
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture # 22
Scribe: Tengyu Ma April 25, 2013

1 Recap

Last time we discussed the Bayes algorithm for learning a distribution with a log loss
function. There are N experts, each of which predicts a distribution pt,i(·) over domain X
in each round. We are to predict the distribution in an online manner with as small log loss
as possible. In the Bayes algorithm, we assign each expert an initial weight/prior π, and
maintain a weight wt,i for each expert in each round. Each round the algorithm predicts
the linear combination of experts’ distribution according to the weights, and updates the
weight wt+1,i = wt,ipt,i(xt)/Z after obtaining the input xt (where Z is normalization factor.)

The beauty of this algorithm is that we can interpret/analyze it as follows: We can view
the initial weights πi as priors on the experts, and pretend xt’s are generated from a certain
random process defined by the priors and the predictions of the experts, and then at each
round we update our weights by the posteriors.

In detail, the algorithm works as follows:

Given N , priors (distribution over [N]) πi
w1,i = πi
For t = 1 to T

Upon seeing the experts’ predictions pt,i
Master predicts distribution qt(·) over X

qt(x) =
N∑
i=1

wt,ipt,i(x)

Upon observing xt

wt+1,i =
wt,ipt,i(xt)

Normalization
We proved that the log loss of q is bounded by

−
∑
t

ln qt(xt) ≤ min
i

[
−
∑
t

ln pt,i − lnπi

]

We analyzed the algorithm by pretending the data is generated by the following process,

1. Pr[i∗ = i] = πi

2. Pr[xt | xt−1
1 , i∗ = i] , pi(xt|xt−1

1) = pt,i(xt)

If the data is generated as above, then what our algorithm does is exactly to output

qt(xt) = q(xt | xt−1
1) = Pr[xt | xt−1

1]

2 Switching Experts

The Bayes algorithm above compares the loss of the algorithm with the best expert. How-
ever, it is quite likely that there are k experts (k is very small compared to N and T), each
does very good prediction on a series of consecutive rounds. For example, Expert 5 does
very well in the first 200 rounds, Expert 2 does well in the next 37 rounds, etc.. Then a
very good strategy may be just follow the 5th expert prediction in the first 200 rounds, and
then switch to the second, etc. In this section, we want to improve the Bayes algorithm so
that we get as good as prediction of this kind of switching strategy.

To make this idea concrete, we refer to the real experts as “base-experts”, and we define
the “meta-experts” to be imaginary agents that follow the predictions of some base experts
at each round, while only switching at most k times between the experts it follows.

Thus there are all together M = Nk+1
(
T−1
k

)
meta-experts, because we can choose k

switching places from the T − 1 possible switching places, and after fixing the switching
positions, in a segment of consecutive rounds, there are N choices of base-experts to follow.
(k−1 switching places and k base-experts uniquely determine a meta-expert. For example,
when k = 3, “switch at 6th day and 8th day, and use Expert 3 in the first segment, Expert
4 at the second, Expert 8 at the third” uniquely determine a meta-expert, which follows
Expert 3 from Day 1 to Day 5, Expert 4 from Day 6 to Day 7, Expert 8 from Day 8 to the
end.) We expect a new algorithm to do as well as the best meta-expert. A natural idea is
to apply the Bayes algorithm to all of the meta-experts as follows: We choose the priors on
the meta-experts to be uniform (we suppose we know T here, then we know M , and all of
the meta-experts).

Thus the additional loss of our algorithm compared to the best meta-experts is

lnM ≈ (k + 1) lnN + k ln(T/k)

which means roughly lnN + lnT per switch.
The bound is quite good; however, the main issue is that the running time/space is at

least M , which is exponential k. Next, we are going to show an alternative algorithm that
can be implemented efficiently and that achieves a similar bound.

2.1 Weight share algorithm

Though the main issue of the previous algorithm is the number of meta-experts, in the
weight share algorithm, we are not to reduce the number of meta-experts. Instead, we play
with the priors and design a clever prior distribution under which the meta-experts can be
generated efficiently. We even enlarge the class of meta-experts to be all of the combinations
of experts to follow in the T rounds (instead of those with only k switches.)

A meta-experts here can be represented as e = (e1, . . . , eT) ∈ {1, . . . , N}T , where et is
the base expert that it follows in round t.

Then we define the distribution over all the meta-experts by the following random
process of choosing expert e∗, and let π(e) be the probability that e is chosen by the
random process, that is, π(e) = Pr[e∗ = e]

1. Pr[e∗1 = i] = 1
N

2. Pr[e∗t+1 | e∗t] =
{

1− α if e∗t+1 = e∗t
α/(N − 1) otherwise

2

In other words, given e∗t , e
∗
t+1 is chosen to be the same as e∗t with probability 1 − α,

and chosen to be any other value with probability α/(N − 1), where α is a constant to be
determined.

Then we run the Bayes algorithm on the prior π(e) (we will describe how to run it
efficiently in a second), and get the additional loss for each e with at most k switches,

− lnπ(e) = − ln[
1
N
·(α/(N − 1))k (1−α)T−k−1] = lnN+k ln(

N − 1
α

)+(T −k−1) ln(1−α)

By taking α = k
N−1 we have that for e with at most k switches,

− lnπ(e) = lnN + k ln
[

(N − 1)(T − 1)
k

]
+ (some term ≤ k)

Thus we derived almost the same bound as in the previous section. The remaining task
is to compute this efficiently.

