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1 Complexity of Boosted Learners

In this section we aim to analyze the complexity of the output hypothesis of Boosting, in
terms of its growth function. This will help us bound the generalization error of AdaBoost.

Note that the output hypothesis by AdaBoost after T iterations has the following form

H(x) = sign(
T∑
t=1

αtht(x)) (1.1)

= g(h1(x), . . . , hT (x)) (1.2)

where g(z) = sign(w · z), w = 〈α1, . . . , αT 〉. Let F to be the hypothesis space containing
all H of such forms. And let G to be the set of linear threshold functions in RT (without
the offset term), then VCdim(H) = T . And let H be the weak hypothesis space which we
assume has VCdim(H) = d.

By Homework 2, Problem 1 we can bound the growth function of H by

ΠF (m) ≤ ΠG(m)[ΠH(m)]T (1.3)

≤
(em
T

)T (em
d

)dT
(Sauer’s Lemma) (1.4)

Given m examples, we have shown that with probability at least 1− δ, for any H ∈ F ,

err(H) ≤ êrr(H) +O

(√
lnπF (m) + ln(1/δ)

m

)
(1.5)

We introduce the “soft-Oh” notation, which hides the log factors just the same way that
the “big-Oh” hides the constant factors. For example we would write lnm

m = Õ(1/m).
Then Equation (1.5) can be rewritten as

err(H) ≤ êrr(H) + Õ

(√
Td+ ln(1/δ)

m

)
(1.6)

2 Margin Based Analysis

2.1 Definition of Margin

Observe Equation (1.6), as the number of iterations increase, the second term will increase
to infinity and the formula predicts overfitting of Boosting.

However, in many experiments, we observe that the test error continues to decrease even
after the training error has reached zero. How can we explain this phenomenon?

We need to realize that training error is only telling part of the story, and is an inadequate
measure of the fit to the training set. As we continue to run AdaBoost, the predictions



of the combined classifier will become more “confident”, and this increase in confidence
translates into better performance. But how do we measure this confidence?

In politics, when two people compete for a position, we not only care about who has won
the majority vote, but also how many more votes he/she has won over his/her competitor,
i.e. “the margin of the victory”. We also want to introduce this concept into learning.

Note that the output of AdaBoost is simply the weighted majority vote of weak hy-
potheses

H(x) = sign(
T∑
t=1

αtht(x)) (2.1)

= sign(
T∑
t=1

atht(x)) (2.2)

where at , αt/(
∑T

i=1 αi), so 〈a1, . . . , aT 〉 is l1 normalized (non-negative and add up to 1).
Let

f(x) ,
T∑
t=1

atht(x) (2.3)

Then we define the margin on training example 〈x, y〉 to be

margin(x, y) =
∑

t:y=h(t)

at −
∑

t:y 6=h(t)

at (2.4)

=
∑
t

atyht(x) (2.5)

= yf(x) (2.6)

Note that in Equation (2.4),
∑

t:y=h(t) at is simply the fraction of “correct” votes of weak
learners, while

∑
t:y 6=h(t) at is the fraction of “incorrect” votes of weak learners. So margin(x, y)

corresponds to the margin of victory in politics, assuming the winner is just the label of the
training example.

We are going to show

• AdaBoost tends to increase the margin of the training examples as it continues to
iterate.

• Large margin on training examples translates to low generalization error.

2.2 AdaBoost Increases Margin

Theorem 2.1. For Θ > 0, the fraction of training examples in S with margin less than Θ
is bounded by

P̂rS [yf(x) ≤ Θ] ≤
T∏
t=1

(
2
√
ε1−Θ
t (1− εt)1+Θ

)
(2.7)

Then if weak learnability is satisfied, i.e. εt < 1
2 − γ for some γ > 0, then for any Θ < γ,

P̂rS [yf(x) ≤ Θ] ≤
(√

(1− 2γ)1−Θ(1 + 2γ)1+Θ

)T
→ 0 (2.8)

when T →∞.
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Proof. The proof is very similar to that of the training error bound of AdaBoost.

