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1 Density Estimation

We are interested in modeling an unknown distribution D for which we have samples.
This is known as “probability modeling” or “density estimation”. Stating the problem in
mathematical terms, given (x, y) ∼ D, we wish to find Pr[y|x].

For example, consider applying this to medical diagnosis, where y is the underlying
disease, and x represents symptoms, test results, etc. We hope to find the probability of a
patient having disease y given the external observations represented by x.
We can also model Pr[x|y], which gives the probability of certain symptoms or external
observations given the presence of disease y. If we can solve for one of these probabilities,
we can then use Bayes’ Rule to find the other.

Pr[y|x] =
Pr[x|y] · Pr[y]

Pr[x]
(1)

Pr[y] is usually easy to estimate, and the denominator serves as a normalization constant
that can largely be ignored.
One can also model the joint distribution, finding Pr[y|x]=Pr[x, y]/Pr[x]. There are various
approaches to solving this problem, and a natural first step is just to do density estimation.

Given x1, . . . , xm, chosen i.i.d from distribution P , our unknown distribution. Note that
we do not have direct access to P , and want to build an estimate of P given our samples.
Just as we usually attempt to select the best hypothesis in a hypothesis space, here we are
trying to select the best distribution in a class of distributions, or possible models. What
should be our criteria?
Let Q be a class of distributions. How do we pick the best q ∈ Q given certain data?
Consider q1, q2 ∈ Q as drawn below, with a number of samples represented by the + signs.



If q1 is the true distribution, then it is highly unlikely that we would have selected this
particular sample, which seems more typical for q2, which is clearly a better fit. This gives us
a simple, yet powerful criterion for density estimation, namely looking at the probability of
drawing the given sample under a particular distribution. You then choose the distribution
that makes this sample more likely. This can be expressed as

Likelihood of q = Pr
q

[x1, . . . , xm] =

m∏
i=1

q(xi)

To find the maximum likelihood we choose the q that maximizes the above expression for
likelihood.

Consider the following example of a biased coin, with all distributions having bias be-
tween 0 and 1, so Q = [0, 1]. Note the following definitions:

x =

{
1 with probability p
0 with probability 1− p

q(xi) =

{
q if xi = 1
1− q if xi = 0

• Given x1, . . . , xm

• h =
∑m

i=1 xi, or the number of 1’s

Likelihood of q =
m∏
i

q(xi)

= qh(1− q)m−h

Differentiating and setting to 0, we get that q = h/m is the distribution that satisfies the
principle of maximum likelihood.

Going back to the goal of maximizing likelihood, dealing with products can get ugly.
We can modify the expression for maximum likelihood as follows and still get the same
solution.

max
q∈Q

∏
i

q(xi)↔ max log(
∏
i

q(xi))

↔ max
∑
i

log(q(xi))

↔ min
1

m

m∑
i=1

(− log(q(xi))

We started out with maximum likelihood, and ended up with a function of the model and
the data. We are really taking the sum of the log loss function. We can thus view maximum
likelihood as minimizing log loss.

The way we have it written here, we are minimizing an empirical average, or empirical
risk. We can think of empirical risk as a proxy for true risk. We will thus try to minimize
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empirical risk, selecting a distribution q, with the choice being entirely unconstrained, that
does so as a first exercise. The choice q usually does have constraints. How do we choose
this q, given access to p?

(Risk of q) = Ex∼p[− log q(x)]

= −
∑
x

p(x) · log q(x) (at times called cross entropy)

We are trying to minimize the above expression such that
∑

x q(x) = 1. As we saw in
the homework, the expression is minimized when q = p. This is good because if we can
minimize the actual risk, not having constraints on q, then we will get the right answer.
Further,

−
∑
x

p(x) · ln q(x) =
∑
x

p(x) · ln
(
p(x)

q(x)

)
−
∑
x

p(x) · ln p(x)

The first term on the right is our old friend relative entropy, and the second term, in-
cluding the minus sign, is the entropy of p, a nonnegative measure of how spread out a
distribution is. So by minimizing the risk, we are finding a distribution q that is as close as
possible to p.

2 Butterfly Hunting example

We can now look at a specific problem, namely that of modeling the population distribution
of a particular butterfly species. Where can we find it? We can go into the field to look
for it, plotting our results on a map of the United States. We are usually interested in
rare species, so the number of sightings would likely be small. We can also study the
temperature, altitude, amount of rainfall, etc. that the butterfly thrives in. Let us also
assume that we are given the altitude, temperature, and average rainfall levels at every
point in the United States. Given all this, our goal is to model the butterfly’s distribution,
essentially by figuring out the kind of habitat in which it is likely to live.

Let us call D the true distribution of the species population. Our goal is to estimate
D, assuming that our observations all come from this distribution. This is like a density
estimation problem, but with additional known features.

