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Recall Occam’s razor. With probability at least 1 − δ, a hypothesis h ∈ H consistent

with m examples sampled independently from distribution D satisfies err(h) ≤ ln |H|+ln 1
δ

m .

Sample complexity for infinite hypothesis spaces

We seek to generalize Occam’s razor to infinite hypothesis spaces. To do so, we look at the
set of behaviors ΠH(S) of hypotheses from H on a sample S.

ΠH(S) = {〈h(x1), . . . , h(xm)〉 : h ∈ H}
for S = 〈x1, . . . , xm〉

ΠH(m) = max
S:|S|=m

|ΠH(S)| defines the growth function of H.

Our goal is to modify Occam’s razor to get a bound of the form

err(h) ≤ O

(
ln ΠH(2m) + ln 1

δ

m

)
.

First, some definitions. For our proof of this bound, we fix ε and let D denote our target
distribution. S = 〈x1, . . . , xm〉 denotes a sample of m > 8/ε points chosen independently
from D and provided to the learning algorithm. S′ = 〈x′1, . . . , x′m〉 denotes a second sample
of m points, again chosen independently from D, termed the “ghost sample”. S′ is not
provided to the learning algorithm.

Define M(h, S) to be the number of mistakes h makes on S.
And define the event B ≡ [∃h ∈ H : h consistent with S and h ε-bad].
Our goal is to show that Pr[B] ≤ δ.

To do this we use the “double sample trick,” taking the error of a hypothesis on the ghost
sample as a proxy for the generalization error of the hypothesis. This allows us to make
claims about a hypothesis being ε-bad without examining every hypothesis in an infinite
hypothesis space. With the double sample trick, we can focus on what is happening on
finite sets of points without worrying about what is happening over the entire domain.

Define the event B′ ≡
[
∃h ∈ H : h consistent with S and M(h, S′) > mε

2

]
.

Step 1: Pr[B′|B] ≥ 1/2

The same hypothesis h that makes B true makes B′ true with probability at least 1/2.
To see this, suppose h is consistent with S and has err(h) > ε. Then we must show with
probability at least 1/2 that M(h, S′) > mε

2 .
E[M(h, S′)] > mε since err(h) > ε. Therefore by Chernoff bounds we conclude Pr[M(h, S′) ≤

mε
2 ] ≤ 1/2.

Put another way, if B is true, then the probability that B′ is not true is less than 1/2.
Pr[B′|B] ≥ 1/2



Step 2: Pr[B] ≤ 2Pr[B′]

Trivially we have B ∧B′ =⇒ B′.

So Pr[B′] ≥ Pr[B ∧B′]
= Pr[B]Pr[B′|B]

≥ 1

2
Pr[B] by step 1.

So Pr[B] ≤ 2Pr[B′].

Therefore it’s sufficient to find an upper bound for Pr[B′], which will immediately give
an upper bound for Pr[B].

At this point we look at some intuition for why B′ has low probability.
B′ entails having no error on S and lots of error on S′. Since the samples were chosen
independently, all permutations of the data among the sets S and S′ are equally likely, so
it is unlikely that all errors are in S′.

Consider two experiments for generating S and S′.
Experiment 1: Choose S and S′ as usual, independently from D.
Experiment 2: First choose S and S′ as usual, then move examples around as follows.

For each i ∈ {1 . . .m}, with 50% probability swap element i of S with element i of S′. Call
the resulting samples T and T ′.

Notice that the distributions for T , T ′ exactly equals those for S, S′.

Now define B′′ ≡
[
∃h ∈ H : h consistent with T and M(h, T ′) > mε

2

]
Step 3: Pr[B′′] = Pr[B′]

Since the distributions for T , T ′ exactly equals those for S, S′ we conclude Pr[B′′] = Pr[B′].

Define b(h) ≡
[
h consistent with T and M(h, T ′) > mε

2

]
Step 4: Pr[b(h)|S, S ′] ≤ 2−mε/2

In step 4 we select S and S′ according to the standard proceedure and then look at b(h)
before proceeding to construct T , T ′ according to experiment 2.

We show through three cases that Pr[b(h)|S, S′] ≤ 2−mε/2.

Case 1: h produces errors on two corresponding samples in S and S′

In this case, regardless of the permutations of the data selected by experiment 2, b(h) is
false. So Pr[b(h)|S, S′] = 0.

To illustrate Case 1, we represent in the following table example sets S and S′. A zero
in the ith column indicates that the label of the ith element is correct, and a one in the ith
column indicates that the label of the ith element is incorrect. Experiment 2 allows for an
element to be swapped with the element below it. In this example there will always be an
error in the second row because of the column of ones.
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S 1 0 1
S’ 1 1 0

Let r denote the number of points in S with label different from the corresponding point
in S′.

Case 2: r < mε
2

In this case, b(h) cannot happen because there are not enough mistakes. In order for b(h)
to be true, all mistakes must occur in S′ and none may occur in S and the total number of
errors must exceed mε

2 . Since there are insufficient errors for this to occur, we again have
Pr[b(h)|S, S′] = 0.

Case 3: r ≥ mε
2

In this case, for b(h) to be true, all r errors must be placed in T ′ rather than T . These
events happen independently, each with probability 1/2. So Pr[b(h)|S, S′] = 2−r ≤ 2−mε/2.

In all three cases Pr[b(h)|S, S′] ≤ 2−mε/2.

Step 5: Pr[B′′] ≤ ΠH(2m)2−mε/2

We now go to bound the probability of B′′. The number of behaviors a hypothesis can
take on over the 2m samples in T , T ′ is finite, given by ΠH(2m). For each behavior, we
select a single representative hypothesis h ∈ H giving that behavior, giving a set H′(S, S′)
of ΠH(2m) representative hypotheses.

To reach the second line that follows we will use marginalization (Pr[A] = EX [Pr [A|X]]).
We can go from the second to the third line since each hypothesis h ∈ H has the same be-
havior on S, S′ as some other h ∈ H′(S, S′).

Pr[B′′] = Pr[∃h ∈ H : b(h)]

= ES,S′Pr[∃h ∈ H : b(h)|S, S′] using marginalization

= ES,S′Pr[∃h ∈ H′(S, S′) : b(h)|S, S′] as explained above

≤ ES,S′
∑

h∈H′(S,S′)

Pr[b(h)|S, S′] by union bound

≤ ES,S′ |ΠH(2m)|2−mε/2

Lastly we finally get a bound on Pr[B].

Pr[B] ≤ 2Pr[B′] = 2Pr[B′′]

≤ 2|ΠH(2m)|2−mε/2

≤ δ.

If we solve explicitly for ε we see the final inequality holds when ε ≤ 2 lg ΠH(2m)+lg(2/delta)+1
m =

O
(

ln ΠH(2m)+ln 1
δ

m

)
.
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The nice case here is when ΠH(2m) is O(md), in which case ε goes to zero quickly.
Let’s now look at a good technique for bounding the growth function ΠH(2m).

VC dimension

A sample S of m points is shattered if H realizes all possible behaviors on S. There are 2m

such behaviors.
|ΠH(S)| = 2m

The Vapnik-Chervonenkis (VC) dimension of H, VCdim(H), is given by the cardinality
of the largest set shattered by H.

As an example, consider H = {intervals on the real line}. If S contains a single point
then H shatters S. If S contains two points, again H shatters S. In both of these cases
H contains hypotheses that produce every possible labeling of the points in S. Thus
VCdim(H) ≥ 2. If S is a set containing 3 points, then H does not contain a hypothe-
sis that labels the outer two points positive and the middle point negative, so H does not
shatter S. Therefore VCdim(H) = 2.
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