
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #21
Scribe: Lawrence Diao April 23, 2013

1 On-Line Log Loss

To recap the end of the last lecture, we have the following on-line problem with N experts.
For each round t = 1, ..., T :

– each expert i predicts pt,i distribution on X

– master predicts qt distribution on X

– observe xt ∈ X

– loss = − ln qt(xt)

We want to get a bound on the total loss of the master qt in comparison to the best expert.

T∑
t=1

− log qt(xt) ≤ min
i

T∑
t=1

− log pt,i(xt) + small (1)

where here we use the general log function of arbitrary base. We’ll see that this on-line log
loss setting manifests itself in many applications such as horse racing and coding theory.

2 Coding Theory

Here, we are concerned with how to efficiently send a message from Alice to Bob in as few
bits as possible. In this setting we define X as the “alphabet”, and each x ∈ X as a letter.
Say Alice wants to send one letter x. Define p(x) to be the probability of sending x, which
you can estimate from a corpus. The best you can do is to take − lg p(x) bits to send x.

Now Alice is trying to send a sequence of letters x1, x2, x3, ... One way we can do this is
to use p(x) for each letter separately, but this is sub-optimal for English. For example, if
we see the following string of characters “I am goi ”, we can easily predict the next letter
to be ‘n’ given the context, but if we simply use p(x), then we might say that ‘e’ is the most
likely, since it is the letter of highest frequency in the English language. Our goal is to use
the context to use fewer bits to encode x.

If we define pt(xt) to be the probability distribution of xt given context xt−1
1 = 〈x1, ..., xt−1〉,

then it takes − lg pt(xt) to encode the extra letter xt. However, it is really hard to model this
probability. You can’t get it just by counting as we could with p(x). Instead, we consider
combining a collection of coding methods where we don’t know which one will be best.

Let’s say we have N coding methods (N experts). We try to pick a master coding
method that uses at most a small amount more bits than the best encoding method.

Let pt,i(xt) = probability of xt given xt−1
1 according to the i-th coding method. So we have

T∑
t=1

− lg pt,i(xt)← bits used by i-th coding method

T∑
t=1

− lg qt(xt)← bits used by arbitrary coding method qt

We are trying to come up with a coding method qt(xt) to guarantee

T∑
t=1

− lg qt(xt) ≤ min
i

T∑
t=1

− lg pt,i(xt) + small

Such an algorithm is called a “universal compression” algorithm, since it works about
as well as the best coding method for any input. Note that the bound should hold for any
sequence of xt’s, so there’s no assumption on randomness of xt. Also note that this bound
is of the form of (1).

3 “Universal Compression” Algorithm

In this section we try to determine the algorithm for choosing the master coding method.
To make the math cleaner, we change the base back to e, and try to achieve the following
bound

T∑
t=1

− ln qt(xt) ≤ min
i

T∑
t=1

− ln pt,i(xt) + small

We also make the following notation changes

qt(xt)→ q(xt | xt−1
1)

pt,i(xt)→ pi(xt | xt−1
1)

Let’s pretend that xt are random even though they’re not in order to motivate an
algorithm for picking q. Pretend that xt are picked as follows:

– select one expert i∗ with Pr[i∗ = i] = 1
N

– x1, x2, ..., generated according to i∗:

Pr[x1 | i∗ = i] = pi(x1)

Pr[x2 | x1, i∗ = i] = pi(x2 | x1)
...

Pr[xt | xt−1
1 , i∗ = i] = pi(xt | xt−1

1)

2

Then the most natural way to pick q is:

q(xt | xt−1
1) = Pr[xt | xt−1

1]

=
∑
i

Pr[xt, i
∗ = i | xt−1

1] marginalize

=
∑
i

Pr[i∗ = i | xt−1
1] · Pr[xt | i∗ = i, xt−1

1] conditional probability

=
∑
i

wt,i · pi[xt | xt−1
1] wt,i = Pr[i∗ = i | xt−1

1]

If we can find these wt,i then we have an algorithm.

w1,i = Pr[i∗ = i] =
1

N
intialization

wt+1,i = Pr[i∗ = i | xt1]
= Pr[i∗ = i | xt−1

1 , xt]

=
Pr[i∗ = i | xt−1

1] · Pr[xt | i∗ = i, xt−1
1]

Pr[xt | xt−1
1]

bayes rule

=
wt,i · pi(xt | xt−1

1)

Normalization

So we are left with the following algorithm.

