

If  f(m,n,r)  k·m + n·g(r)

then also    f(m,n,r)  (k+i)·m + n·g**...*(r)

for any i ≥ 0

We know bound:   f(m,n,r)  3·m + n·log r  

i

i



© Raimund Seidel

For any i≥ 0 :  f(m,n,r)  (3+i)·m + n·log**...*(r)
i



© Raimund Seidel

For any i≥ 0 :  f(m,n,r)  (3+i)·m + n·log**...*(r)

Choice of i :

i



© Raimund Seidel

For any i≥ 0 :  f(m,n,r)  (3+i)·m + n·log**...*(r)

Choice of i :
i

Define αααα(r) = min{ i | log**...*(r)  i }

i



© Raimund Seidel

For any i≥ 0 :  f(m,n,r)  (3+i)·m + n·log**...*(r)

i
Choice of i :

Define αααα(r) = min{ i | log**...*(r)  i }

i

Here is your definition of the 
Inverse Ackermann Function !!



© Raimund Seidel

For any i≥ 0 :  f(m,n,r)  (3+i)·m + n·log**...*(r)

i
Choice of i :

Define αααα(r) = min{ i | log**...*(r)  i }

f(m,n,r)  (m+n)(3+αααα(r))

i



© Raimund Seidel

For any i≥ 0 :  f(m,n,r)  (3+i)·m + n·log**...*(r)

i
Choice of i :

Define αααα(r) = min{ i | log**...*(r)  i }

f(m,n,r)  (m+n)(3+αααα(r))

 (m+n)(3+αααα(log n))

i



© Raimund Seidel

Choice of i :

For any i≥ 0 :  f(m,n,r)  (3+i)·m + n·log**...*(r)
i



© Raimund Seidel

For any i≥ 0 :  f(m,n,r)  (3+i)·m + n·log**...*(r)

Choice of i :
i

For t≥ 1 define ααααt(r) = min{ i | log**...*(r)  t }

i



© Raimund Seidel

For any i≥ 0 :  f(m,n,r)  (3+i)·m + n·log**...*(r)

Choice of i :
i

For t≥ 1 define ααααt(r) = min{ i | log**...*(r)  t }

i

Here is a parametrized definition 
of the Inverse Ackermann 
Function !!



© Raimund Seidel

For any i≥ 0 :  f(m,n,r)  (3+i)·m + n·log**...*(r)

Choice of i :
i

For t≥ 1 define ααααt(r) = min{ i | log**...*(r)  t }

i

f(m,n,r)  (3+ααααt(r))·m + n·t



© Raimund Seidel

For any i≥ 0 :  f(m,n,r)  (3+i)·m + n·log**...*(r)

Choice of i :
i

For t≥ 1 define ααααt(r) = min{ i | log**...*(r)  t }

i

f(m,n,r)  (3+ααααt(r))·m + n·t
choose t = 1+m/n



© Raimund Seidel

For any i≥ 0 :  f(m,n,r)  (3+i)·m + n·log**...*(r)

Choice of i :
i

For t≥ 1 define ααααt(r) = min{ i | log**...*(r)  t }

i

f(m,n,r)  (3+ααααt(r))·m + n·t
choose t = 1+m/n

f(m,n,r)  (4+αααα1+m/n(r))·m + n



© Raimund Seidel

For any i≥ 0 :  f(m,n,r)  (3+i)·m + n·log**...*(r)

Choice of i :
i

For t≥ 1 define ααααt(r) = min{ i | log**...*(r)  t }

i

f(m,n,r)  (3+ααααt(r))·m + n·t
choose t = 1+m/n

f(m,n,r)  (4+αααα1+m/n(r))·m + n

 (4+αααα1+m/n(log n))·m + n



© Raimund Seidel

Theorem:

Any sequence of m Union, Find operations
in a universe of n elements that uses 
linking by rank and path compression
takes time at most

O( m·αααα(m,n) +n )

Bob Tarjan 1975



© Raimund Seidel

Theorem:

Any sequence of m Union, Find operations
in a universe of n elements that uses 
linking by rank and path compression
takes time at most

