
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture # 17
Scribe: Xingyuan Fang, Ethan April 9th, 2013

1 Review of Winnow Algorithm

We have studied Winnow algorithm in Algorithm 1.

Algorithm 1 Winnow Algorithm
Initialize w1,i = 1

N

for t = 1, ..., T do
Get xt ∈ RN

Predict ŷt = sign(wt · xt)
Observe yt ∈ {−1,+1}
If yt = ŷt, wt+1 = wt

Else wt+1,i = wt,ie
ηytxt,i/Zt, where Zt is a normalizing factor to make

∑
iwt+1,i = 1.

end for

To analyze the performance of Winnow algorithm. We have made the following assump-
tions

• A mistake is made at every round.

• For all t, ‖xt‖∞ = 1.

• There exist δ,u such that

– For all t, yt(u · xt) ≥ δ > 0

– ‖u‖1 = 1

– For all i, ui ≥ 0

We have proved the following theorem:

Theorem 1.1. Under the assumptions above, we have the following upper bound on the
number of mistakes: that the number of mistakes of the Winnow algorithm is at most 2 lnN

δ2
.

In order to get rid of the assumption ui ≥ 0, we have introduce the balanced Winnow
algorithm. We transform x and u by doubling the size of N and adding a complementary
version. See (1.1) for an example.

xt = (1,−0.7, 0.32) → x′t = (1,−0.7, 0.32| − 1, 0.7,−0.32)
u = (1, 0.2,−0.2) → u′ = (1, 0.2, 0|0, 0, 0.2). (1.1)

This transformation preserves the following properties: ‖xt‖∞ = ‖x′t‖∞, ‖u‖1 = ‖u′‖1, and
u′ · x′ = u · x. In addition, now ui ≥ 0 for all i. Let w+ and w− denote the original
and duplicated parts of w. That is, in balanced Winnow algorithm, w′ = (w+,w−) where
w+,w− ∈ RN . We have the balanced Winnow algorithm in Algorithm 2.



Algorithm 2 Balanced Winnow Algorithm
Initialize : w+

1,i = w−1,i = 1
2N

for t = 1, ..., T do
Predict ŷt = sign(w+

t · xt −w−t · xt)
If ŷt = yt then w+

t+1 = w+
t ; w−t+1 = w−t

Else w+
t+1,i = w+

t,ie
ηytxt,i/Zt and w−t+1,i = w−t,ie

−ηytxt,i/Zt
end for

2 A Comparison Between Perceptron Algorithm and Win-
now Algorithm

We list the difference between Perceptron algorithm and Winnow algorithm in the following
table. The main difference is that Perceptron additively updates the weight, and Winnow
multiplicatively updates the weight. In addition, they use different norms.

Table 1: A Comparison Between Perceptron Algorithm and Winnow Algorithm
Perceptron Winnow/WMA

Additive update Multiplicative update

‖xt‖2 = 1 ‖xt‖∞ = 1
‖u‖2 = 1 ‖u‖1 = 1

analogous to SVM analogous to Boosting

3 Regression, Loss Function

Untill now, we have been always talking about classification problems. In these problems,
we try to minimize the error rate of our classifier. Now, we begin to talk about another
important problem which is regression.

Let’s start with an example. Suppose that a TV station wants to hire a meteorologist
to predict the weather. Two applicants, say Alice and Bob, made predictions on the next
day’s weather during the interview:

Alice said there is a 70% chance of raining tomorrow.
Bob said there is an 80% chance of raining tomorrow.
No matter if it rained or not on the second day. It is still difficult to decide which one

we should hire. The reason is that we cannot observe the true probability of raining on that
day.

Before going further, let us introduce some notation and formulate the problem mathe-
matically.

Let x denote the current weather conditions, and let

y =

{
1 if rain,
0 otherwise.

We assume that (x, y) follows a joint distribution D that (x, y) ∼ D. Our goal is to estimate

p(x) = P(y = 1|x) = E(y|x).

2



The difficulty here is that p(x) is not observable for any x. Alice gives hA(x), and Bob
gives hB(x) to estimate p(x) respectively. What we can observe is 〈x, hA(x), hB(x), y〉. We
wish to choose the one between hA and hB, which is closer to p(x).

In a classification problem, we looked at how many mistakes a predictor h makes. Here,
in order to judge the performance of a predictor h(x), we look at the difference between
h(x) and y. We may use a loss function L(h(x), y) to measure the difference. For example,
we may use quadratic loss (h(x)− y)2.

We justify why we use quadratic loss by the following proposition.

Proposition 3.1. E(h(x)− y)2 is minimized when h = p.

Proof. Fix x, then we write
p = p(x) and h = h(x).

The quadratic loss function is:

E = Ey(h− y)2 = p(h− 1)2 + (1− p)h2.

As this is a convex function on h, to find the minimum, we may simply take the derivative
and set it equal to zero:

dE

dh
= 2(h− p) = 0,

which implies that
h = p.

