
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture 15
Scribe: Xinyi Fan April 02, 2013

1 Connection with PAC learning

1.1 Brief review of last lecture

Last time we started talking about one particular form of the online learning model - learning
with experts’ advice, and looked at a simple case, where we assumed that a “perfect” expert
who never makes mistake exists. The halving algorithm suggests that we simply need to
keep track of experts who haven’t made any mistakes so far and take majority vote among
their predictions. The number of mistakes that the algorithm makes is bounded by lgN ,
where N is the total number of experts.

1.2 An example

We start with a concrete example which relates the halving algorithm to the PAC-learning
setting discussed earlier. Suppose the unknown target concept c is chosen by an adversary
from some known finite hypothesis space H = {h1, ..., hN}. The experts are hypotheses
from the same finite hypothesis space and there exists one “perfect” expert. We try to use
the halving algorithm to learn c.

• target function c ∈ H = {h1, ..., hN} (chosen by an adversary)

• on each round

– the learner observes an example x (chosen by an adversary)

– ∀i: expert i predicts on x: ξi = hi(x)

– using the halving algorithm the learner predicts ŷ

– the learner observes y = c(x)

If we apply the halving algorithm to this setting, since we know that there exists a
“perfect” expert, according to the argument we made in last lecture, the number of mistakes
made here is at most lg |H|, where |H| is the number of hypotheses. Note that lg |H| is also
a complexity measure of the hypothesis space.

1.3 Bounding the number of mistakes by complexity measure of H

The halving algorithm is actually not the best possible algorithm for the setting above. We
assume A to be some deterministic algorithm and define the following notations. In the
worst case, the number of mistakes made by A is denoted by

MA(H) = max
adversary (c,x’s)

(# mistakes made by A) (1)

where the maximization is over the adversary choices of c and x’s. And we formulate the
optimization as

opt(H) = min
A
MA(H) (2)

It turns out that the optimal number of mistakes made by any deterministic algorithm
A is bounded between the VC-dimention and lg |H|. Combined with what we obtained in
Section 1.2, a theorem is given below.

Theorem 1.
V Cdim(H) ≤ opt(H) ≤Mhalving(H) ≤ lg |H| (3)

Proof. We only need to prove V Cdim(H) ≤ opt(H). Pick an algorithm A and fix it, and let
d = V Cdim(H). We need to show that it’s possible for A to make d mistakes. According to
the definition of VC-dimension, let x1, ..., xd be d examples shattered by H. We’ll construct
an adversary to choose x1, ..., xd and force A to make mistake on each of them.

• for t = 1, ..., d

– the algorithm observes xt

– the algorithm predicts as ŷt

– choose yt = c(xt) 6= ŷt

In fact, there has to exist a target concept c ∈ H, which disagrees with all the d
predictions of the algorithm, because the d examples are shattered by H. Besides, since
the algorithm A is deterministic, it can be simulated ahead of time, which then makes
the adversary construction possible. Therefore, it’s possible for A to make d mistakes. In
particular, it is possible for the adversary to choose c ahead of time, before the presentation
of x1, ..., xd, as required by the model.

2 Weighted majority algorithm

Now consider a more realistic situation. Let’s assume that, instead of a “perfect” expert,
there exists a “pretty good” expert in our setting, who might make mistakes, but is still
good. We hope to modify the halving algorithm, and make it still work well in the new
setting. The strategy here is to maintain a weight for each expert, and when an expert
makes a mistake, down-weigh its advice, instead of discarding it. This leads to the weighted
majority algorithm, which is described as Algorithm 1. Notice that if we choose β to be 0,
the weighted majority algorithm degenerates to the halving algorithm.

Now we try to use the best expert to bound the number of mistakes made by the learner
according to the weighted majority algorithm.

Theorem 2.

(#mistakes of learner) ≤ aβ (#mistakes of best expert) + cβ lgN (4)

where aβ =
lg (1/β)

lg

(
2

1 + β

) , cβ =
1

lg

(
2

1 + β

)
To get some intuition for the constants, let’s look at some of their sample values, as

given in Table 1. The settings of constants are reasonable, and by examining the extreme
cases we see that there’s a trade off between aβ and cβ.

