COS 528
Dominators in Digraphs

© Robert E. Tarjan 2013
Flowgraph: A directed graph with a start vertex s such that every vertex is reachable from s.

Vertex v *dominates* vertex w if $v \neq w$ and v is on every path from s to w.

Domination is *anti-symmetric*: if v dominates w, then w does not dominate v.

Domination is *transitive*: if u dominates v and v dominates w, then u dominates w.

Domination is *complete*: if both u and v dominate w, then either u dominates v or v dominates w.
Anti-symmetry, transitivity, and completeness imply that the dominators of any vertex \(w \) are totally ordered by domination. Thus there is a vertex \(v \) called the *immediate dominator* of \(w \), denoted by \(idom(w) \), that dominates \(w \) and is dominated by all other dominators of \(w \).

The immediate dominators define a tree \(D \) rooted at \(r \) such that \(idom(w) \) is the parent of \(w \) in \(D \). Vertex \(v \) dominates \(w \) iff \(v \) is a proper ancestor of \(w \) in \(D \).
Dominator tree
Goal: given a flowgraph $G = (V, E, s)$, find its dominator tree

Applications

Global code optimization: Movement of code to a dominating program block to reduce redundant computation

Circuit testing: Identification of pairs of equivalent line faults.

Theoretical biology: food web analysis
We assume $n > 1$. Since $m \geq n - 1$, $n = O(m)$ and $m > 0$.

Naïve algorithm: For each vertex $v \neq s$, delete v and find all vertices still reachable from s. Vertex v dominates all unreached vertices.

Running time = $O(nm)$
Delete 2: 5, 6, 7, 8, 9 unreachable
Delete 5: 6 unreachable
Dominator tree
Tree update algorithm (less naïve but no faster):

Let D be any spanning tree rooted at s

$p(x) = \text{parent of } x$

$nca(v, w) = \text{nearest common ancestor of } v, w$

If for every arc (v, w), $nca(v, w)$ is either w or $p(w)$, stop. Otherwise, choose an arc (v, w) such that $u = nca(v, w)$ is neither w nor $p(w)$, replace $p(w)$ by u, and repeat.
Can represent D with just parent pointers. Each test of an arc takes $O(n)$ time, each update takes $O(1)$ time and reduces the depth of at least one node by at least $1 \rightarrow O(n^3m)$ time.

Can reduce time to $O(n^2m)$ by careful choice of arcs to test: fast in practice on small graphs.

Can reduce time to $O(nm)$ by careful choice of arcs to test and representation of D by child sets as well as parent pointers.
BFS tree
Dominator tree
Finding dominators faster?

$O(m)$ is possible
$O(m\alpha(n, \lceil m/n \rceil))$ is practical but a little complicated

Here: an $O(mlgn)$-time algorithm that uses DFS + finding minima on paths in the DFS tree
We need a better way to characterize immediate dominators

Do a DFS to form a DFS tree T rooted at s. Let $p(v)$ be the parent of v in T, $nca(v, w)$ the nearest common ancestor of v, w. Order the vertices in preorder.

Let $sdom(v)$, the semi-dominator of v, be the smallest vertex u such that there is a path from u to v all of whose vertices except u are no smaller than v.
Let $v \neq s$.

$idom(v)$ is a proper ancestor of v in T.

Since $p(v)$ is a candidate for $sdom(v)$, $sdom(v) <_{pre} v$.

Let P be a path from $sdom(v)$ to v all of whose vertices excluding $sdom(v)$ are no smaller than v.

$sdom(v)$ is a proper ancestor of v by the preorder lemma (Lecture 14).

P avoids all ancestors of v that are not ancestors of $sdom(v)$; thus $idom(v)$ is an ancestor of $sdom(v)$.
Let $rdom(v)$, the relative dominator of v, be a vertex $x \neq sdom(v)$ on the path in T from $sdom(v)$ to v such that $sdom(x)$ is minimum (break a tie arbitrarily).

Dominators Lemma: If $rdom(v) = v$, then $idom(v) = sdom(v)$. Also, $idom(v) = idom(rdom(v))$
Proof: Suppose \(sdom(v) \) does dominate \(v \). Let \(P \) be a path from \(s \) to \(v \) that avoids \(sdom(v) \), let \(x \) be the last vertex on \(P \) less than \(sdom(v) \), and let \(y \) be the minimum vertex after \(x \) on \(P \). Then \(x \) is a candidate for \(sdom(y) \), so \(sdom(y) <_{pre} sdom(v) <_{pre} y \). But \(y \) is an ancestor of \(v \) by the preorder lemma, which implies that \(y \) is a candidate for \(rdom(v) \). Since \(sdom(y) <_{pre} sdom(v) \), \(rdom(v) \neq v \). This gives the first part of the lemma.
Proof (cont.): A path from s to $rdom(v)$ can be extended to v by adding the tree path from $rdom(v)$ to v. It follows that no proper descendant of $idom(rdom(v))$ dominates v. Suppose $idom(rdom(v))$ does not dominate v. Let P be a path from s to v that avoids $idom(rdom(v))$, let x be the last vertex on P less than $idom(rdom(v))$, and let y be the minimum vertex after x on P. Then x is a candidate for $sdom(y)$, so $sdom(y) <_{pre} idom(rdom(v)) <_{pre} y$. But y is an ancestor of v by the preorder lemma.
Proof (cont.): If y were an ancestor of $rdom(v)$, then $idom(rdom(v))$ would not dominate $rdom(v)$; thus y is a proper descendant of $rdom(v)$. But then y is a candidate for $rdom(v)$, which implies $sdom(rdom(v)) \leq_{pre} sdom(y) <_{pre} idom(rdom(v))$, and again $idom(rdom(v))$ cannot dominate $rdom(v)$, a contradiction. This gives the second part of the lemma.
Dominators algorithm

