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Last class, we discussed an analogue for Occam’s Razor for infinite hypothesis spaces
that, in conjunction with VC-dimension, reduced the problem of finding a good PAC-
learning algorithm to the problem of computing the VC-dimension of a given hypothesis
space. Recall that VC-dimesion is defined using the notion of a shattered set, i.e. a subset
S of the domain such that ΠH(S) = 2|S|. In this lecture, we compute the VC-dimension of
several hypothesis spaces by computing the maximum size of a shattered set.

1 Example 1: Axis-aligned rectangles

Not all sets of four points are shattered. For example the following arrangement is impos-
sible:
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Figure 1: An impossible assignment of +/- to the data, as all rectangles that contain the
outer three points (marked +) must also contain the one − point.

However, this is not sufficient to conclude that the VC-dimension is at most three. Note
that the following set does shatter:

Figure 2: A set of four points that shatters, as there is an axis-aligned rectangle that
contains any given subset of the points but contains no others.

Therefore, the VC-dimension is at least four. In fact, it is exactly four. Consider any
set of five distinct points {v1, v2, v3, v4, v5} ⊆ R2. Consider a rectangle that contains the
points with maximum x-coordinate, minimum x-coordinate, maximum y-coordinate, and
minimum y-coordinate. These points may not be distinct. However, there are at most four
such points. Call this set of points S ⊂ {v1, v2, v3, v4, v5}. Any axis-aligned rectangle that



contains S must also contain all of the points v1, v2, v3, v4, and v5. There is at least one vi
that is not in S, but still must be in the rectangle. Therefore, the labeling that labels all
vertices in S with + and vi with − cannot be consistent with any axis-aligned rectangle.
This means that there is no shattered set of size 5, since all possible labelings of a shattered
set must be realized by some concept.

By a similar argument, we can show that the VC-dimension of axis-aligned rectangles in
Rn is 2n. By generalizing the approach for proving that the VC-dimension of the positive
half interval learning problem is 1, one can show that the VC-dimension of n−1 dimensional
hyperplanes in Rn that pass through the origin is n. This concepts are inequalities of the
form

w · x > 0

for any fixed w ∈ Rn and variable x ∈ Rn. In this case, concepts label points with + if they
are one side of a hyperplane and − otherwise.

2 Other remarks on VC-dimension

In the cases mentioned previously, note that the VC-dimension is similar to the number of
parameters needed to specify any particular concept. In the case of axis-aligned rectangles,
for example, they are equal since rectangles require a left boundary, a right boundary, a
top boundary, and a bottom boundary. Unfortunately, this similarity does not always hold,
although it often does. There are some hypothesis spaces with infinite VC-dimension that
can be specified with one parameter.

Note that if H is finite, the VC-dimension is at most log2 |H|, as at least 2r distinct
hypotheses must exist to shatter a set of size r.

For a hypothesis space with infinite VC-dimension, there is a set of size m that is
shattered for any m > 0. Therefore, ΠH(m) = 2m, which we mentioned last class as
an indication of a class that is hard to learn. In the next section, we will show that all
classes with bounded VC-dimension d have ΠH(m) = O(md), completing the description of
PAC-learnability by VC-dimension.

3 Sauer’s Lemma

Recall that
(
n
k

)
= n!

(n−k)!k! if 0 ≤ k ≤ n and
(
n
k

)
= 0 if k < 0 or k > n. k and n are

integers and n is nonnegative for our purposes. Note that
(
n
k

)
= O(nk) when k is regarded

as a positive constant. We will show the following lemma, which immediately implies the
desired result:

Lemma 3.1 (Sauer’s Lemma). Let H be a hypothesis with finite VC-dimension d. Then,

ΠH(m) ≤
d∑

i=0

(
m

i

)
:= Φd(m)

Proof. We will prove this by induction on m+ d. There are two base cases:

Case 1 (m = 0). There is only one possible assignment of + and − to the empty set, i.e.
ΠH(m) = 1 here. Note that Φd(0) =

(
0
0

)
+
(
0
1

)
+ . . .+

(
0
d

)
= 1, as desired.
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Case 2 (d = 0). Not even a single point can be shattered in this situation. Therefore, on
any given point, all hypotheses have the same value. Therefore, there is only one possible
hypothesis and ΠH(m) = 1. This agrees with Φ, as Φ0(m) =

(
m
0

)
= 1.