O( m·αααα(m,n) +n )

Bob Tarjan 1975

f(m,n,r)  (4+αααα1+m/n(log n))·m + n



© Raimund Seidel

Theorem:

Any sequence of m Union, Find operations
in a universe of n elements that uses 
linking by rank and path compression
takes time at most

O( m·αααα(m,n) +n )

Bob Tarjan 1975

f(m,n,r)  (4+αααα1+m/n(log n))·m + n

αααα(m,n) = αααα1+m/n(log n)



© Raimund Seidel

Shifting Lemma:

If  f(m,n,r)  k·m + n·g(r)

then also    f(m,n,r)  (k+1)·m + n·g*(r)

If  f(m,n,r)  k·m + n·g(r)

then also    f(m,n,r)  (k+i)·m + n·g**...*(r) 

for any i ≥ 0

Shifting Corollary:

i

Definition of αααα: i

αααα(r) = min{ i | log**...*(r)  i }

What to remember:



© Raimund Seidel

Odds and Ends



© Raimund Seidel

Odds and Ends

We used  f(m,n,r)  1·m + n·(r-2)     



© Raimund Seidel

Odds and Ends

We used  f(m,n,r)  1·m + n·(r-2)     to get

for any i≥ 0 :  f(m,n,r)  (3+i)·m + n·log**...*(r)
i



© Raimund Seidel

Odds and Ends

We used  f(m,n,r)  1·m + n·(r-2)     to get

Actually   f(m,n,r)  1·m + n·log r

for any i≥ 0 :  f(m,n,r)  (3+i)·m + n·log**...*(r)
i



© Raimund Seidel

Odds and Ends

We used  f(m,n,r)  1·m + n·(r-2)     to get

Actually   f(m,n,r)  1·m + n·log r
(Exercise)

for any i≥ 0 :  f(m,n,r)  (3+i)·m + n·log**...*(r)
i



© Raimund Seidel

Odds and Ends

We used  f(m,n,r)  1·m + n·(r-2)     to get

for any i≥ 0 :  f(m,n,r)  (1+i)·m + n·log**...*(r)
i

Actually   f(m,n,r)  1·m + n·log r

and therefore
(Exercise)

for any i≥ 0 :  f(m,n,r)  (3+i)·m + n·log**...*(r)
i



© Raimund Seidel

Odds and Ends

For any i≥ 0 :         f(m,n,r)  i·m + n·log**...*(r)
i

Actually   f(m,n,r)  1·m + n·log* r

and therefore

(difficult
Exercise)



© Raimund Seidel

Odds and Ends

f(m,n,r) for small values of r



© Raimund Seidel

Odds and Ends

f(m,n,0) = 0     f(m,n,1) = 0     f(m,n,2)  m

f(m,n,r) for small values of r



© Raimund Seidel

Odds and Ends

f(m,n,0) = 0     f(m,n,1) = 0     f(m,n,2)  m

f(m,n,r)  m + n for r 8, i.e. for  n<512

f(m,n,r) for small values of r



© Raimund Seidel

Odds and Ends

f(m,n,0) = 0     f(m,n,1) = 0     f(m,n,2)  m

f(m,n,r)  m + n for r 8, i.e. for  n<512

f(m,n,r)  m + 2n for r 202, i.e. for  n<2203

f(m,n,r) for small values of r



© Raimund Seidel

Odds and Ends

f(m,n,0) = 0     f(m,n,1) = 0     f(m,n,2)  m

f(m,n,r)  m + n for r 8, i.e. for  n<512

f(m,n,r)  m + 2n for r 202, i.e. for  n<2203

f(m,n,r) for small values of r

(difficult exercises)



© Raimund Seidel

Similar proof for O( m·αααα(m,n) + n )  bound 
also works for

* linking by weight and path compression

* linking by rank and generalized path
compaction

Odds and Ends



© Raimund Seidel

Similar proof for O( m·αααα(m,n) + n )  bound 
also works for

* linking by weight and path compression

* linking by rank and generalized path
compaction

Odds and Ends

Open problem:

simple top-down approach for proving
lower bounds