This proposition tells us that h is equal to p if we minimize E(h(x)−y)2 over all possible
h. We next prove a theorem which shows that minimizing the observed squared difference
between the prediction and actual outcomes is equivalent to minimizing the squared differ-
ence between the prediction and the true values.

Theorem 3.2.
E(h(x)− p(x))2 = E(h(x)− y)2 − E(p(x)− y)2, (3.1)

where the first term is what we wish to minimize; the second term is the observation; and
the last term captures the randomness and does not involve h.

Proof. Fix x, we write
p = p(x), and h = h(x).

Next, We compute the left and right-hand side of (3.1) respectively.

LHS = E(h− p)2 = (h− p)2

RHS = E(h− y)2 − E(p− y)2

= E(h2 − 2hy + y2 − p2 − y2 + 2py)
= h2 − 2hp+ p2

= (h− p)2. (3.2)

3



In classification problems, we try to minimize P
(
h(x) 6= y

)
. Now, we want to minimize

E(h(x)− y)2.
Given the data points (x1, y1), (x1, y2), ..., (xm, ym), we can estimate the expectation

E(h(x)− y)2 by looking at the empirical average:

Ê(h(x)− y)2 =
1
m

m∑
j=1

(h(xj)− yj)2.

If we define Lh(x, y) = (h(x)− y)2, then we want

E(Lh) ≈ Ê(Lh)

for all h in some class of functions H. To show this, we can use Chernoff bounds. If H
is finite then we can use the union bound to generalize the result. For the case that H is
infinite, VC-style proofs can be used.

So far we have tried to justify the use of the quadratic loss function as a penalty function.
However, we need to minimize this cost function in practice. We show how to solve this
problem in the next section.

4 Linear Regression

Given x ∈ Rn, we want to predict y by some linear combination of the coordinates of x,
i.e., by w · x. Our goal is to find w.

Given m data points (x1, y1), (x1, y2), ..., (xm, ym), our problem is to find w to minimize

Φ =
m∑
j=1

(w · xj − yj)2.

Φ can be written in matrix form in the following matrix form:

Φ =

∥∥∥∥∥∥∥∥∥


xT1
xT2
...

xTm



w1

w2
...
wn

−

y1

y2
...
ym


∥∥∥∥∥∥∥∥∥

2

2

= ‖XTw − y‖22

To minimize this function over w, we take the gradients. We have

5Φ = 2X(XTw − y) = 0.

When XXT is invertible, we have a unique solution of w, which is

w = (XXT )−1Xy.

The matrix (XXT )−1X is called the pseudoinverse of XT .

4



Algorithm 3 Online Linear Regression
Initialize w1

for t = 1, ..., T do
Get xt ∈ Rn.
Predict ŷt = wt · xt.
Observe yt.
Compute the quadratic loss (ŷt − yt)2.
Update wt+1.

end for

5 Online Linear Regression

We next look at the online version of linear regression. Online linear regression can be
considered as a modern version of linear regression. We formalize the online version of
linear regression in Algorithm 3.

The goal is to minimize the cumulative loss of the learning algorithm A:

LA =
T∑
t=1

(ŷt − yt)2.

In particular, we want to achieve the following theoretical result:

LA ≤ min
u
Lu + (a small number),

where

Lu =
T∑
t=1

(u · xt − yt)2.

Lu is the loss of a linear predictor u. Our goal is to predict almost as well as the best static
linear predictor.

6 Widrow-Hoff(WH) Algorithm

In this section, we introduce a particular online regression algorithm named Widrow-
Hoff(WH) algorithm. WH algorithm initialize w1 = 0. Next, at each iteration t, we
update wt+1 by

wt+1 = wt − η(wt · xt − yt)xt. (6.1)

There are two motivations for the update rule in Widrow-Hoff. The first motivation is that
our loss function is defined as:

L(w,x, y) = (w · x− y)2.

To minimize the loss function, we take a step in the direction of steepest descent, i.e., in
the direction of the negative gradient. In this case, we have:

5wL = 2(w · x− y)x,

which gives us
wt+1 = wt − η5w L(wt,xt, yt),

5



where η is a pre-specified step length.
The second motivation is that we have two goals:

• We want the loss on (xt, yt) to be small which means that we want to minimize
(wt+1 · xt − yt)2.

• We do not want to be too far from wt. That is, we do not want ‖wt −wt+1‖ to be
too big.

Combining the above two goals, we compute wt+1 by solving the following optimization
problem

wt+1 = argmin η(wt+1 · xt − yt)2 + ‖wt+1 −wt‖2,

where η is a pre-specified weighting factor.
Take the gradient of the above equation, and make it equal to zero. We have

wt+1 = wt − η(wt+1 · xt − yt)xt.

Aprroximating wt+1 by wt on the right-hand side gives the WH update defined in (6.1).
We will analyze the properties of WH algorithm in the next lecture.

6