Recall that in the Bayes algorithm, we update our weights using the posterior Pr[i∗ =
i | xt−1

1], and output the distribution

qt(xt) = Pr[xt | xt−1
1]

We can compute qt(xt) as follows:

qt(xt) = Pr[xt | xt−1
1] =

∑
i

Pr[xt, e∗t = i | xt−1
1]

=
∑
i

Pr[xt | e∗t = i, xt−1
1] Pr

[
e∗t = i | xt−1

1

]
(Chain rule)

=
∑
i

pi(xt | xt−1
1)vt,i vt,i , Pr

[
e∗t = i | xt−1

1

]
We compute vt,i in an inductive manner as follows. The base case is obvious,

v1,i = Pr[e∗1 = i] =
1
N

And we can compute vt1,i as follows:

vt+1,i = Pr[e∗t+1 = i | xt1]

=
∑
j

Pr[e∗t+1 = i, e∗t = j | xt1]

=
∑
j

Pr[e∗t+1 = i | e∗t = j, xt1] Pr[e∗t = j | xt1] (Chain rule)

We have that

Pr[e∗t = j | xt1] =
Pr[e∗t = j | xt−1

1] Pr[xt | e∗t = j, xt−1
1]

Pr[xt | xt−1
1]

(Bayes rules)

=
vt,jpj(xt | xt−1

1)
qt(xt | xt−1

1)

3

and

Pr[e∗t+1 = i | e∗t = j, xt1] = Pr[e∗t+1 = i | e∗t = j] for e∗t+1, x
t
1 are independent

=
{

(1− α) if i = j
α

N−1 otherwise

Let ct,j = vt,jpj(xt|xt−1
1)

qt(xt|xt−1
1)

, it can be checked that
∑

j ct,j = 1.
Putting all together, we get that

vt+1,i =
∑
j

Pr[e∗t+1 = i | e∗t = j, xt1] Pr[e∗t = j | xt1]

=
∑
j

vt,jpj(xt | xt−1
1)

qt(xt | xt−1
1)

·
{

(1− α) if i = j
α

N−1 otherwise

=
∑
j

ct,j

{
(1− α) if i = j

α
N−1 otherwise

=
α

N − 1
+ (1− α− α

N − 1
)ct,i since

∑
j

ct,j = 1

Thus we can see that the running time for updating vt,i is O(N), which is quite efficient.

3 Market Investment

In this section we try to apply the Bayes algorithm to the stock market setting. Suppose
we have N stocks. On Day t, we denote by pt(i) the ratio of the price of stock i at the end
of day t to its price at the beginning of Day t, and we assume that the price at the end of
Day t is equal to the price at the beginning of Day t+ 1. That is,

pt(i) =
price of stock i at the end of day t

price at the beginning of Day t

Our wealth at the start of Day t is denoted by St, and the fraction of our wealth in stock i at
the start of Day t is wt(i). (Thus

∑
iwt(i) = 1.) Thus the total wealth at the start of Day t

is St =
∑
wt(i)St and at the end of Day t the wealth is St+1 =

∑
twt(i)Stpt(i) = St(wt ·pt).

Note that we assume that we can update the vector wt at the beginning of each day and it
remains fixed in the same day.

Thus at the end of T days the total wealth becomes

ST =
T∏
t=1

wt · pt

(We assume without generality that we have initial wealth 1 dollar.)
This is a multiplicative term and it’s natural to consider its logarithm so that multipli-

cation changes to summation. Thus our goal is to maximize the log of ST , which is

lnST =
∑
t

ln(wt · pt)

4

It is equivalent to minimize the negation of the above formula, which is

min− lnST = min−
∑
t

ln(wt · pt)

Observe that we have transformed the investing problem into an online learning prob-
lem. In each round, the investor chooses weight function wt(·) and the nature(the market)
responds the relative increase pt. The goal is to minimize the cumulative loss function∑

t− ln(wt · pt)
We apply the Bayes algorithm in the following way:

Let C = max
t,i

pt(i)

X = {0, 1}
Let pt,i(1) = pt(i)/C, and pt,i(0) = 1− pt,i(1)
xt = 1∀t

Observe that

qt(xt) =
∑
i

wt,ipt,i(1) =
∑
i

wt,ipt(i)/C =
wt · pt
C

and then by the bound guaranteed by the Bayes algorithm, we have that∑
t

− ln
wt · pt
C

=
∑
t

− ln qt(xt) ≤ min
i

[−
∑
t

pt,i(xt)] + lnN = min
i

[−
∑
t

pt(i)/C] + lnN

By canceling out the C in the two sides of the equation, basically we get that

− ln (wealth of the algorithm) ≤ − ln (wealth of the best single stock) + lnN

However, this seemingly good bound actually is trivial because it is eqquivalent to

(wealth of the algorithm) ≥ 1
N

(wealth of the best single stock)

It means that even choosing each stock with 1/N fraction of wealth can do as good as
this bound. Also it turns out that if we run this algorithm step by step, we can see that
the algorithm is equivalent to the following ”buy and hold” strategy: we place 1/N of our
wealth in each investment on Day 1, and then just leave it there, never doing any buying or
selling. We will show how to improve this performance of this algorithm in the next class.

5