Compute $sdom(v)$ for every vertex $v \neq s$.
Compute $rdom(v)$ for every vertex $v \neq s$.
Set $idom(s) = \text{null}$. Visit vertices $v \neq s$ in an order such that $p(v)$ is visited before v, e.g. preorder

\begin{align*}
\text{visit}(v) & : \\
\text{if } rdom(v) = v \text{ then } idom(v) & \leftarrow sdom(v) \\
\text{else } idom(v) & \leftarrow idom(rdom(v))
\end{align*}
DFS tree and non-tree arcs

tree arcs
forward arcs
cross arcs
back arcs
Semi-dominators
Relative dominators

9: 2, 9
8: 2, 5
7: 2, 5
6: 5, 6
5: 2, 5
4: 2, 3
3: 1, 2
2: 1, 2
Immediate dominators

9: 2, 9, 2
8: 2, 5, 2
7: 2, 5, 2
6: 5, 6, 5
5: 2, 5, 2
4: 2, 3, 1
3: 1, 2, 1
2: 1, 2, 1
Dominator tree

```
1
 /     \
2-------3----4
    /  \
   5----7----8----9
       /  \
      6
```
Correctness: From the dominators lemma; if $rdom(v) \neq v$, then $rdom(v)$ is a proper ancestor of v, hence visited before v

How to compute semi-dominators and relative dominators?

The relative dominators are path-minima on T, with semi-dominators as weights
The computation of semi-dominators can also be done by finding path minima on T

Indeed we can compute both semi-dominators and relative dominators in one integrated path minima computation.
For an arc \((u, v)\), let \(z = nca(u, v)\)

If \(u = z\), let \(r(u, v) = u\).

If \(u \neq z\), let \(r(u, v)\) be a vertex \(x \neq z\) on the path in \(T\) from \(z\) to \(u\) such that \(sdom(x)\) is minimum (break a tie arbitrarily)

Lemma: \(sdom(v) = \min_{pre} \{r(u, v) \mid (u, v) \in E\}\)

Proof: Exercise
This lemma allows us to compute semi-dominators in reverse preorder from path minima of known or previously computed values: If \((u, v)\) is an arc such that \(u\) is not an ancestor of \(v\), and \(x \neq nca(u, v)\) is on the path in \(T\) from \(nca(u, v)\) to \(u\), then \(x >_{pre} v\), since \(x \leq_{pre} v\) implies \(x\) is an ancestor of \(v\).

We visit the vertices in reverse preorder, maintaining a compressed version of the part of \(D\) visited so far: all \((p(v), v)\) with \(v\) visited.
Computation of semi-dominators

for $v \in V$ do $a(v) \leftarrow$ null;

for $v \in V - s$ in reverse preorder do

 \{ $sdom(v) \leftarrow \min_{pre}\{ sfind(u) \mid (u, v) \in E \}$;
 $a(v) \leftarrow p(v)$; $pmin(v) \leftarrow sdom(v)$ \}

$a(v)$: parent of v in compressed forest

$pmin(v)$: path min of v in compressed forest
sfind(x):

 if a(x) = null then return x

else {if a(a(x)) \neq null then

 \{pmin(x) \leftarrow \min_{pre}\{pmin(x), sfind(a(x))\}\};

 a(x) \leftarrow a(a(x));

 return pmin(x)\}
Computation of semi-dominators and relative dominators with optimization

\[
\begin{align*}
&\textbf{for } v \in V \textbf{ do } \{ a(v) \leftarrow \text{null}; R(v) \leftarrow \{ \} \}; \\
&\textbf{for } v \in V - s \textbf{ in reverse preorder do } \\
&\quad \{ \textbf{for } u \in R(v) \textbf{ do } rdom(u) \leftarrow \text{sfind}(u); \\
&\quad \quad sdom(v) \leftarrow \min_{\text{pre}} \{ \text{sfind}(u) \mid (u, v) \in E \}; \\
&\quad \quad a(v) \leftarrow p(v); pmin(v) \leftarrow sdom(v); \\
&\quad \quad \textbf{if } p(v) = sdom(v) \textbf{ then } rdom(v) \leftarrow v \textbf{ else } \\
&\quad \quad \quad R(sdom(v)) \leftarrow R(sdom(v) \cup \{v\}); \\
&\quad \textbf{for } u \in R(s) \textbf{ do } rdom(u) \leftarrow \text{sfind}(u) \\
\end{align*}
\]
3-pass dominators algorithm

Do a depth-first search. Number vertices in preorder and build DFS tree

Compute $sdom$ and $rdom$ by visiting the vertices in reverse preorder

Compute $idom$ by visiting the vertices in preorder

Running time $= O(mlgn)$: path compression with naïve linking
Faster Versions

$O(m^{\alpha(n, \lfloor m/n \rfloor)}$: Add linking by rank to the path min data structure (not entirely straightforward)

$O(m)$: Build optimal algorithms for very small subproblems (much less straightforward)