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Last time, we talked about Hoeffding’s inequality. That is, given X1, . . . , Xm i.i.d.,

where Xi ∈ [0, 1], 1 ≤ i ≤ m, and given p = E[Xi], if we define p̂ =
1

m

m∑
i=1

Xi (the empirical

average), we have that

Pr[|p̂− p| ≥ ε] ≤ 2e−2ε
2m.

Having this inequality, we asked the question: how fast does the training error converge to
its true error?

And the answer was: if we fix the hypothesis h, and define Xi = 1{h(xi) 6=yi}, p = err(h)
and p̂ = ˆerr(h), then we get the following bound:

Pr[|err(h)− ˆerr(h)| ≥ ε] ≤ 2e−2ε
2m.

1 A Stronger Chernoff Bound

Today, we will show that:

Pr[p̂ ≥ p+ ε] ≤ exp(−RE(p+ ε || p)m) (1)

where RE(p+ ε || p) is the relative entropy, or Kullback-Leibler divergence. Now, what is
relative entropy? This concept comes from information theory, and we will define it below.

Suppose that Alice wants to send to Bob 1 letter of the alphabet. There are 26 letters,
and therefore (in the naive way), we can encode each letter uniquely using a 5-bit string.
If Alice and Bob are communicating in English, in this encoding Alice is using the same
number of bits for common letters (such as A, E) as for uncommon letters (such as Q and
Z). For this reason, this encoding turns out to be rather inefficient.

It turns out that if messages are coming from some distribution P where P (x) is the prob-

ability of sending symbol x, then the best way to encode x is to use lg

(
1

P (x)

)
bits to encode

symbol x. With this information, the expected size of the message is
∑
x

P (x) lg

(
1

P (x)

)
,

which is equal to the entropy of the distribution P .
The argument above works when we know the distribution P . What if we assume that

the real distribution is Q instead of P? (That is, we are assuming a wrong distribution.)
Now, we will be using a wrong encoding, since we are encoding for Q rather than P . Then
– by the argument above – the expected number of bits is∑

x

P (x) lg

(
1

Q(x)

)
.

Hence, our deviation from the optimum is∑
x

P (x) lg

(
1

Q(x)

)
−
∑
x

P (x) lg

(
1

P (x)

)
=
∑
x

P (x) lg

(
P (x)

Q(x)

)
= RE(P || Q)



And this is the definition of relative entropy. From now on, we will slightly change our

definition of relative entropy to be RE(P || Q) =
∑
x

P (x) ln

(
P (x)

Q(x)

)
(this corresponds

to the original definition up to multiplication by a constant). This new definition will be
useful in our calculations later on.

Notice that RE(P ||Q) is always nonnegative, since we ”know” that
∑
x

P (x) lg

(
1

P (x)

)
is the optimum. The relative entropy computes how far apart distribution Q is from P .
When P = (p, 1− p) and Q = (q, 1− q) are distributions over just two items, we will often
use the abbreviated notation RE(p || q) as shorthand for RE((p, 1− p) || (q, 1− q)), where
p, q ∈ [0, 1].

Now, we are ready to prove (1).
Suppose X ≥ 0 is a random variable and t > 0 is any positive number. Then Markov’s

inequality says that

Pr[X ≥ t] ≤ E[X]

t
. (2)

Proof: E[X] = Pr[X ≥ t] ·E[X | X ≥ t] + Pr[X < t] ·E[X | X < t] ≥ Pr[X ≥ t] · t+ 0, and
this implies (2).

Markov’s inequality, as it is, is very weak for our purposes. However, notice that if we
have a monotonically increasing function f such that f(p) ≥ 0 ∀p, we can apply Markov’s
inequality on it and get a better bound. So, we will pick any λ > 0.

Then, p̂ ≥ q ⇔ eλmp̂ ≥ eλmq and thus Pr[p̂ ≥ q] = Pr[eλmp̂ ≥ eλmq], and by Markov’s
inequality on the random variable f(p̂) = eλmp̂, we have:

Pr[p̂ ≥ q] = Pr[eλmp̂ ≥ eλmq] (by equivalence above)

≤ e−λmq ·E[eλmp̂] (by Markov)

= e−λmq ·E

[
exp

(
λ

m∑
i=1

Xi

)]

= e−λmq ·E

[
m∏
i=1

eλXi

]

= e−λmq ·
m∏
i=1

E
[
eλXi

]
≤ e−λmq ·

m∏
i=1

E
[
1−Xi + eλ ·Xi

]
(by convexity of function eλx on [0, 1])

= e−λmq ·
m∏
i=1

(1− p+ eλ · p) (since E[Xi] = p)

=

(
1− p+ eλ · p

eλq

)m
.

Let φ(λ) = ln[e−λq(1− p+ eλp)]. Then, we have shown that ∀λ > 0:

Pr[p̂ ≥ q] ≤ eφ(λ)m
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and therefore, minimizing φ(λ), we get λmin = ln

(
q(1− p)
(1− q)p

)
, which implies φ(λmin) =

−RE(q || p). Setting q = p+ ε, we get the desired inequality, and this proves (1). �
Note: to prove that Pr[p̂ ≤ p− ε] ≤ exp(−RE(p− ε || p)m), just plug into the inequality

above X ′i = 1−Xi and proceed with the calculations.
Also, notice that this inequality is stronger than Hoeffdings’ inequality. To derive the

latter from (1), one just needs to show that RE(q || p) ≥ 2(q − p)2, which one can do by
using the Taylor expansion of RE(q || p).

2 McDiarmid’s Inequality

We may want to show that, given a function f(X1, . . . , Xm) on random variables Xi, its
value is close to E[f(X1, . . . , Xm)]. This may not be true in general, but if we assume that
f is a function that does not change much if we change one of the Xi’s while keeping the
others fixed, then we can get a good bound on Pr[|f(X1 . . . , Xm)−E[f(X1, . . . , Xm)]| ≥ ε].
This gives us McDiarmid’s inequality, which is stated as follows:

• assume that, for all x1, . . . , xm and x′i, there exists a constant ci such that:

|f(x1, . . . , xi, . . . , xm)− f(x1, . . . , x
′
i, . . . , xm)| ≤ ci

• and assume also that X1, . . . , Xm are independent, not necessarily identically dis-
tributed.

Then, we have that

Pr[f(X1 . . . , Xm) ≥ E[f(X1, . . . , Xm)] + ε] ≤ exp

(
−2ε2∑m
i=1 c

2
i

)
.

3 Overfitting

For a fixed hypothesis h, we know how to show that |errD(H)− ˆerrD(h)| ≤ ε, but we want
to show that ∀ h ∈ H : |errD(H)− ˆerrD(h)| ≤ ε with high probability. If H is finite, then
given m examples, with probability ≥ 1− δ, we have ∀ h ∈ H : |errD(H)− ˆerrD(h)| ≤ ε if

m = O

(
ln(|H|) + ln(1/δ)

ε2

)
. (This follows from the union bound combined with Hoeffding’s

inequality.) Or, written another way (using exercise from homework 1), with probability

≥ 1− δ, ∀ h ∈ H : errD(h) ≤ ˆerrD(h) +O

(√
|h|+ ln(1/δ)

m

)
.

Notice that to guarantee this bound, m depends quadratically on 1/ε, as opposed to
linear in 1/ε from previous classes. This is necessary because of Hoeffding’s inequality, since
the dependency in Hoeffding’s inequality is on e−2ε

2m. This result that we just obtained
implies that as we increase the complexity of our hypothesis, the upper bound on true error
behaves as in the following graph. This is called overfitting. In this graph model complexity
refers to |h| and the error refers to ε.
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