
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture 24
Scribe: Sachin Ravi May 2, 2013

1 Review of Zero-Sum Games

At the end of last lecture, we discussed a model for two player games (call the players Mindy
(row) and Max (column)). We said that any such game could be described by its game
matrix M , which is constructed from Mindy’s point of view and thus describes Mindy’s loss
for a pair of chosen moves. We also said that there were two types of plays: deterministic
and randomized. In deterministic play, the players choose according to “pure” strategies
where they pick the one move to play. In randomized play, the players choose distributions
over their sets of possible moves, according to which their moves will be picked.

In deterministic play, we said the outcome was M(i, j) ∈ [0, 1] if Mindy plays row i and
Max plays column j. In randomized play, we have an expected outcome. If Mindy has
picked distribution P and Max has picked distribution Q, the expected outcome is∑

ij

P (i)M(i, j)Q(j) = P TMQ.

For randomized games, we often use the notation M(P,Q) = P TMQ to denote the
expected outcome as a function of the distributions chosen by the two players.

2 Minimax Theorem

On first look, there seems to be an obvious advantage to playing second, implying that

max
Q

min
P
M(P,Q) ≤ min

P
max
Q

M(P,Q).

However, John von Neumann showed that such an advantage does not exist, that re-
gardless of who goes first, in a game with optimal players, the expected outcome is always
the same. Denoting this optimal value as v, we have

v = max
Q

min
P
M(P,Q) = min

P
max
Q

M(P,Q).

We will prove the following theorem using an online learning algorithm.

Theorem 1 (von Neumann min max theorem). For randomized zero-sum games of two
players:

min
P

max
Q

M(P,Q) = max
Q

min
P
M(P,Q)

Assuming P ∗ = arg minP maxQM(P,Q) and Q∗ = arg maxQ minP M(P,Q), the theo-
rem implies the following

∀Q : M(P ∗, Q) ≤ v (1)
∀P : M(P,Q∗) ≥ v (2)

Here, (1) implies that even if Max knows Mindy’s strategy the most loss Max can inflict
is bounded by v and (2) implies that regardless of what strategy Mindy uses, her loss will
be at least v. In this sense, P ∗ is optimal for Mindy.

With knowledge of M , we can find P ∗ through linear programming; However, there are
some issues to consider to see why things are not always so simple:

1. We don’t know matrix M because arbitrary interactions are being modeled.

2. The matrix M is very large (we cannot apply linear programming).

3. In reality, the opponent may not be optimal and/or adverserial. The strategy P ∗ only
applies for an optimal opponent.

Thus, when games are repeatedly played, it is useful to learn the game matrix M and/or
the opponent’s strategy without the knowledge of either at the beginning of the game. We
consider the following online version of T iterations of the game:

for t = 1, . . . , T do
Mindy (learner) chooses Pt
Max (environment) chooses Qt with knowledge of Pt
Learner suffers loss M(Pt, Qt)
Learner can observer M(i, Qt) ∀i

end for

Two important points to notice here are that Max chooses with knowledge of Mindy’s
distribution and that Mindy can observe M(i, Qt) ∀i, meaning for example if Qt is concen-
trated on a pure strategy j, then Mindy can observe the entire column j in M .

We have that the total loss here is
∑T

t=1M(Pt, Qt). The learner wishes to minimize this
total loss when compared to the best possible loss had the learner chosen the best fixed
strategy for all of the T iterations. We want to show:

T∑
t=1

M(Pt, Qt) ≤ min
P

T∑
t=1

M(P,Qt) + small.

2.1 Multiplicative Updates

Let us consider a simple multiplicative weight update algorithm, which outputs distributions
over rows in the following manner:

P1(i) =
1
n
∀i

Pt+1(i) =
Pt(i) · βM(i,Qt)

Z
,

where 0 < β < 1 and Z is the normalizing constant. This update is similar in style to
the weighted majority algorithm. Basically, the bigger the loss for a row i, the lesser the
probability that we use that row in the future.

Using this update, we get the following result.

2

Theorem 2 (Multiplicative Weights Update). Using the multiplicative weights update, we
get

T∑
t=1

M(Pt, Qt) ≤ aβ min
P

T∑
t=1

M(P,Qt) + cβ lnn,

where aβ and cβ are functions of β.

We will not prove the above result, as it involves analysis similar to the one done for
the weighted majority algorithm, mainly using a potential function argument.

Corollary 3. We can choose β so that

1
T

T∑
t=1

M(Pt, Qt) ≤ min
P

1
T

T∑
t=1

M(P,Qt) + ∆T ,

where ∆T = O

(√
lnn
T

)
.

We can see that ∆T → 0 as T → ∞ and so the corollary states that the average
per-round loss for the learner approaches the best possible average per-round loss.

