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We’ve spent the past few classes proving bounds on the generalization error of PAC-
learning algorithms for the cases of consistent and inconsistent hypotheses selected from
finite and infinite hypothesis spaces. In particular, last time, we proved bounds for the case
of inconsistent hypotheses selected from infinite hypothesis spaces. However, recall that
each time we encountered the problem of an infinite hypothesis space, we had to resort to
techniques like using ghost samples or the VC-dimension of a concept class. In this lecture,
we introduce a more modern and elegant approach, using a concept called Rademacher
complexity. This approach turns out to include each of the bounds we’ve proved in the past
few lectures as special cases.

1 Definition of Rademacher Complexity

1.1 Some usual definitions

Before getting into the definition of Rademacher complexity, we remind ourselves of the
usual setup:

• Let the sample S = ((x1, y1), ..., (xm, ym)) where, unlike before, yi = {−1,+1}

• Let the hypothesis h : X → {−1,+1}

• To measure how well h fits S, let the training error ˆerr(h) = 1
m

∑m
i=1 1h(xi)6=yi

Note that, since we are using yi = {−1,+1} instead of yi = {0, 1} as in previous lectures
(for simplicity), we can provide an alternative definition of training error:

ˆerr(h) =
1

m

m∑
i=1

1{h(xi) 6= yi} (1)

=
1

m

m∑
i=1

{
1 if (h(xi), yi) = (1,−1) or (−1, 1)

0 if (h(xi), yi) = (1, 1) or (−1,−1)
(2)

=
1

m

m∑
i=1

1− yih(xi)

2
(3)

=
1

2
− 1

2m

m∑
i=1

yih(xi) (4)

The term 1
m

∑m
i=1 yih(xi) can be interpreted as the correlation of the predictions h(xi) with

the labels yi. We see that correlation is related to training error as correlation = 1−2 ˆerr(h).
To find a hypothesis h that minimizes training error, we can thus equivalently seek to find
the h satisfying:

arg max
h∈H

1

m

∑
i

yih(xi) (5)



1.2 Playing with correlation

Imagine, now, an experiment where we replace a sample’s true labels yi with the Rademacher
random variables σi:

σi =

{
+1 with prob. 1/2

−1 with prob. 1/2
(6)

This gives a modified expression for correlation:

arg max
h∈H

1

m

∑
i

σih(xi) (7)

Instead of selecting the hypothesis in H that correlates best with the labels, this now selects
the hypothesis h in H that correlates best with the random noise variables σi. Since h is
dependent on the random variables σi, however, to measure how well H can correlate with
random noise, we take the expectation of this correlation over the random variables σi and
find:

Eσ[max
h∈H

1

m

∑
i

σih(xi)] (8)

This intuitively measures the expressiveness of H. We can bound this expression using two
extreme cases: |H| = 1 where we only have one choice for a hypothesis, and |H| = 2m where
H shatters S. In the first case, our expectation equals 0 since the max term disappears; in
the second case our expectation equals 1 since there always exists a hypothesis matching
any set of σi’s. Thus our measure, as defined above, must fall between 0 and 1.

1.3 Generalizing correlation

Instead of working with hypotheses h : X → {−1,+1}, let’s generalize our class of functions
to the set of all real-valued functions. Replace H with F , which we define to be any family
of functions f : Z → R. Now, given sample S = (z1, ..., zm) with zi ∈ Z, if we apply our
expression from above to F , we arrive at the empirical Rademacher complexity of a family
of functions F with respect to a sample S:1

R̂S(F) := Eσ[sup
f∈F

1

m

∑
i

σif(zi)] (9)

Again, this expression measures how well, on average, the function class F correlates with
random noise over the sample S. However, often we want to measure the correlation of F
with respect to a distribution D over X, rather than with respect to a sample S over X.
To find this, we take the expectation of R̂S(F) over all samples of size m drawn according
to D:

Rm(F) := E[R̂S(F)] (10)

This is the Rademacher complexity, or for clarity, the expected Rademacher complexity, of
F .

We now have the definitions we need, and are finally ready to present our first general-
ization bounds based on Rademacher complexity.