P̂rs[yf(x) ≤ Θ] =
1
m

m∑
i=1

1{yif(xi) ≤ Θ} (2.9)

=
1
m

m∑
i=1

1{yi
∑
t

atht(xi) ≤ Θ
∑
t

at} (2.10)

=
1
m

m∑
i=1

1{yi
∑
t

αtht(xi)−Θ
∑
t

αt ≤ 0} (2.11)

≤ 1
m

m∑
i=1

exp(−yi
∑
t

αtht(xi) + Θ
∑
t

αt) (2.12)

=
1
m

exp(Θ
∑
t

αt)
m∑
i=1

exp(−yi
∑
t

αtht(xi)) (2.13)

=
∏
t

(ZteΘαt) (2.14)

=
∏
t

2
√
εt(1− εt)

[√
1− εt
εt

]Θ

(2.15)

=
∏
t

2
√
ε1−Θ
t (1− εt)1+Θ (2.16)

Equation (2.10) uses the definition of f(·) and the fact that
∑T

t=1 at = 1. Equation (2.11)
multiplies both sides of ≤ in Equation (2.10) by

∑T
t=1 αt and does a simple transformation.

Equation (2.12) uses the fact that 1{−x} ≤ e−x for any x. Equation (2.14) follows from the
derivation of AdaBoost that

∏
t Zt = 1

m

∑m
i=1 exp(−y

∑
t αtht(xi)). Equation (2.15) uses

the values of Zt and αt calculated in AdaBoost.

2.3 Rademacher Complexity Analysis

We define the convex hull of H to be the set of all convex combinations of weak hypotheses
in H,

co(H) , convex hull of H (2.17)

=

{
f : x 7→

T∑
t=1

atht(x)| at ≥ 0,
∑
t

at = 1, ht ∈ H

}
(2.18)

Although co(H) seems to be a more complex hypothesis space thanH, their Rademacher
complexity turns out to be actually the same.

Lemma 2.2. R(co(H)) = R(H).
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Proof.

R̂S(H) ≤ R̂S(co(H)) (2.19)

= Eσ[
1
m

sup
f∈co(H)

∑
i

σif(xi)] (by definition of co(H)) (2.20)

≤ Eσ[
1
m

sup
h∈H

∑
i

σih(xi)] (2.21)

= R̂S(H) (2.22)

For Equation (2.21), since any f ∈ co(H) is a weighted average of some functions in H,
there exists some h ∈ H s.t. ∑

i

σif(xi) ≤
∑
i

σih(xi).

So for any σ, supf∈co(H)

∑
i σif(xi) ≤ suph∈H

∑
i σih(xi), and the inequality follows.

Let function φ : R→ R, define the function composition operator as

φ ◦ f : z 7→ φ(f(z)) (2.23)

And similarly we define function composition on function class

φ ◦ F = {φ ◦ f : f ∈ F} (2.24)

What is the relationship between R(F) and R(φ ◦ F)? Generally this is a difficult
question, but when φ is Lipschitz continuous, we can prove some results. Especially, we
have the following lemma. The proof is presented in the textbook and is omitted here.

Lemma 2.3. If φ is Lipschitz continuous, i.e. ∀u, v,

|φ(u)− φ(v)| ≤ Lφ|u− v| (2.25)

for some constant Lφ, then
R̂S(φ ◦ F) ≤ LφR̂S(F). (2.26)

Define
M = {(x, y) 7→ yf(x) : f ∈ co(H)} (2.27)

We can show the Rademacher complexity of M is actually the same as H.

R̂S(M) = Eσ[
1
m

sup
f∈co(H)

∑
i

σiyif(xi)] (2.28)

= Eσ[
1
m

sup
f∈co(H)

∑
i

σif(xi)] (2.29)

= R̂S(co(H)) (2.30)

= R̂S(H) (by Lemma 2.3) (2.31)

Equation (2.29) holds because we can do a one-to-one mapping from {−1, 1}m to itself by

〈σ1, . . . , σm〉 7→ 〈y1σ1, . . . , ymσm〉 (2.32)
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so the two expectations are the same.
For any function class F , by the main theorem about Rademacher complexity we have

proved previously, with probability at least 1− δ (over the choice of S), ∀f ∈ F ,

ED[f ] ≤ ÊS [f ] + 2R̂S(F) +O

(√
ln(1/δ)
m

)
(2.33)

We want to prove similar results with margins:

PrD[yf(x) ≤ 0] ≤ P̂rS [yf(x) ≤ Θ] + Ô

(√
d/Θ2 + ln 1/δ

m

)
(2.34)

To show this, first note that

P̂rS [yf(x) ≤ Θ] = ÊS [1{yf(x) ≤ Θ}] (2.35)
PrD[yf(x) ≤ 0] = ED[1{yf(x) ≤ 0}] (2.36)

The two expectations in Equation (2.35) and Equation (2.36) are over two different func-
tions. These seems to be a problem at first sight, but actually turns out to be the key for
connecting PrD[yf(x) ≤ 0], P̂rS [yf(x) ≤ Θ] and R̂S(F). We will complete the proof next
time.
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