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Last class, we discussed an analogue for Occam’s Razor for infinite hypothesis spaces
that, in conjunction with VC-dimension, reduced the problem of finding a good PAC-
learning algorithm to the problem of computing the VC-dimension of a given hypothesis
space. Recall that VC-dimesion is defined using the notion of a shattered set, i.e. a subset
S of the domain such that IT3(S) = 2!5I. In this lecture, we compute the VC-dimension of
several hypothesis spaces by computing the maximum size of a shattered set.

1 Example 1: Axis-aligned rectangles

Not all sets of four points are shattered. For example the following arrangement is impos-
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Figure 1: An impossible assignment of +/- to the data, as all rectangles that contain the
outer three points (marked +) must also contain the one — point.

However, this is not sufficient to conclude that the VC-dimension is at most three. Note
that the following set does shatter:
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Figure 2: A set of four points that shatters, as there is an axis-aligned rectangle that
contains any given subset of the points but contains no others.

Therefore, the VC-dimension is at least four. In fact, it is exactly four. Consider any
set of five distinct points {v1,v2,v3,v4,v5} C R2 Consider a rectangle that contains the
points with maximum x-coordinate, minimum x-coordinate, maximum y-coordinate, and
minimum y-coordinate. These points may not be distinct. However, there are at most four
such points. Call this set of points S C {v1,v2,v3,v4,v5}. Any axis-aligned rectangle that



contains S must also contain all of the points v1,v2,v3, v4, and vs. There is at least one v;
that is not in S, but still must be in the rectangle. Therefore, the labeling that labels all
vertices in S with + and v; with — cannot be consistent with any axis-aligned rectangle.
This means that there is no shattered set of size 5, since all possible labelings of a shattered
set must be realized by some concept.

By a similar argument, we can show that the VC-dimension of axis-aligned rectangles in
R™ is 2n. By generalizing the approach for proving that the VC-dimension of the positive
half interval learning problem is 1, one can show that the VC-dimension of n—1 dimensional
hyperplanes in R™ that pass through the origin is n. This concepts are inequalities of the
form

w-x>0

for any fixed w € R™ and variable x € R”. In this case, concepts label points with + if they
are one side of a hyperplane and — otherwise.

2 Other remarks on VC-dimension

In the cases mentioned previously, note that the VC-dimension is similar to the number of
parameters needed to specify any particular concept. In the case of axis-aligned rectangles,
for example, they are equal since rectangles require a left boundary, a right boundary, a
top boundary, and a bottom boundary. Unfortunately, this similarity does not always hold,
although it often does. There are some hypothesis spaces with infinite VC-dimension that
can be specified with one parameter.

Note that if A is finite, the VC-dimension is at most log, |H|, as at least 2" distinct
hypotheses must exist to shatter a set of size r.

For a hypothesis space with infinite VC-dimension, there is a set of size m that is
shattered for any m > 0. Therefore, IIy(m) = 2™, which we mentioned last class as
an indication of a class that is hard to learn. In the next section, we will show that all
classes with bounded VC-dimension d have IT3(m) = O(m?), completing the description of
PAC-learnability by VC-dimension.

3 Sauer’s Lemma

Recall that (Z) :#k!)!k!ifogkgnand (Z) =0ifk <0or k >n. kand n are
integers and n is nonnegative for our purposes. Note that (Z) = O(n*) when k is regarded
as a positive constant. We will show the following lemma, which immediately implies the

desired result:

Lemma 3.1 (Sauer’s Lemma). Let H be a hypothesis with finite VC-dimension d. Then,

Proof. We will prove this by induction on m + d. There are two base cases:

Case 1 (m = 0). There is only one possible assignment of + and — to the empty set, i.e.
IT3;(m) = 1 here. Note that ®4(0) = (8) + ((1]) +...+ (2) =1, as desired.



Case 2 (d = 0). Not even a single point can be shattered in this situation. Therefore, on
any given point, all hypotheses have the same value. Therefore, there is only one possible
hypothesis and Iy (m) = 1. This agrees with ®, as ®o(m) = (}') = 1.

Now, we will prove the induction step. For this, we will need Pascal’s Identity, which

states that
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for all integers n and k& with n > 0. Consider a hypothesis space H with VC-dimension d
and a set of m examples S := {x1,x9,...,xn}. Let T := {x1,z9,...,2;m—1}. Form two
hypothesis spaces H; and Hg on T as follows (an example is in Figure 3). Let H; be the
set of restrictions of hypotheses from H to T'. Let h|p denote the restriction of h to T for
h € H, ie. the function hy : T — {—,+} such that hp(z;) = h(x;) for all z; € T. An
element p on 7' is added to Hs if and only if there are two distinct hypotheses hy, hy € H
such that hy|p = ha|p = p.

Note that [TIy(S)| = |y, (T)| + |Hy, (T)|. What are the VC-dimensions of H; and Ha?
First, note that the VC-dimension of H; is at most d, as any shattering set of size d + 1 in
T is also a subset of S that is shattered by the elements of H, contradicting the fact that
the VC-dimension of H is d.

Suppose that there is a set of size d in T' that is shattered by Hsa. Since every hypothesis
in Ho is the restriction of two different hypotheses in H, x,, can be added to the shattered
set of size d in T  to obtain a set shattered by H of size d+ 1. This is a contradiction, so the
VC-dimension of Hs is at most d—1. By the inductive hypothesis, IIy, (m—1) < &4(m—1).
Similarly, Iy, (m — 1) < ®4_1(m — 1). Combining these two inequalities shows that
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completing the inductive step. O

Often, the polynomial ®;4(m) is hard to work with. Instead, we often use the following
result:

Lemma 3.2. ®;(m) < (em/d)? when m >d > 1.

Proof. m > d > 1 implies that < < 1. Therefore, since i < d in the summand,
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Figure 3: The construction of 1 and Ho
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Multiplying on both sides by (m/d)¢ on both sides gives the desired result. O

Plugging this result into the examples bound proven last class shows that

err(h) = O <;L <dln 2t ;))

We can also write this in terms of the number of examples required to learn:

m =0 1lnl d+dlnl/e
(fonv/a+amiyo)

Note that the number of examples required to learn scales linearly with the VC-dimension.

4 Lower bounds on learning

The bound proven in the previous section shows that the VC-dimension of a hypothesis
space yields an upper bound on the number of examples needed to learn. Lower bounds on
the required number of examples also exist. If the VC-dimension of a hypothesis space is
d, there is a shattered set of size d. Intuitively, any hypothesis learned from a subset of size
at most d — 1 cannot predict the value of the last element with probability better than 1/2.
This suggests that at least €2(d) examples are required to learn.

In future classes, we will prove the following

Theorem 4.1. For all learning algorithms A, there is a concept ¢ € C and a distribution
D such that if A is given m < d/2 examples labeled by ¢ and distributed according to D,
then

Prlerr(ha) > 1/8] > é



One can try to prove this as follows. Choose a uniform distribution D on examples
{#z1,...,24} and run A on m < d/2 examples. Call this set of examples S. Label the
elements of S arbitrarily with 4+ and -. Suppose that ¢ € C is selected to be consistent with
all of the labels on S and ¢(z) # ha(z) for all ¢ S. errp(ha) > 5 since c agrees with hy
on at most (d/2)/2 = 1/2 of the probability mass of the domain, which means that there is
no PAC-learning algorithm on d/2 examples.

This proof is flawed, as ¢ needs to be chosen before the examples. We will discuss a
correct proof in future classes.