1Note: Since F can be the family of all real-valued functions, max may not exist. Thus we use sup
instead, which is defined as the least upper bound on the elements in a set. For example, the sup of the set
{.9, .99, .999, ...} is 1.
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2 Generalization bounds based on Rademacher complexity

2.1 Bounds for general function classes F

The following theorem will serve as a very general tool for proving uniform convergence
bounds via the concept of Rademacher complexity:

Theorem 1. Let F be a family of functions mapping from Z to [0, 1], and let sample
S = (z1, ..., zm) where zi ∼ D for some distribution D over Z. Define E[f ] := EZ∼D[f(z)],
and define ÊS [f ] := 1

m

∑m
i=1 f(zi). With probability ≥ 1− δ, for all f ∈ F :2

E[f ] ≤ ÊS [f ] + 2Rm(F) +O

(√
ln 1/δ

m

)
(11)

E[f ] ≤ ÊS [f ] + 2R̂S(F) +O

(√
ln 1/δ

m

)
(12)

Proof. We derive a bound for E[f ]−ÊS [f ] for all f ∈ F , or equivalently, bound supf∈F (E[f ]−
ÊS [f ]). Note that this expression is a random variable that depends on S. So we want to
bound the following random variable:

Φ(S) = sup
f∈F

(E[f ]− ÊS [f ]) (13)

Step 1: We show, with probability ≥ 1− δ, Φ(S) ≤ ES [Φ(S)] +

√
ln 1/δ
2m . This step allows us

to go from working with Φ(S) to working with ES [Φ(S)].

Recall that McDiarmid’s inequality states that, if:

|f(x1, ..., xi, ..., xm)− f(x1, ..., x
′
i, ..., xm)| ≤ ci (14)

then:

Pr[f(x1, ..., xm) ≥ E[f(X1, ..., Xm)] + ε] ≤ exp(−2ε2/
m∑
i=1

c2i ) (15)

From the definition of Φ(S), we have:

Φ(S) = sup
f∈F

(E[f ]− ÊS [f ]) (16)

= sup
f∈F

(E[f ]− 1

m

∑
i

f(zi)) (17)

Since f(zi) ∈ [0, 1] for all zi, changing any one example zi to z′i in the training set S
will change 1

m

∑
i f(zi) by at most 1

m . Thus this changing of any one example affects Φ(S)
by at most this amount, implying that |Φ((z1, ..., zi, ..., zm)) − Φ((z1, ..., z

′
i, ..., zm))| ≤ 1

m .
This fits the condition of McDiarmid’s inequality (see (14)) with ci = 1

m , so we can apply
McDiarmid’s inequality and arrive at the bound shown.

2Note that the Big-Oh terms in the two expressions have different constants.
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Step 2: Define a ghost sample S′ = (z′1, ..., z
′
m), z′i ∼ D. We show that

ES [Φ(S)] ≤ ES,S′ [supf∈F (ÊS′ [f ]− ÊS [f ])]:

ES [Φ(S)] = ES [sup
f∈F

(E[f ]− ÊS [f ])] (18)

= ES [sup
f∈F

(ES′ [ÊS′ [f ]]− ÊS [f ])] (19)

= ES [sup
f∈F

(ES′ [ÊS′ [f ]− ÊS [f ]])] (20)

≤ ES,S′ [sup
f∈F

(ÊS′ [f ]− ÊS [f ])] (21)

Note that we arrive at (19) since the expected Rademacher complexity E[f ] is equal to the
expectation over all samples S′ of the empirical Rademacher complexity over those S′, or
ES′ [ÊS′ [f ]]. We also arrive at (21) by moving the expectation over S′ in (20) outside of the
sup; this can be done since the expectation of a max over some function is at least the max
of that expectation over that function.