Now, we will prove the induction step. For this, we will need Pascal’s Identity, which
states that (

n

k

)
+

(
n

k + 1

)
=

(
n+ 1

k + 1

)
for all integers n and k with n ≥ 0. Consider a hypothesis space H with VC-dimension d
and a set of m examples S := {x1, x2, . . . , xm}. Let T := {x1, x2, . . . , xm−1}. Form two
hypothesis spaces H1 and H2 on T as follows (an example is in Figure 3). Let H1 be the
set of restrictions of hypotheses from H to T . Let h|T denote the restriction of h to T for
h ∈ H, i.e. the function hT : T → {−,+} such that hT (xi) = h(xi) for all xi ∈ T . An
element ρ on T is added to H2 if and only if there are two distinct hypotheses h1, h2 ∈ H
such that h1|T = h2|T = ρ.

Note that |ΠH(S)| = |ΠH1(T )|+ |ΠH2(T )|. What are the VC-dimensions of H1 and H2?
First, note that the VC-dimension of H1 is at most d, as any shattering set of size d+ 1 in
T is also a subset of S that is shattered by the elements of H, contradicting the fact that
the VC-dimension of H is d.

Suppose that there is a set of size d in T that is shattered by H2. Since every hypothesis
in H2 is the restriction of two different hypotheses in H, xm can be added to the shattered
set of size d in T to obtain a set shattered by H of size d+ 1. This is a contradiction, so the
VC-dimension of H2 is at most d−1. By the inductive hypothesis, ΠH1(m−1) ≤ Φd(m−1).
Similarly, ΠH2(m− 1) ≤ Φd−1(m− 1). Combining these two inequalities shows that

ΠH(m) ≤ Φd(m− 1) + Φd−1(m− 1)

=

(
d∑

i=0

(
m− 1

i

))
+

d−1∑
j=0

(
m− 1

j

)
=

(
m− 1

0

)
+

d−1∑
i=0

((
m− 1

i

)
+

(
m− 1

i+ 1

))

=

(
m

0

)
+

d−1∑
i=0

(
m

i+ 1

)
= Φd(m)

completing the inductive step.

Often, the polynomial Φd(m) is hard to work with. Instead, we often use the following
result:

Lemma 3.2. Φd(m) ≤ (em/d)d when m ≥ d ≥ 1.

Proof. m ≥ d ≥ 1 implies that d
m ≤ 1. Therefore, since i ≤ d in the summand,
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H x1 x2 x3 x4 x5
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
1 0 0 1 0
1 0 0 1 1
1 1 0 0 1

H1 x1 x2 x3 x4
0 1 1 0
0 1 1 1
1 0 0 1
1 1 0 0

H2 x1 x2 x3 x4
0 1 1 0
1 0 0 1

Figure 3: The construction of H1 and H2

(
d

m

)d d∑
i=0

(
m

i

)
≤

d∑
i=0

(
d

m

)i(m
i

)
=

(
1 +

d

m

)m

≤ ed

Multiplying on both sides by (m/d)d on both sides gives the desired result.

Plugging this result into the examples bound proven last class shows that

err(h) = O

(
1

m

(
d ln

m

d
+ ln

1

δ

))
We can also write this in terms of the number of examples required to learn:

m = O

(
1

ε
(ln 1/δ + d ln 1/ε)

)
Note that the number of examples required to learn scales linearly with the VC-dimension.

4 Lower bounds on learning

The bound proven in the previous section shows that the VC-dimension of a hypothesis
space yields an upper bound on the number of examples needed to learn. Lower bounds on
the required number of examples also exist. If the VC-dimension of a hypothesis space is
d, there is a shattered set of size d. Intuitively, any hypothesis learned from a subset of size
at most d− 1 cannot predict the value of the last element with probability better than 1/2.
This suggests that at least Ω(d) examples are required to learn.

In future classes, we will prove the following

Theorem 4.1. For all learning algorithms A, there is a concept c ∈ C and a distribution
D such that if A is given m ≤ d/2 examples labeled by c and distributed according to D,
then

Pr[err(hA) > 1/8] ≥ 1

8
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One can try to prove this as follows. Choose a uniform distribution D on examples
{z1, . . . , zd} and run A on m ≤ d/2 examples. Call this set of examples S. Label the
elements of S arbitrarily with + and -. Suppose that c ∈ C is selected to be consistent with
all of the labels on S and c(x) 6= hA(x) for all x /∈ S. errD(hA) ≥ 1

2 since c agrees with hA
on at most (d/2)/2 = 1/2 of the probability mass of the domain, which means that there is
no PAC-learning algorithm on d/2 examples.

This proof is flawed, as c needs to be chosen before the examples. We will discuss a
correct proof in future classes.
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