2

Algorithm 1 Weighted Majority Algorithm

choose down-weigh parameter β ∈ [0, 1)
denote the i-th expert’s weight at the t-th round by wt,i
∀i: w1,i = 1
on each round t

∀i:
get the i-th expert’s prediction ξt,i

qt,0 =
∑

i:ξt,i=0wt,i, qt,1 =
∑

i:ξt,i=1wt,i

the prediction at this round is ŷt =

{
1 if qt,1 > qt,0

0 else

∀i: update the weight

if ξt,i 6= yt then

wt+1,i ← βwt,i

else

wt+1,i ← wt,i

Table 1: Sample values of constants
β aβ cβ

0.5 ≈ 2.4 ≈ 2.4
→ 0 ∞ 1
→ 1 2 ∞

We can also divide both sides of (4) by the number of rounds T and get

(#mistakes of learner)

T
≤
aβ (#mistakes of best expert)

T
+
cβ lgN

T
(5)

When T gets large, the term
cβ lgN

T
→ 0, and the bound can be explained as the rate at

which the learner is making mistakes is bounded by the rate at which the best expert is
making mistakes multiplied by some constant.

To prove the theorem, we adopt a method which is quite similar to the proof of the
halving algorithm.

Proof. We keep track of the sum of the weights of all of the N experts Wt =
∑N

i=1wt,i on
each round t. Initially we set W1 = N , and on each round t we assume yt = 0.

Wt+1 =
∑

i:ξt,i=1

wt+1,i +
∑

i:ξt,i=0

wt+1,i

=
∑

i:ξt,i=1

wt,iβ +
∑

i:ξt,i=0

wt,i

= qt,1β + qt,0

= qt,1β + (Wt − qt,1)
= Wt − (1− β)qt,1

3

If the learner makes a mistake (ŷt 6= yt),

qt,1 ≥ qt,0

⇒ qt,1 ≥
1

2
Wt

⇒ Wt+1 ≤Wt − (1− β) · 1

2
Wt =

1 + β

2
Wt

If the learner makes a mistake, the sum of the weights will decrease by being multiplied by

a factor
1 + β

2
. Therefore, after m mistakes, the sum of the weights of all the experts is

Wnew ≤
(

1 + β

2

)m
W1 (6)

That’s how we get the upper bound. To get a lower bound on W , we define Li to be the
number of mistakes of expert i. Then the weight of any individual expert i after making Li
mistakes becomes wi = βLi , because wi is set to be 1 initially. Therefore, we have

βLi = wi ≤W ≤
(

1 + β

2

)m
·N (7)

where N is the number of experts. We can solve for the number of mistakes m as

m ≤
Li lg

(
1

β

)
+ lgN

lg
2

1 + β

(8)

3 Randomized weighted majority algorithm

For any deterministic algorithm, the constant aβ is close to 2 when β approaches 1. In
fact, aβ cannot get smaller than 2 for deterministic algorithms. We hope aβ can be even
smaller and close to 1, in which case, the learner can roughly do as well as the best expert.
To get this result, we need to modify our algorithm to make predictions randomly. In fact,
adding some randomness to an algorithm’s behavior is often necessary when dealing with
an adversary.

To get the new algorithm, we only need to change the hard threshold at the learner’s
prediction in the weighted majority algorithm to

ŷt =

{
1 with prob. qt,1/Wt

0 with prob. qt,0/Wt

The new algorithm is called randomized weighted majority algorithm. Similarly, we
can obtain a bound of the same form on the expected number of mistakes made by the
learner rather than the number of mistakes made by the learner, due to the introduction
of randomization during the learner’s prediction. Note that examples are still chosen by an
adversary, and the expectation is only over the randomization of the algorithm.

4

Theorem 3.

E [(#mistakes of learner)] ≤ aβ (#mistakes of best expert) + cβ lgN (9)

where aβ =
ln (1/β)

1− β
, cβ =

1

1− β

With the new definition of constants aβ can go to 1 as closely as possible when β
approaches 1. The proof of this is just a modification of the last proof.

