COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #7
Scribe: Kevin Hassani February 26, 2013

1 A Lower Bound on Sample Complexity

We have established upper bounds of m involving training size, complexity, and the VC-dim.
Last time, we discussed a lower-bound as a function of the VC-dim. Even if an adversarial
agent, making the worst case scenario, chooses C and D, A should still satisfy the conditions
of PAC learning. We are trying to prove the opposite: that if m is too small (< %), then
the concept is not PAC learnable. We simply choose ¢, < 1/8 to prove that it cannot be
PAC learnable.

In the last lecture, we gave a false proof by choosing C after A (and choosing C to
disagree with over half of the training labels). We give a valid proof this time, paying
particular attention to the order of steps.

Theorem 1. Let d =VC-dim(C). For any algorithm, A, there exists a concept, ¢ € C, and
distribution, D, such that if A is given m < g examples, then

1 1
P h - >=
r[err( A)>8]_8

Proof. Because C has VC-dim d, there exists z1,...,zq that are shattered by C. Let D be
uniform random over the shattered set. We want to pick a ¢ such that no A can be learnable
on it. One approach might be to pick ¢ € C uniformly at random. The problem with this
approach is that there could be many ¢ with the same labeling on the training set. In our
go-to example of positive half-lines, there could be a concentration of ¢ between two points
in the sample:
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Instead, we choose uniformly at random over ¢ € C" where C' C C with one representative
for every labeling of z1, ..., z4.

It is important to keep track of the order in which steps occur. We will consider two
experiments with different orderings:
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Experiment 1:

¢ chosen

training sample, S, chosen (according to D) and labeled by ¢
h 4 computed from S

test point, z, chosen

measure: Prlha(z) # c(z)]

Experiment 2: S (z1,..., %) chosen without labels
random labels (¢(z;)) chosen for just z; € S



h 4 computed from labeled S

test point, z, chosen

if z ¢ S then label ¢(z) is chosen at uniform random
measure: Prlha(z) # c(z)]

The above two experiments produce the same probability measures since the choice of
label ¢ is independent of the choice of S, and we choose the label for z independently of
the samples S. This probability is given over the randomness of concept ¢, the examples S,
and the test point z. We denote it as Pr. g, [ha(z) # c(z)].

Pr.s,lha(z) # c(x)] > Prega [z ¢ S Aha(x) # c(x)]
= Pr.gs, [z ¢ 5] Pr. s, [ha(z) # c(z)|xz ¢ 5]
—_——

because it is chosen uniform and mgg :%
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We are getting closer to the desired results, but we want to show that there exists a ¢ such
that Prg [errp(ha) > §] > %, where errp(ha) = Pr, [ha(z) # c(z)]. To do this, we will
use marginalization:

Pr[a] = E, [P [a]x]]
So, we have:

Ec [Prsg [ha(z) # c(z)|c]] = Pese [ha(z) # c(x)]

Therefore there exists an x € C' C C:

*adversary can pick ¢ that is at least the average

e

PI'S@ [hA(:E) 75 C(JZ)] >

1 < Bs[Prfha(e) # c(o)]] = Pro [ha(e) # (o)
= Eg[err(ha)]
< Prg [err(hA) < é] % + Prg [err(hA) > ;]
<1
< é—l— Prg {err(hA) > ;]

The second to last line comes from the following for X € [0, 1]:
Elz]= Y Phl- a_+ » Pl =
z:x<1/8 <1/8 z:x>1/8 <1
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2 Inconsistent Model Hypothesis

So far we have only dealt with the situation in which the hypothesis is consistent, but what
to do if the hypothesis is not consistent” There are several reasons it may not be consistent:

e concept ¢ ¢ ‘H (H not rich enough)
e computationally hard to find it

e ¢ may not exist. We've assumed that the label ¢(x) is a function of x, but it may not
be deterministic. For example, predicting weather is a random process (though not
uniform).

In order to accommodate this new wrinkle, we must make a few modifications. We now
have (z,y) ~ D, D distribution over X x {0, 1} with the following chain rule:

Pr[r,y] = Pr [z] Pr[y]a]
—— ——
process of picking z process of labeling

(e.g. current weather condition) (e.g. weather tomorrow)

Before, we had Pr[y = 1|z] = 0 or 1, but now it can be between 0 and 1.

We also have to modify our definition of the generalization error. Before, we had:

errp(h) = Pry.p [h(x) # c(z)]

Now we have:

errp(h) = Pr(g )p [M(x) # Y]

The first question we must ask is, “What is the best this error can be?” Let’s start with
an easier case, where we are tossing a coin. It lands on heads with p probability:

heads with probability p
tails  else

Of course, if we wanted to guess the outcome, the optimal prediction would be:

heads ifp> 1
tails ifp <3

Ifp= %, then we can choose heads or tails. We can do so deterministically since there is
nothing to be gained in making randomized predictions.

We face a similar situation when assigning classifications through a hypothesis. The
“Bayes optimal classifier” or “Bayes optimal decision rule” is as follows:

[ 1 ifPrply =1lz]
opt (%) = { 0 if Prply = 1|z]
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The “Bayes error” is the theoretical minimum error we can achieve regardless of computa-
tional power involved:

errp(hept) = minerrp(h)
all h



For h € H, our goal is to find minpey errp(h). Given S = (z1,41),- .-, (Tm,Ym), We
minimize training error using the empirical formula:

LN ifh(z) £y
err(h)mZ{ 0 else

{h(z;)#y: }

In order for this formula to be useful, we want to show that minimizing err(h) also minimizes
errp(h). That is to say Vh € H :

lerr(h) — err(h)| < e

Such a property implies that if 4 minimizes the empirical error, that is h = arg mingey, err(h),

then for all h € H:

err(h) < &r(h) + €
<err(h)+e
<err(h) + 2e¢

In words, the above inequality states that given a hypothesis h with minimal empirical
error, the true error of this hypothesis will be no bigger than the minimum true error over
all hypotheses in H plus 2¢. Thus, this hypothesis will have a generalization error close to
the lower bound of the error for all H. To prove this, we must prove uniform convergence:
Vh € H:

lerr(h) — err(h)| < e
In order to prove this, we use Chernoff bounds, and in particular, Hoeffdings’ Inequality:

Theorem 2. Let X1,..., X, beiid (independent and individually distributed) random vari-
ables with X; € [0,1], p=E[X,], and p = 2 > X;. Then, we have:

Prijp>p+e < e 2¢'m
Prip<p—¢ < g 2e"m

Together, these imply:
Prlp—p| > <2 2™ =4

Such a “tail bound” or “concentration inequality” gives us a probability bound for p:
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From Hoeffdings’ Inequality, we can derive that with probability > 1 — 4, [p — p| < 4/ g
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In the next lecture we will provide a proof of Chernoff bounds.