Using the algorithm and its corresponding result, we will prove the min-max theorem
from above. We say Mindy uses the multiplicative weights algorithm to set Pt and that
Max sets Qt so as to maximize Mindy’s loss:

Qt = arg max
Q

M(Pt, Q)

We also define

P̄ =
1
T

T∑
t=1

Pt

Q̄ =
1
T

T∑
t=1

Qt

Proof. We can see that both P̄ and Q̄ are distributions since they are the average of distri-
butions. Since we know that maxQ minP M(P,Q) ≤ minP maxQM(P,Q), to show equality,

3

we need to show that maxQ minP M(P,Q) ≥ minP maxQM(P,Q). We have

min
P

max
Q

P TMQ ≤ max
Q

P̄ TMQ (3)

= max
Q

1
T

T∑
t=1

P Tt MQ (4)

≤ 1
T

max
Q

T∑
t=1

P Tt MQ (5)

=
1
T

T∑
t=1

P Tt MQt (6)

≤ min
P

1
T

T∑
t=1

P TMQt + ∆T (7)

= min
P
P TMQ̄+ ∆T (8)

≤ max
Q

min
P
P TMQ+ ∆T , (9)

where again ∆T → 0 as T →∞, meaning that the desired result follows. Here, (3) follows
by definition of the minimum, (4) by definition of P̄ , (5) by convexity, (6) by defintion of
Qt, (7) by Corollary 2.1, (8) by definition of Q̄, and (9) by definition of the maximum.

If we skip the first inequality, we get that

max
Q

P̄ TMQ ≤ v + ∆T ,

where v = maxQ minP P TMQ. Thus, taking the average of Pt’s computed over the rounds
of the algorithm, we get a distribution P̄ that is within ∆T of the optimal. By running the
algorithm for more rounds, we can get closer and closer to the optimal and thus we call
P̄ an approximate min max strategy. By a similar argument, we can show that Q̄ is an
approximate max min strategy.

3 Relation to Online Learning

We will now try to relate our previous analysis to the setting of online learning. The problem
is as follows:

for t = 1, . . . , T do
Observe xt ∈ X
Predict ŷt ∈ {0, 1}
Observe true label c(xt) (mistake if c(xt) 6= ŷt)

end for

Let H be the set of all possible hypotheses. We associate each h ∈ H as being an expert
and we wish to perform as well as the best expert. As in the past, we would like to show

#mistakes ≤ #mistakes of best h+ small

4

Assuming the sets H and X are finite, for this problem, we set up the game matrix M
as follows:

M =

x1 x2 . . . xn

h1 M(1, 1) M(1, 2) . . . M(1, n)
h2 M(2, 1) M(2, 2) . . . M(2, n)
...

...
...

. . .
...

hm M(m, 1) M(m, 2) . . . M(m,n)

,
where

M(h, x) =

{
1, h(x) 6= c(x)
0, otherwise

Given a particular xt ∈ X , the algorithm uses the distribution Pt to make a prediction
on xt. Choose h according to Pt. Then, let ŷt = h(xt).

We then let Qt be the distribution concentrated on xt. This setup implies the following
result

T∑
t=1

M(Pt, xt)︸ ︷︷ ︸
E[# mistakes]

≤ min
h∈H

M(h, xt)︸ ︷︷ ︸
mistakes of best h

+ small, (10)

since M(Pt, xt) =
∑

h∈H Pt(h) · 1{h(x) 6= c(x)} = Prh∼Pt [h(x) 6= c(x)]. If we properly plug
into the above result, we will find that we acheive the same bound as in the analysis done
for the weighted majority algorithm in the online learning model.

4 Relation to Boosting

We now turn to boosting and see how to set it up as a game between two players: the
boosting algorithm and the weak learner. Here, H is the set of weak hypotheses and X is
the training set.

for t = 1, . . . , T do
Boosting Algorithm chooses distribution Dt on X
Weak Learner chooses ht ∈ H

end for

where it is assumed that
Pr
x∼Dt

[ht(x) 6= c(x)] ≤ 1
2
− γ.

We cannot use the game matrix M used in the last section because it would give us a
distribution on rows (h’s), whereas here we want a distribution on columns (x’s). Thus, we
flip the game matrix M , and renormalize so that the matrix values are in [0, 1]. We get the
game matrix

M ′ = 1−MT

5

where

M ′ =

h1 h2 . . . hn

x1 M ′(1, 1) M ′(1, 2) . . . M ′(1, n)
x2 M ′(2, 1) M ′(2, 2) . . . M ′(2, n)
...

...
...

. . .
...

xm M ′(m, 1) M ′(m, 2) . . . M ′(m,n)

,
meaning

M ′(x, h) =

{
1, h(x) = c(x)
0, otherwise

We then have that Dt = Pt and that Qt is the distribution fully concentrated on the ht
given to us. To be clear, the booster is simulating the multiplicative weights algorithm on
the game matrix. Applying the multiplicative weights algorithm, we have

1
T

T∑
t=1

M ′(Pt, ht) ≤ min
x

1
T

T∑
t=1

M ′(x, ht) + ∆T .

Notice that

M ′(Pt, ht) =
∑
x∈X

Pt(x) · 1{ht(x) = c(x)}

= Pr
x∼Pt

[ht(x) = c(x)]

≥ 1
2

+ γ,

implying that

1
2

+ γ ≤ 1
T

T∑
t=1

M ′(Pt, ht) ≤ min
x

1
T

T∑
t=1

M ′(x, ht) + ∆T .

Since the second inequality applies to the minimum x, it also applies for all x:

∀x :
1
T

T∑
t=1

M ′(x, ht) ≥
1
2

+ γ −∆T >
1
2
,

where the second inequality is true since ∆T → 0 as T → ∞. Note that 1
T

∑T
t=1M

′(x, ht)
is the fraction of weak hypotheses that correctly classify x.

Since we have shown that for any x, the fraction of weak hypothesis that correctly
classify x is greater than 1

2 , we have that the majority vote

MAJ(h1(x), . . . , hT (x)) = c(x)

for all x.
Thus, this game formulation solves the problem of Boosting in the simple case.

6