Proof. We again keep track of the sum of the weights of all of the N experts Wt =
∑N

i=1wt,i
on each round t. Initially, let W1 = N , and on each round t, the probability (over the
algorithm’s randomization) that the algorithm makes an mistake is

`t = Pr [ŷt 6= yt] =

{
qt,1/Wt if yt = 0

qt,0/Wt if yt = 1

=
∑

i:ξt,i 6=yt

wt,i/Wt

Therefore, we have the new sum of weights

Wt+1 =
∑

i:ξt,i 6=yt

wt+1,i +
∑

i:ξt,i=yt

wt+1,i

=
∑

i:ξt,i 6=yt

wt,iβ +
∑

i:ξt,i=yt

wt,i

= `tWtβ + (Wt − `tWt) (Wt =
∑

i:ξt,i 6=yt

wt,i +
∑

i:ξt,i=yt

wt,i,
∑

i:ξt,i 6=yt

wt,i = `tWt)

= Wt (1− `t(1− β))

After making m mistakes,

βLi = wi

≤ Wfinal

≤ N

T∏
t=1

(1− `t(1− β)) (W1 = N)

≤ N

T∏
t=1

exp(−`t(1− β)) (1 + x ≤ ex)

= N · exp

(
−(1− β)

T∑
t=1

`t

)
(10)

LA =
∑T

t=1 `t is actually the expected number of mistakes. Therefore, after doing some
algebra we have

LA ≤
Li · ln

1

β
+ lnN

1− β
(11)

5

4 More discussion

Now let’s look at how to choose the factor β. Say we know the loss of the best expert

min
i
Li ≤ K

β can be chosen as
1

1 +

√
2 lnN

K

. Plug it into the bound (11), we have

LA ≤ min
i
Li +

√
2K lnN + lnN (12)

To visualize the way in which a learner predicts, let’s look at Figure 1. Here the x-
axis represents the weighted fraction of experts predicting 1 and the y-axis represents the
probability that the algorithm predicting ŷ as 1. The green curve shows how weighted
majority algorithm predicts and the red curve shows how randomized weighted majority
algorithm predicts. The blue curve represents many other ways in between, and we can
tune it properly to get different algorithms with different constants.

Figure 1: Comparison among predictions of different algorithms

By choosing an appropriate algorithm, which can be represented by some curve like the
blue one in the figure, we can get the bound

LA ≤
Li ln (1/β) + lnN

2 ln
2

1 + β

(13)

And if we know that mini Li ≤ K, we can design β to obtain

LA ≤ min
i
Li +

√
K lnN +

lgN

2
(14)

If we set K = 0, which implies the existence of a “perfect” expert, the bound becomes

LA ≤
lgN

2
(15)

This result is better than the bound of the halving algorithm.

6

Divide both sides of the bound (14) by the total number of rounds T ,

LA
T
≤ mini Li

T
+

√
K lnN

T
+

lgN

2T
(16)

Usually we can assume K ≤ T/2, which means that the best expert can make at most
T/2 mistakes. This assumption is reasonable because we could take two experts who always
predict as the opposite to each other, and thus there has to exist an expert between the
two who makes at most T/2 mistakes. Plug K = T/2 into Equation 16, we have

LA
T
≤ mini Li

T
+

√
lnN

2T
+

lgN

2T
(17)

When T gets large, the last two terms on the right hand side is going to zero, with different
rates. Since we plug K = T/2 into this, these different rates of convergence will depend on
K, which represents the loss of the best expert.

Finally, we will show that introducing randomness to the experts’ prediction and the
examples will in fact not improve our result, by proving a lower bound on what is possible
for any algorithm in this setting.

Assume that the experts’ predictions are random, so as the labels. More specifically,
the labels and experts’ predictions are chosen to be 0 or 1 with equal probability. On each
round, independently we have

ξt,i =

{
0 with prob. 1/2

1 with prob. 1/2

yt =

{
0 with prob. 1/2

1 with prob. 1/2

Then for any learning algorithm, the expected number of mistakes (over randomness of
experts’ predictions and data) is

E[LA] = T/2 (18)

And for any expert i, we also have

E[Li] = T/2 (19)

However, if we look at the expected loss of the best expert, it turns out that

E

[
min
i
Li

]
≈ T

2
−
√
T lnN

2
(20)

and therefore,

E[LA] & E

[
min
i
Li

]
+

√
T lnN

2
(21)

Compare (17), the upper bound, and (21), the approximate lower bound, since 1/
√
T

dominates 1/T , we find that the two bounds are quite close to each other and even up to
the constants. Therefore, the adversary setting actually does as well as the randomized
data setting.

7