We are given a map, or set of possible locations, X that has been divided into a large
but finite grid of points. We also have a set of butterfly sightings x1, . . . , xn i.i.d ∼ D, and
a set of features f1, . . . , fn; fj : X → R providing altitude, average temperature, etc for
every point on the map. Our goal is to estimate D.

2.1 First Idea: Maximum Entropy

Start with what we know how to estimate, namely the expected value of a random variable.

ED[fj ] ≈ Ê[fj ] =
1

m

m∑
i=1

fj(xi)

We expect this to give us a rough property that we can directly measure from our training
set. How to find a distribution q that is an estimate of D with the quality that
Eq[fj ] = Ê[fj ] for all j = 1, . . . , n?
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Many distributions satisfy this constraint. Let us then naively find the distribution q
closest to the uniform distribution.

Minimize: RE(q ‖ unif) =
∑
x

q(x) · ln
(
q(x)

1/N

)
= lnN +

∑
x

q(x) · ln q(x)

= lnN −H(q)

This is the same as maximizing the entropy H. So to summarize this first strategy, we are
choosing q that maximizes the entropy H(q) according to the constraints
P = {q : Eq[fj ] = Ê[fj ] ∀j}

2.2 Second Idea

We want to use maximum likelihood. To do so, we must pick a parametric form, described
by a set of real-valued parameters, to estimate unknown distribution D, then choosing the
distribution in that parametric form that maximizes the likelihood of the data. In other
words, we are going to guess a form with parameters that we think is natural for describing
D, then finding the parameters that serve our purpose.
q is our estimate of D. We need a formula to express the probability of q over x. We can
work with the given features, taking a linear combination thereof.

q(x) =

n∑
j=1

λjfj(x)

This isn’t optimal, as the feature values could be negative and not add up to 1. We can
thus do the following

q(x) =
exp

(∑n
j=1 λjfj(x)

)
Zλ

Note the normalization factor Zλ. We can now choose the features λ by maximizing
the likelihood of the training examples we have observed. More explicitly, Q is the set
of all distributions q of the form given immediately above. These are often referred to as
Gibbs distributions. To pick the best q, we choose the q of this form that maximizes the
log-likelihood of the data:

arg max
q∈Q̄

m∑
i=1

ln q(xi)

This maximum might not exist unless we take the “closure” of Q. The closure of a
set is when you take all the points in a set as well as points that can be the results of a
constructed sequence that converges to them. This is expressed by the bar above the Q in
the above expression.

3 Theorem and Motivations

Note that the second idea leads to the same solution as the first idea. This leads us to a
theorem.
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Theorem 3.1 The following statements are equivalent:

• q∗ = arg maxq∈P H(q)

• q∗ = arg maxq∈Q̄
∑m

i=1 ln q(xi)

• q∗ ∈ P ∩ Q̄

Furthermore, any one of the above uniquely determines q∗.

3.1 Motivating argument for equivalence of bullet points 1 and 2

We will begin with the first bullet and see that it is equivalent to the second bullet by duality,
using the method of Lagrange multipliers. We are trying to maximize the expression

−
∑
x

q(x) · ln q(x)

such that for all j,
∑

x q(x) · fj(x) = Ê[fj ] and
∑

x q(x) = 1.

This can be formulated as a constrained optimization problem, for which we can use
Lagrange multipliers. Therefore, we wish to find

min
∑
x

q(x) ln q(x)

such that for all j, −
∑

x q(x)fj(x) = Ê[fj ] and
∑

x q(x) = 1. We will now form the
Lagrangian, with the λj terms and γ as Lagrange multipliers.

L =
∑
x

q(x) · ln q(x) +

n∑
j=1

λj(Ê[fj ]−
∑
x

q(x)fj(x)) + γ(
∑
x

q(x)− 1)

We will now optimize the Lagrangian over the q(x) terms, or primal variables, setting
the derivative to 0.

∂L

∂q(x)
= 1 + ln q(x)−

∑
j

λjfj(x) + γ = 0

We can now solve for q(x).

q(x) = exp(
∑
j

λjfj(x)− γ − 1)

=
exp(

∑
j λjfj(x))

Z

Note that Z is standing in for eγ+1 which, in order to meet the necessary constraints, serves
as a normalization factor. Plugging this expression q ∈ Q into the Lagrangian formulation
selectively, you get the following

L =
∑
x

q(x) · (
∑
j

λjfj(x)− lnZ) +
∑
j

λjÊ[fj ]−
∑
j

λj
∑
x

q(x)fj(x)

= − lnZ +
1

m

∑
j

λj
∑
i

fj(xi)

=
1

m

∑
i

(
∑
j

λjfj(xi)− lnZ)
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Note that the inner summation term is equivalent to ln q(xi), meaning that the La-
grangian expression simplifies to the log-likelihood of the training data over q. Further-
more, we know that the solution of the Lagrangian occurs at a saddle point where it is
minimized in the primal variables and maximized at the dual variables. In other words, the
dual problem is equivalent to the 2nd bullet.
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