Step 3: We show ES,S′ [supf∈F (ÊS′ [f ]− ÊS [f ])] = ES,S′,σ[supf∈F
∑

i σi(f(z′i)− f(zi))]

We use the ghost sampling technique for this step. In particular, for each pair of elements
zi, z

′
i in S, S′ respectively, swap the two with probability 1/2. Let the resulting two sets of

examples be T, T ′. Since S, S′ each initially represented iid samples from D, we have that
T, T ′ ∼ S, S′. This implies:

ÊS′ [f ]− ÊS [f ] ∼ ÊT ′ [f ]− ÊT [f ] (22)

=
1

m

∑
i

{
f(zi)− f(z′i) with prob. 1/2

f(z′i)− f(zi) with prob. 1/2
(23)

=
1

m

∑
i

σi(f(z′i)− f(zi)) (24)

Thus the expressions supf∈F (ÊS′ [f ] − ÊS [f ]) and supf∈F
∑

i σi(f(z′i) − f(zi)) are equally
distributed. The latter depends on an additional set of random variables σi, however, so
we must take the expectation of the latter over σ as well as S, S′. Taking the expectation
of the former over S, S′, as well, we arrive at the expression shown.

Step 4: We show ES,S′,σ[supf∈F
∑

i σi(f(z′i)− f(zi))] ≤ 2Rm(F)

ES,S′,σ[sup
f∈F

∑
i

σi(f(z′i)− f(zi))] ≤ ES,S′,σ[sup
f∈F

∑
i

σif(z′i) + sup
f∈F

∑
i

(−σi)f(zi))] (25)

≤ ES′,σ[sup
f∈F

∑
i

σif(z′i)] + ES,σ[sup
f∈F

∑
i

(−σi)f(zi))] (26)

= Rm(F) +Rm(F) (27)

where we arrive at (27) because −σi has the same distribution as σi.

Conclusion: Combining all the pieces together, we finally have that, with probability ≥ 1−δ,
for all f ∈ F :

E[f ]− ÊS [f ] ≤ 2Rm(F) +

√
ln 1/δ

2m
(28)
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To derive the bound involving R̂S(F), we use McDiarmid’s inequality again. Recall the
definition of R̂S(F) := Eσ[supf∈F

1
m

∑
i σif(zi)]. Since f ∈ [0, 1], changing one element in

S changes R̂S(F) by at most 1
m . We can apply McDiarmid’s inequality again, finding, with

probability ≥ 1− δ:

R̂S(F) ≤ Rm(F) +

√
ln 1/δ

2m
(29)

Using a δ′ = δ/2 and applying the union bound to (28) and (29), we have our result.
With probability ≥ 1− δ, for all f ∈ F :

E[f ] ≤ ÊS [f ] + 2R̂S(F) +O(

√
ln 1/δ

m
) (30)

2.2 Bounds for hypothesis spaces H

To get from this generalization bound on classes of all real-valued functions to classes of
hypotheses, define the following:

Z = X × {−1,+1} (31)

fh(x, y) = 1{h(x) 6= y} (32)

FH = {fh : h ∈ H} (33)

Note that, due to (33), each fh ∈ FH corresponds to some h ∈ H. Also note that, by these
definitions, we have:

err(h) = E(x,y)∼D[1{h(x) 6= y}] = E[fh] (34)

ˆerr(h) =
1

m

∑
i

1{h(xi) 6= yi} = ÊS [fh] (35)

Evidently we can use our bound from Theorem 1 to bound err(h)− ˆerr(h):

R̂S(FH) = Eσ[ sup
fh∈FH

1

m

∑
i

σifh(xi, yi)] (36)

= Eσ[sup
h∈H

1

m

∑
i

σi(
1− yih(xi)

2
)] (37)

= Eσ[
1

2m

∑
i

σi + sup
h∈H

1

2m

∑
i

(−yiσi)h(xi)] (38)

=
1

2
Eσ[sup

h∈H

1

m

∑
i

(−yiσi)h(xi)] (39)

=
1

2
Eσ[sup

h∈H

1

m

∑
i

σih(xi)] (40)

=
1

2
R̂S(H) (41)

Note that we arrive at (40) since (−yiσi) has the same distribution as σi. Now, combining
(30), (34), (35), and (41), we have:

err(h) ≤ ˆerr(h) + R̂S(H) +O(

√
ln 1/δ

m
) (42)
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