∀i : w1,i = 1
N

On round t:

Choose q(xt | xt−1
1) =

∑
i

wt,ipi(xt | xt−1
1)

Update Weights: ∀i : wt+1,i =
wt,ipi(xt | xt−1

1)

Normalization

We can see that this weight update is very similar to other weight-update online learning
algorithms we have seen in the past, except we don’t have to tune β since there is only one
“correct” choice of β = e−1 in this case.

wt+1,i ∝ wt,iβ
loss

loss = − ln pt,i(xt)

β = e−1

βloss = pt,i(xt)

wt+1,i ∝ wt,iβ
loss

= wt,ipt,i(xt)

4 Bounding the Log Loss

Here we are trying to prove (1), given our choice of q(xt |xt−1
1) = Pr[xt | xt−1

1]
Theorem:

T∑
t=1

− log qt(xt) ≤ min
i

T∑
t=1

− log pt,i(xt) + logN

3

Define q(xT1) = q(x1)q(x2 | x1)q(x3 | x1, x2)...

=
T∏
t=1

q(xt | xt−1
1)

=
T∏
t=1

Pr[xt | xt−1
1]

= Pr[xT1] chain rule

In the same way we can do this with each expert

pi(x
T
1) = Pr[xTi | i∗ = i]

Additionally, the total loss of our algorithm is given by the following:

−
T∑
t=1

log qt(xt) = −
∑
t

log q(xt | xt−1
1)

= − log

[∏
t

q(xt | xt−1
1)

]
= − log q(xT1)

Similarly, for any expert,

−
T∑
t=1

log pt,i(xt) = − log pi(x
T
1)

So we have the following bound:

q(xT1) = Pr[xT1]

=
∑
i

Pr[i∗ = i] · Pr[xTi | i∗ = i] marginalize

=
1

N

∑
i

pi(x
T
1)

≥ 1

N
pi(x

T
1) ∀i

=⇒ − log q(xT1) ≤ − log pi(x
T
1) + logN ∀i

=⇒
T∑
t=1

− log qt(xt) ≤ min
i

T∑
t=1

− log pt,i(xt) + logN

Here we consider logN to be “small”. Note that this bound does not assume any
randomness for xt. Now, let’s consider an alternative encoding scheme, where Alice waits
for the entire message x1, x2, ..., xT , chooses the best out of the N candidate encoding
methods, uses lgN bits to encode which encoding method she used, and finally sends her
message according to this chosen method. We can see that this scheme would use just as
many bits as the right hand side of the bound, but using our online algorithm we don’t
have to wait for the whole message to start encoding/sending. We won’t go into detail
about decoding, but in order to decode, Bob effectively just simulates what Alice does to
encode, so decoding is just as efficient as Alice’s encoding, making algorithmic efficiency a
non-factor.

4

5 Variations

5.1 Using a prior

In this section we consider a prior Pr[i∗ = i] = πi not necessarily uniform. Everything
about our algorithm stays the same except the initial weights are now w1,i = πi, and the
final bound ends up being

T∑
t=1

− log qt(xt) ≤ min
i

[
T∑
t=1

− log pt,i(xt)− log πi

]

5.2 Infinite Experts

Consider the problem where X = {0, 1}, and expert p predicts xt =

{
1 with prob p

0 with prob 1− p
where we have all experts p ∈ [0, 1]. We need to figure out the weights wt,p to get q. In the
finite case, we had wt,i = Pr[i∗ = i | xt−1

1], but applying this definition to the infinite case
doesn’t really make sense unless we’re talking about the probability density:

Pr[p∗ ∈ dp | xt−1
1] =

Pr[xt−1
1 | p∗ ∈ dp] · Pr[p∗ ∈ dp]

Pr[xt−1
1]

bayes rule

=
Pr[xt−1

1 | p∗ ∈ dp] · Pr[p∗ ∈ dp]
Normalization

=
Pr[xt−1

1 | p∗ ∈ dp]
Normalization

assuming Pr[p∗ ∈ dp] uniform

∝ ph(1− p)t−h−1

where h is the number of heads (1’s) in the first t− 1 rounds. Now, letting

wt,p = ph(1− p)t−h−1

qt =

∫ 1
0 wt,ppdp∫ 1

0 wt,pdp← Normalization
=

h+ 1

(t− 1) + 2
← sometimes called laplace smoothing

We can get a similar bound as before in this case but log πi or lgN doesn’t make sense.
We’ll see a bound in a future lecture.

6 Switching Experts

In this section we set up the problem for next class. Here, we no longer assume that one
expert is good all the time. Instead, we change the model so that at any step, the “correct”
expert can switch to another expert.

However, the learning algorithm has no idea when the experts are switching. Our goal is
to design an algorithm that performs well with respect to the best “switching” sequence of
experts. We’ll look at this in the next lecture.

5

